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ABSTRACT
Users often want to augment and enrich entities in their datasets
with relevant information from external data sources. As many
external data sources are accessible only via keyword search inter-
faces, users usually have to manually formulate keyword queries
that extract relevant information for each entity. This is challenging
as many data sources contain numerous tuples only a small fraction
of which may contain entity-relevant information. Furthermore,
different datasets may represent the same information in distinct
forms and under different terms (e.g., each data source may use
a different name to refer to the same person). In these cases, it is
difficult to formulate a query that precisely retrieves information
relevant to an entity. Current methods for information enrichment
mainly rely on lengthy and resource-intensive manual effort to
formulate queries to discover relevant information. However, in
increasingly many settings, it is important for users to get initial
answers quickly and without substantial investment in resources,
such as human attention. We propose a progressive approach to
discovering entity-relevant information from external sources with
minimal expert intervention. It leverages end users’ feedback to
progressively learn how to discover information relevant to each
entity in a dataset from external data sources. Our empirical evalu-
ation shows that our approach learns accurate strategies to deliver
relevant information quickly.
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1 INTRODUCTION
There is a recognized need to collect and connect information
from a variety of data sources [12, 15, 18]. As an example, we have
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recently worked in a large-scale NIH-funded project to augment the
information of biomedical entities by querying other biomedical
data sources [39]. The main goal of this project is to repurpose
current drugs to treat or mitigate the symptoms of diseases for
which there is no time or resources to develop effective treatments
(e.g., new or rare diseases) [2]. Biomedical researchers often have
some local dataset of available drugs (e.g., a dataset of FDA approved
uses of drugs). Given a drug in the local dataset, a researcher usually
needs to query external data sources to find additional information
about the drug (e.g., its off-label uses).

Due to a lack of access and/or resources, external information of-
ten must be retrieved through querying [12, 37]. Many data sources
are only accessible via query interfaces/APIs. Even with access, it
may require too much of a resource (e.g., storage space, time) to
download and maintain an up-to-date copy of the external dataset.
Thus, information relevant to some local entity must often be gath-
ered on a as-needed basis by querying external data sources. For
example, as many biomedical data sources are available only via
query APIs, the users of the aforementioned drug repurposing data
collection system must often query the information relevant to
their drug of interest through query APIs.

However, formulating queries that extract specific information
can be troublesome. Different data sources often represent the same
concept in distinct forms [11, 13] such that one needs to tailor their
query to specific external data sources. Figure 1 illustrates a case
where users have a local dataset of FDA approved uses of drugs,
named FDA-Approved Uses, and would like to query an external
data source that contains the off label uses of those drugs, named
Off-Label Uses. A drug that is identified by one of its brand names
(e.g., Zoloft) in FDA-Approved Uses is referred to by its generic name
(e.g., Sertraline) in Off-Label Uses. Because of heterogeneities, one
may not know how to query for a specific external entity prior to
investigating the content and structure of the data in the external
source. Consider a biomedical researcher who seeks additional
information about the drug Zoloft in their local dataset. Since they
are only aware of the structure and content of their local dataset,
they query the external data source for Zoloft, but it elicits no results.
They try again using a much more general description of Zoloft
(i.e., being a serotonin reuptake inhibitor). However, their under-
specified query produces many results most of which are irrelevant
(i.e., contain information about drugs that are not Zoloft). After
additional trial-and-error, they find a query that retrieves Sertraline.
More work is required to then merge the local and external entities
into one cohesive representation.
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Brand Drug Class Approved Use Description

Provigil wake-promoting 
central nervous agent Narcolepsy affects attention areas 

in the brain

Zoloft selective serotonin 
reuptake inhibitor

Clinical 
depression

increases serotonin, 
controls mood & panic

Paxil selective serotonin 
reuptake inhibitor

Obsessive-
compulsive 
disorder

boosts serotonin, 
reduces stress

Generic M. Formula Off-Label Use How Works

Sertraline !17"17!#2$ Fibromyalgia

raises serotonin 
levels in the brain, 
stops panic, may 
reduce depression

Paroxetine !19"20%$&3 IBS

raises serotonin 
levels in the brain, 
improves mood, 
controls stress

User selects a local entity 
and passes it to mediator1 User

Example Local Datasource: FDA-Approved Uses Example External Datasource: Off-Label Uses

Query Interface

External returns top 
results for the generated 

query to the user
3

Query Policy '

Featurization Φ

Mediator generates keyword query2
“serotonin 
depression 

panic”

User provides relevance feedback; 
used to update query policy4

RewardFeedback Response

Entity

Query

Sertraline !17"17!#2$ Fibromyalgia
raises serotonin 
levels in the brain, 
stops panic, may 
reduce depression

Figure 1: An example of our framework for a single user and single external data source. The user selects (by query, GUI, etc,.)
the local entity Zoloft. The mediator uses its learned query policy to extract the relevant entity (Sertraline) from the external
source. The user provides relevance feedback on the results which is then used to further refine the mediator’s querying policy.

Manually querying for specific external entities takes too much
time and financial resources. Continuing our example, if the re-
searcher needs additional information for another drug in their
local dataset, they will need to repeat the entire process. Moreover,
if they need information from additional external data sources, then
the work required to query for each drug is greatly exacerbated.
Furthermore, any other researcher with a similar information need
must repeat the same such work themselves.

To alleviate the burden, one can use a shared system that
automates query formulation. Thismediator system acts as
a go-between for users and external data sources: a user specifies
a local entity (e.g., Zoloft) perhaps through a query or a graphical
user interface, and the mediator maps the local entity to queries
that retrieve the relevant external entities (e.g., Sertraline) from
their respective external sources.

To the best of our knowledge, such mediators are currently cre-
ated bymanually writing programs that generate queries for specific
external sources to retrieve relevant records to a given local entity.
Each program implements a set of manually written rules specific
to an external source. Most of these rules cannot be reused across
data sources. Thus, the mediator requires a significant amount of
labor and expert attention to build and maintain. Instead of conduct-
ing their own research, biomedical researchers in our NIH-funded
project spend most of their time writing these programs and in-
vestigating the content and structure of every external source to
ensure that the programs formulate the correct queries.

In this paper, we examine methods for learning the mediator’s
query policy online through user interaction. As illustrated in Fig-
ure 1, after the user specifies a local entity, the mediator formulates
a query to retrieve records from an external source according to its
query policy and shows the returned external records to the user.
The user then provides feedback on the relevance of the returned
records to the local entity. Our mediator learns to revise its query
policy and improves its performance using the user’s feedback.

An alternative to this online learning paradigm is to use offline
training data to learn query formulation but collecting and labeling
such data still requires considerable manual effort from domain
experts [12]. Particularly, it is challenging to gather useful training
data from external sources. The data collection/labeling might need
to be repeated as the external datasets evolve. In many domains

(e.g., drug repurposing) for emerging viral diseases, users cannot
wait long to prepare offline training data.

Of course, online learning of query policies comes with its own
set of challenges. First, the mediator should learn to formulate
reasonably accurate queries over external sources early on. We
assume the mediator must be effective in the short run so users will
continue to provide feedback. It is particularly difficult to meet this
goal over large local or external datasets as the amount of required
feedback for accurate learning generally grows with the number
of entities. Second, the mediator should improve their querying
policy and increase the effectiveness of their results in the long run.
Online learning literature indicates that a policy that is effective in
the short run (i.e., meets the first challenge) might not be accurate
in the long run as it might become biased to early observations or
decisions that do not deliver accurate results in the long run [34].
Third, due to lack of prior knowledge about the precise content
and structure of the relevant external information, the number of
candidate queries for a local entity might be enormous. This large
search space makes finding effective queries difficult.

Due to the wide-spread use of keyword query interfaces over ex-
ternal sources, we develop online learning methods for formulating
keyword queries. There are systems for automatic keyword query
formulation, but they assume returned results are always relevant,
which is not usually true and is the challenge that we address [37]
(see Section 8). Our contributions are as follows:

• We present a framework for on-demand collection of relevant
external entities only accessible via query interfaces (Section 2).

• We define the problem of online query policy learning within
the context of the aforementioned framework (Section 3).

• We present a method that learns a separate query policy for
each individual local entity. We show that this approach does
not scale to large local datasets as it might require a great deal
of user feedback (Section 4).

• We propose an entity-conditional method that learns a query
policy jointly over all local entities. This significantly reduces
the amount of user feedback required to learn effective query
policies. To overcome representational heterogeneity across
the local and external sources, we propose techniques to use
features and keywords from the external results in our model
and queries, respectively (Section 5).
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• If the local dataset contains many diverse entities, it might not
be possible to learn effective queries for many entities using a
shared model. Hence, we propose an approach that gradually
replaces a shared model with entity-specific ones based on the
effectiveness of the shared model. The resulting models will
retain the desirable properties of the shared model in the short
run and learn effective queries in the long run (Section 6).

• We explore whether the broad language understanding capa-
bilities of state-of-the-art deep language models can improve
query generation. Namely, we train a small neural network
over entity/term features extracted by a large-scale pretrained
Longformer model to serve as our query policy (Section 6). We
find modest gains in one dataset.

• We perform extensive empirical studies using six pairs of real-
world datasets from different domains, including biology, prod-
ucts, and news. Our studies indicate that our proposed methods
learn reasonably effective queries quickly and improve their
accuracy in the long run over large datasets (Section 7).

2 GENERAL FRAMEWORK
Before defining the problem of learning querying policies online,
we first outline the general framework that our proposed methods
operate within. The mediator wraps the local dataset and the query
interface over the external data source. We assume the mediator has
full access to the local dataset, but can only access external datasets
through their query interfaces. Given a user-specified entity from
the local dataset, the mediator must devise and submit a query to
the interface to extract external entities relevant to the given local
entity. This framework is not tied to a particular method by which
a user specifies the local entity (e.g., through query or GUI).
Local Dataset. To simplify our exposition, we assume the local
dataset is a single relational table where each tuple stores infor-
mation about a distinct entity. One may extend our approach to
multi-relational datasets by defining an entity as the join of its
related tuples. We denote the set of local dataset entities as E.
External Dataset. For every local entity 𝑒 ∈ E, there exists some
relevant entity 𝑋 (𝑒) (i.e., tuple) in the external dataset. The defi-
nition of "relevant entity" depends on the domain. For example, a
clinical trial is relevant to the drug that it concerns.𝑋 (𝑒) represents
the target tuple that the mediator must extract from the external
dataset by crafting the correct query for entity 𝑒 . For notational
convenience, we assume only one relevant external entity exists
for each local entity, however, in the case of more than one, we
can easily extend 𝑋 (𝑒) to be the set of all relevant entities. If no
relevant entities exist, then extracting𝑋 (𝑒) is impossible regardless
of the method used. Thus, in order to more accurately evaluate our
methods, we assume that 𝑋 (𝑒) always exists.

Example 1. Tables 1a and 1b show excerpts of local and external
datasets, respectively. E consists of all drugs in FDA-Approved Uses.
If 𝑒 is Zoloft then the relevant tuple 𝑋 (𝑒) in Off-Label Uses is Ser-
traline. We show the content of 𝑋 (𝑒) for explanation’s sake. In a
real setting, the content of 𝑋 (𝑒) would not be known a priori.

Querying Policy.We call the queries submitted by the mediator
to the external data source mediator queries. We denote the set
of all possible mediator queries as Q. Q is a subset of the queries

accepted by the external query interface. A querying policy (or just
policy) is a mapping 𝜋 : E → Q. An ideal policy would map each
local entity 𝑒 ∈ E to a query 𝑞 ∈ Q which extracts 𝑋 (𝑒) from the
external dataset. To the best of our knowledge, these mappings
are traditionally written manually. Though Q is not limited to any
specific query language, our remaining discussion will treat Q as
the set of keyword queries accepted by the external data source in
order to align with our problem definition.
Extracting Related Information. Formulating a query that ex-
tracts 𝑋 (𝑒) requires overcoming two challenges. First, without
knowing the contents of 𝑋 (𝑒) precisely, the mediator may not
know how to express its intent for it. Second, the mediator may
not know how the external data source will interpret its query.
Keyword queries, are inherently vague [27, 31]. As the ranking
method used by the external query interface is often not known,
we assume that the mediator does not have any prior knowledge
about it. Therefore, an effective policy would account for both rep-
resentational differences between 𝑒 and 𝑋 (𝑒) as well as the way in
which the external source quantifies relevance.

Example 2. Given 𝑒 = Zoloft, the mediator must devise a keyword
query to extract 𝑋 (𝑒) = Sertraline. One policy might be to use the
content of the input entity (Zoloft) within the outputmediator query.
However, the content in Brand and Approved Use are likely unique
to the local dataset. Given this observation, assume the mediator’s
policy ignores terms from Brand and Approved Use and prefers
terms from Drug Class and Description. Assume this policy
maps 𝑒 (Zoloft) to the keyword query "serotonin depression panic".

Query Effectiveness. The mediator’s policy is evaluated based
on the effectiveness of the queries it produces. There are standard
metrics in information retrieval and data management to measure
the effectiveness of queries relative to the ranked results they elicit
[31]. For example, Precision@𝑘 is the fraction of relevant answers
in the top-𝑘 returned results. Another frequently used metric is
Reciprocal Rank 1

𝑟 where 𝑟 is the position of the first relevant answer.
One metric may be more appropriate than another for a specific
setting. For instance, Reciprocal Rank may be a better indication
of effectiveness than Precision@𝑘 if there are at most a couple
relevant answers to the input query in the underlying dataset.

Example 3. The mediator submits its query "serotonin depres-
sion panic" to the query interface over Table 1b which returns the
ranked results {Paroxetine, Sertraline}. Since 𝑋 (𝑒) = Sertraline, the
reciprocal rank of these results would be 1

2 or 0.5.

Merging Local and External Information One might have to
merge local data with its relevant external data by performing other
steps of data integration, such as schema matching [12]. However, it
takesmore than one paper to investigate all steps of data integration.
Thus, we assume that in these settings, users leverage existing data
integration tools to create the final dataset and focus on the task of
collecting information from external sources effectively.

3 LEARNING QUERY POLICY PROGRESSIVELY
In our online approach, themediator refines its querying policy over
time as users provide feedback on the effectiveness of its queries.
External relevant information would be presented to the user on-
demand as they identify entities of interest in the local dataset [29].
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Brand Drug Class Approved Use Description
Provigil wake-promoting central nervous agent Narcolepsy affects attention areas in the brain
Zoloft selective serotonin reuptake inhibitor Clinical depression increases serotonin, controls mood & panic
Paxil selective serotonin reuptake inhibitor Obsessive-compulsive disorder boosts serotonin, reduces stress

(a) FDA-Approved Uses

Generic M. Formula Off-Label Use How Works
Modafinil 𝐶15𝐻15𝑁𝑂2𝑆 Depression impacts parts of nervous system & brain that control wake-fullness & attention
Sertraline 𝐶17𝐻17𝐶𝑙2𝑁 Fibromyalgia raises serotonin levels in the brain, stops panic, may reduce depression
Paroxetine 𝐶19𝐻20𝐹𝑁𝑂3 IBS raises serotonin levels in the brain, improves mood, controls stress

(b) Off-Label Uses

Table 1: Local database of FDA Drugs and external data source of Off-Label Drugs

The mediator queries external information relevant to the entity of
interest using its current policy, presents the results to the user, and
collects their feedback on the quality of the results. The mediator
may then use the collected feedback to revise and improve its policy
to produce progressively better queries and results.

Though our realized system would depend on real-user feed-
back, we focus on the fundamental question of whether effective
querying policies can be learned online and reserve user studies
for a future paper. Thus, we assume a simple user interface and
feedback scenario. After the mediator gathers the external results,
they are returned to the user. Users can inspect the external results
and provide feedback to the mediator. The user feedback may be
explicit (e.g., click-through [35] or eye movement information [19])
or implicit (e.g., skipping results [26]).

Our approach is meant to provide users with an additive, non-
disruptive experience that improves over time as they provide feed-
back. Users may interact with the local data source as they normally
would and either leverage the external results or ignore them al-
together. The mediator learns from the collective feedback of all
users, so no single user bares the full responsibility of training it.
Thus, as long as some users provide feedback, the mediator will
improve, providing progressively better external results for each
local entity, for all users of the system.

3.1 Keyword Query Interface and Results
A keyword query 𝑞 is a finite string comprised of terms (i.e., key-
words). The number of terms in each query is its length. We indicate
that term 𝑘 appears in query 𝑞 with 𝑘 ∈ 𝑞. Where appropriate, we
denote the set of queries of length ℓ using 𝑄ℓ . As explained in Sec-
tion 1, to save resources, keyword query interfaces might limit the
length of input keyword queries. These limits are usually stored
in the query interface documentation. We assume that all queries
submitted to an external data source have a given fixed length.
The particularities of keyword query interfaces could be leveraged
to make queries more effective. For example, performance could
be improved by incorporating special syntax, such as Boolean op-
erators (ANDs, ORs), or by using advanced search options and
faceted search. However, the support for these mechanisms is often
interface-specific, so we do not consider them.

Though they are relatively simple, keyword queries present a
unique set of challenges. Unlike formal query languages, such as
SQL, keyword queries are inherently vague [24, 31]. Due to the large
number of potential answers to many keyword queries, keyword
query interfaces often return limited results (e.g., only the top-k).

Also, to save resources, query interfaces might limit the number of
terms in their input queries. For example, Yelp!’s Fusion API will
return no results if more than 8 terms are used, Google.com limits
queries to 32 terms, and in our evaluation of dblp.org, queries with
as few as 16 terms returned server errors.

3.2 Objective and Challenges
The mediator is involved in a series of interactions with the external
data source. At interaction 𝑡 , the mediator is given the local entity
𝑒𝑡 ∈ E which it maps to a keyword query 𝜋 (𝑒𝑡 ) ∈ Q, where 𝜋 (𝑒𝑡 )
represents the output query (i.e., 𝑞𝑡 ) under the current policy 𝜋 . The
mediator submits 𝑞𝑡 to the query interface and receives feedback
on 𝑞𝑡 based on its ability to extract 𝑋 (𝑒𝑡 ). The mediator uses the
feedback to find progressively better policies that more effectively
extract relevant entities. Our objective is to develop methods that
find an optimal policy quickly to maximize the effectiveness of
queries submitted to the external interface.

The effectiveness of query 𝑞𝑡 for entity 𝑒𝑡 is based on the reward
received 𝑟 (𝜋 (𝑒𝑡 ), 𝑒𝑡 ). The reward depends both on the unknown
qualities of the external data source (how it ranks and returns results
relative to 𝑞𝑡 ) and the method one uses for scoring the returned
results relative to 𝑒𝑡 and𝑋 (𝑒𝑡 ). There is at least one query 𝑞∗𝑡 which
maximizes the reward for entity 𝑒𝑡 , 𝑞∗𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑞∈Q
𝑟 (𝑞, 𝑒𝑡 ).

𝑞∗𝑡 is an optimal query since no other query can be more effec-
tive than it. As discussed in Section 2, there are many options for
measuring the effectiveness of 𝑞𝑡 relative to the external results
and 𝑋 (𝑒𝑡 ). We focus on policies that maximize the reciprocal rank
(RR) of 𝑋 (𝑒𝑡 ). Thus, we have 𝑟 (𝜋 (𝑒𝑡 ), 𝑒𝑡 ) represent RR, as indicated
by user feedback, of 𝑋 (𝑒𝑡 ) within the results returned for 𝜋 (𝑒𝑡 ).

The reward signal may be noisy as user feedback is often imper-
fect. For example, users may click on the incorrect tuple or may
ignore or miss 𝑋 (𝑒𝑡 ) altogether if it appears at too low of a rank.
In this work, we assume that the reward signal contains no noise.
Thus, the precise reciprocal rank of 𝑋 (𝑒𝑡 ) is always given by the
reward function. In the case where 𝑋 (𝑒𝑡 ) is not contained within
the top-k results, the reward is assumed to be zero.

Regret Our formal objective is to find policies that minimize the
total regret (thereby maximizing the total reward) across all of the
mediator’s interactions with the external data source.

𝑅𝑛 (𝜋) = E

𝑛∑︁
𝑗=0

𝑟 (𝑞∗𝑗 , 𝑒 𝑗 ) − 𝑟 (𝜋 (𝑒 𝑗 ), 𝑒 𝑗 )
 (1)
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Regret measures the performance of a policy over an arbitrary
amount of interactions 𝑛. Thus, it is not enough that our methods
eventually find a policy that minimizes future regret: a successful
method must also minimize its regret as it searches for said policies.

Balancing Exploration and Exploitation As the mediator nei-
ther knows the content of entities in the external source nor the
ranking method used by its query interface accurately, finding ef-
fective policies requires searching the space of possible policies. In
order to minimize the regret it incurs, the mediator must search
the policy space intelligently: if the mediator exploits the best query
found thus far, it may ignore queries that are more effective; if
the mediator strictly explores until it has found the optimal query
for each entity, then it will accumulate a large amount of regret
in the process since many queries are likely ineffective. Thus, we
design methods that have the mediator balance both exploiting
what it knows (i.e., sending the best queries it has found thus far)
and exploring the space of policies to find better queries.

Maintaining Users Engagement Any successful mediator not
only must minimize regret but it also must keep users engaged
while doing so. Due to the large number of local entities, large set
of possible queries, and the different representations of information
in the local and external, it might not be possible to find an effective
policy in just a few interactions. Nevertheless, if the effectiveness of
a policy remains relatively low for many interactions, users might
become discouraged and abandon the system. It is assumed that
users have some tolerance for poor policies during their initial use of
the system granted that more effective policies are eventually found.
But users may stop providing feedback if the policies continue to
perform poorly even after a modest amount of feedback is provided.

Hence, our objective is to design methods that can quickly find
a reasonably effective policy in the short run while continuing to
find more effective policies in the long run. The exact definition
of a reasonably effective policy and short run may depend on the
number of entities in the local dataset, the amount of information
in the external source, the differences in representing information
on the entities of interest in the local and external sources, and the
complexities of the data items. For instance, it may be unrealistic
to aim for a method that finds an optimal (or near optimal) policy
for 50% of the local entities in a large local dataset after only 50
interactions with a large external data source whose tuples overlap
little with their relevant entities in the local source.

3.3 Managing the Policy Space
The space of potential policies is correlated with the size of Q (i.e.,
the co-domain): the larger Q is, the more ways that local entities
can be mapped to queries. Furthermore, treating each query in Q as
producing unique results from the external data source is problem-
atic for two reasons. First, queries containing the same keywords
should produce somewhat similar results. Second, assuming each
query produces unique results makes evaluating policies more dif-
ficult. Under this uniqueness assumption, two policies that send
similar queries for any given entity will still be considered entirely
different if none of their output queries are exactly the same. To
make our policy space more manageable, we both prune Q and
take a term-centric approach when mapping entities to queries.

Entity-Specific Pruning For any input local entity, only a small
subset of Q will be effective. Though Q could be manually pruned
using domain expertise, we opt for general methods that do not
require this extra attention. In order to remove a large amount of
ineffective queries, we limit the terms considered to only those
that are relevant to the given local entity. We define an entity-
dependent co-domain Q𝑒 ⊆ Q. Let 𝐿(𝑒) be the set of terms that
make up the content of 𝑒 . That is, if term 𝑘 appears in the local
entity 𝑒 , then 𝑘 ∈ 𝐿(𝑒). For every entity 𝑒 ∈ E, Q𝑒 contains every
possible concatenation of terms from 𝐿(𝑒). In other words, the
mediator maps 𝑒 to a keyword query 𝑞 by concatenating a subset
of the terms in the local tuple 𝐿(𝑒) together. 𝐿(𝑒) may not contain
all the terms necessary to form 𝑞∗𝑡 , but given that relevant entities
from related domains often share terms, it is reasonable to believe
that an effective query could still be found in many cases.

As we will discuss in Section 5.3, Q𝑒 can be extended to include
potentially more effective queries as the mediator interacts with
the external data source.

Term Effectiveness In order to generalize its knowledge across
policies, themediator evaluates the effectiveness of keyword queries
based on their content. We take advantage of the fact that many
keyword queries overlap with respect to the terms they contain.
Intuitively speaking, if a subset of terms is shared across effective
queries for some entity 𝑒 , then it is likely that same subset which
has largely influenced each query’s effectiveness. Thus, a desirable
policy would map 𝑒 to queries containing that same subset. Follow-
ing this logic, we consider methods that track the effectiveness of
terms used within keyword queries rather than the effectiveness
of whole keyword queries. Furthermore, we assume that terms
within keyword queries are independent. This allows our policies
to construct output queries term-by-term based on each term’s
effectiveness. We call the set of terms 𝑘 ∈ 𝐿(𝑒) the candidate terms
for 𝑒 because it consists of all of the possible terms that could be
selected one-at-a-time to form Q𝑒 .

4 ENTITY-LEVEL LEARNING
A natural approach to learn queries is to maintain a model for each
local entity. The policy for the whole dataset would be the union
of each entity-specific model. Precisely, the mediator maps entities
𝑒 ∈ E to queries 𝑞 ∈ Q𝑒 by selecting candidate terms based on their
effectiveness in previous queries for the same entity.

At time 𝑡 and given entity 𝑒𝑡 , the mediator could calculate the
expected reward of including a candidate term 𝑘 ∈ 𝐿(𝑒𝑡 ) within a
query for 𝑒𝑡 based on the previous queries used for the same entity.

E[𝑘] = 1∑𝑡−1
𝑗=0 𝐼 (𝑘, 𝑗, 𝑡)

𝑡−1∑︁
𝑗=0

𝑟 (𝑞 𝑗 , 𝑒 𝑗 )𝐼 (𝑘, 𝑗, 𝑡) (2)

where 𝐼 (𝑘, 𝑗, 𝑡) is the following indicator function,

𝐼 (𝑘, 𝑗, 𝑡) =
{
1 if𝑘 ∈ 𝑞 𝑗 , 𝑘 ∈ 𝑋 (𝑒 𝑗 ), 𝑒 𝑗 = 𝑒𝑡
0 otherwise

(3)

The expected reward for a candidate term 𝑘 ∈ 𝐿(𝑒𝑡 ) would be the
mean of the rewards for those queries generated for 𝑒𝑡 in previous
interactions [0, 𝑡 − 1] where 𝑘 exists in both the generated query
𝑞 𝑗 and the content of the relevant external tuple 𝑋 (𝑒𝑡 ). If a term
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did not appear in 𝑋 (𝑒𝑡 ) then it very likely had no positive affect on
extracting𝑋 (𝑒𝑡 ), thus the reward associated with including 𝑘 in the
query is assumed to have been 0. After calculating the expectation
of each candidate term, the mediator could then greedily generate a
query with the greatest mean expected reward by selecting ℓ terms
with the highest expected rewards: 𝑞𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑞∈𝑄ℓ
𝑒

1
ℓ

∑
𝑘∈𝑞 E[𝑘].

However, since these term estimates are based only on previously
sent queries, a mediator that strictly acts in a greedymanner will fail
to explore the space of possible queries. As discussed in Section 3.2,
focusing solely on exploiting its current knowledge will prevent the
mediator from finding better policies, making greedy term selection
a poor approach to minimizing regret.

4.1 A Multi-Armed Bandit Formulation
Balancing exploration and exploitation of candidate terms online
can be modeled as a Stochastic Multi-Armed Bandit (MAB) problem.
The goal of MAB problems is to learn, from a set of candidate arms
with fixed unknown reward distributions, which arm has the largest
mean reward [34]. In each round, aMAB algorithm picks an arm and
observes the reward sampled from the arm’s reward distribution.
The success of a MAB algorithm is measured as the expected sum
of its losses compared to the algorithm that always chooses the
arm with the largest mean reward in 𝑛 trials. In other words, MAB
algorithms are built to minimize regret. Using mild assumptions,
it is known that the lower bound of regret for a MAB algorithm,
without any prior knowledge on the reward distributions of arms,
is logarithmic in the number of trials [34]. There are asymptotically
optimal MAB algorithms that estimate confidence bounds on the
expected reward of each arm and pick the arm with the largest
upper limit of the confidence bound [3, 25]. This approach is called
Upper Confidence Bound (UCB) [3, 25]. The larger the observed
reward of an arm is and the fewer times that arm has been tried,
the greater the upper limit of the confidence bound will be. Hence,
the UCB approach naturally balances exploitation and exploration
in learning. It often chooses the arms with larger observed mean
rewards but keeps trying the ones that have not been selected
sufficiently frequently due to the relatively large upper limit on
their confidence bounds.

Though the UCB algorithm would reduce its regret, it is still
challenging to scale the entity-level approach to large datasets
with many entities. Because each entity has its own model, each
entity also represents a distinct learning problem. The asymptotic
amount of feedback required to learn an effective policy would be
approximately linear in the number of entities in the dataset: users
may have to wait for thousands if not hundreds of thousands of
interactions to get relevant information to their entities of interest
in a local dataset with hundreds of thousands of entities. Thus, the
entity-level approach is unlikely to produce effective queries in the
short run and is impractical over large local datasets.

5 DATASET-LEVEL LEARNING
To reduce the amount of feedback required to find an effective
query policy, we consider an entity-conditional model of query
quality that is learned jointly over all entities. We share learning
across entities while recognizing the distinct characteristics of each
entity for generating its queries. Like the entity-level model, each

arm in this approach is a candidate term. However, the reward and
effectiveness of using each term varies based on the local entity
(i.e., context) for which the term is used. Since the reward of each
arm depends on its context, we cast our online query formulation
problem as a contextual multi-armed bandit (contextual bandit)
problem [34]. The input of a contextual bandit problem is a finite set
of arms and contexts where at each round only one of the contexts
is active. An arm might be used in different contexts. The reward
of each arm depends on the context in which it is used.

5.1 A Linear Bandit Approach
LinUCB extends the idea of UCB to the contextual bandit problem. It
provides a low asymptotic expected regret and is commonly applied
to contextual bandit problems. LinUCB assumes the reward of each
arm to be a linear function of some vector representations of the
arm and the current context [9]. The expected regret of LinUCB

is of order
√︃
𝑇𝑑 ln3 𝐾𝑇 ln𝑇

𝛿
with probability 1 − 𝛿 where 𝑇 , 𝑑 , and

𝐾 are the number of trials, dimension of the vector representation
of arms and contexts, and number of arms, respectively. LinUCB
provides an asymptotic regret close to the lowest possible regret,
𝑂 (

√
𝑇𝑑) [9]. We use LinUCB to learn a shared query model.

More precisely, we assume that the expected reward for each
term 𝑘 ∈ 𝑞𝑡 is a linear function 𝑓𝑡 parameterized by an unknown
weight vector𝑤∗ ∈ R𝑑 as 𝐴𝑡 (𝑘, 𝑒𝑡 ) ·𝑤∗ + 𝜖𝑡 , where 𝐴𝑡 (𝑘, 𝑒𝑡 ) ∈ R𝑑
is a vectorized representation of term 𝑘 and entity 𝑒𝑡 , and 𝜖𝑡 is
Gaussian noise with mean 0 and variance 1 (i.e., 𝜖𝑡 ∼ N(0, 1)).
Our goal is to learn the weight vector𝑤∗ online. In this approach,
feedback on the effectiveness of each query is used to update the
parameters of the reward function of all terms of all queries. Hence,
the learned function can also be used to estimate the reward of
never-before-used candidate terms. Training this model amounts
to leveraging user feedback to find a set of weights 𝑤 that most
accurately model the true reward function.

Example 4. Assume the vectorized representation of terms 𝑘 ∈
𝐿(𝑒𝑡 ) indicates the attribute(s) for which 𝑘 appears in the content
of 𝑒𝑡 . Since terms from Brand are unlikely to yield any matches
from a dataset that only knows drugs by their generic names (i.e.,
the external data source in Table 1b). The mediator would quickly
learn, irrespective of local entity in Table 1a, that terms from Brand
do not produce a sufficient enough reward to be used in queries.

Like the entity-level model, the dataset-level model uses a term
selection strategy that balances exploration and exploitation. Let
𝑊 be the set of all possible weight vectors in R𝑑 . At interaction 𝑡 ,
LinUCB constructs a confidence region 𝐶𝑡 ⊂𝑊 that contains𝑤∗

with (high) probability of 1−𝛿 using the information from previous
interactions. It then picks a candidate term with the largest possible
reward over 𝐶𝑡 . The larger the observed average reward of a term
is and the fewer times it has been tried up to round 𝑡 − 1, the
larger its maximum possible reward over 𝐶𝑡 will be. Hence, the
algorithm explores terms that might not have been tried sufficiently
many times in the past. LinUCB needs few updates in its estimated
parameter vector in each round making it efficient [9].
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5.2 Representations of Terms & Entities
We represent𝐴𝑡 (𝑘, 𝑒) using lexical, distributional, and schematic fea-
tures of terms. Lexical features are based on a term’s word type (e.g.,
noun or adjective) as indicated by WordNet [32]. The distributional
features of terms are based on the properties of terms over the en-
tire local dataset. For example, let Dataset Frequency (DF) of a term
denote the fraction of entities in the local dataset in which the term
appears. Inverse Dataset Frequency (IDF) of a term is the inverse of
its DF. The IDF of a term quantifies how well that term identifies
the entity within the dataset and we use it as a distributional feature
in our model. We use a combination of domain-specific (e.g., IDF
of a term in the local dataset) and non-domain-specific (e.g., word
types from WordNet) features. The non-domain-specific features
are meant to capture the general characteristics of terms that are
not biased to their domain-specific representations. To capture the
context (i.e., the local entity for which a term appears) we include
entity-specific features of terms, such as the frequency of 𝑘 in the
content of 𝑒 and the attribute(s) for which 𝑘 appears in the content
of 𝑒 . We normalize features, like frequencies of terms in entities, to
ensure that they are comparable across different entities.

We use NLP practices commonly employed in Information Re-
trieval to prune candidate terms that are known to be imprecise
and redundant [31]. We use the Natural Language Toolkit [6] to
remove stop-words (e.g., "the") and apply stemming.

5.3 Using External Terms & Features
A local entity and its relevant external entities might share few
to no terms. Hence, policies that only consider queries formed
from the content of a given local entity may lack the ability to
build effective queries for that entity. To address this problem, we
propose two methods for expanding the set of candidate terms for
certain local entities by borrowing terms from entities appearing
in external results. We distinguish these two methods based on
whether external terms are borrowed based on user feedback and
external results (supervised) or just external results (unsupervised).

Supervised Term Borrowing For a keyword query to extract
𝑋 (𝑒) from the external dataset, it must contain at least some terms
that appear in the content of 𝑋 (𝑒). Thus, expanding the set of
candidate terms for 𝑒 to include those terms in 𝑋 (𝑒) would help
generate queries that more effectively extract 𝑋 (𝑒). After the user
identifies 𝑋 (𝑒) within the returned results, the mediator adds the
terms in 𝑋 (𝑒) to its set of candidate terms for entity 𝑒 . In future
interactions, when the mediator is asked to map 𝑒 to a query, it can
use these additional terms to increase the effectiveness of its output
query. These terms may improve the ranking of𝑋 (𝑒) in subsequent
interactions. If there are multiple external entities relevant to 𝑒 ,
(i.e., 𝑋 (𝑒) has multiple members), these terms may help to retrieve
unobserved external entities relevant to 𝑒 .

Unsupervised Term Borrowing When the mediator lacks the
candidate terms to retrieve 𝑋 (𝑒), we must expand the set of can-
didate terms with something other than the content of 𝑋 (𝑒). The
added terms should have some relation to the local entity while also
reflecting the term distribution of the external dataset. Since the
mediator’s policy is trained to map 𝑒 to queries that extract external
entities related to 𝑒 , those same external entities may be transitively

related to 𝑋 (𝑒). Thus, these related entities may reveal additional
terms that can be used to retrieve 𝑋 (𝑒). For example, similar drugs
may have similar biological effects, meaning similar terms in at-
tributes like How Works in Table 1b. Unsupervised term borrowing
may saturate the candidate set with unrelated terms. Thus, we take
a conservative approach and only borrow terms from the external
entity in the top position of the returned results. Furthermore, we
only apply unsupervised term borrowing to local entities that meet
the following criteria: 1) 𝑋 (𝑒) has not been extracted yet, and 2) a
sufficiently large fraction of candidate terms from the content of 𝑒
have been tried. Setting the aforementioned fraction to a large value
(e.g., 100%) might delay borrowing and deliver ineffective results
for a relatively long time. Using smaller values for this fraction
might lead to borrowing terms too quickly and before the mediator
policy has collected enough information about potentially related
entities to 𝑋 (𝑒). In our experiments, we set this hyper-parameter
to a value between these to extremes (Section 7.5).

External Features For our candidate terms, we use external fea-
tures that reflect how effectively those terms can pinpoint entities
over the external source. For example, the frequency with which a
term appears in an external entity might indicate how effectively
this term can pinpoint the entity in the external source. Since the
mediator does not have access to the entire external dataset, we use
only the external features that can be computed during querying
the external source using the returned results (e.g., frequency of
terms in the returned (relevant) entities). We use external features
for both borrowed external and local terms.

6 OVERCOMING ENTITY DIVERSITY
The dataset-level model learns a linear approximation of term ef-
fectiveness over all local terms using relatively few features. Thus,
it should converge to one of its most effective policies with few
interactions. However, the dataset-level model may lack power to
represent the more nuanced properties of terms that determine
their effectiveness. Thus, its most effective policies will likely be
less effective than the entity-level model’s. In particular, as large
datasets often contain many diverse entities, the dataset-level model
may lack the capacity to sufficiently estimate rewards of candidate
terms for all entities. In this section, we propose methods that can
approximate term reward quickly while still having greater repre-
sentational power, and thus better relative optimal policies, then
the dataset-level model.

6.1 From Dataset-Level to Entity-Level Learning
In contrast to the dataset-level approach (Section 5), the entity-level
approach (Section 4) would eventually result in a (near-)optimal
policy given many interactions. To combine the strengths of these
methods, we introduce a two-stage approach that quickly learns a
shared model and then leverages this model to warm-start entity-
specific learning. This method combines the benefits of shared
query learning (i.e., keeping users engaged by learning a relatively
effective model quickly) and the entity-level query learning models
(i.e., learning an effective model for each entity in the long run). It
starts with learning the shared query model using the approach
explained in Section 5. It then switches to entity-level models for
entities that the shared model cannot find effective queries for (e.g.,
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cannot return any relevant answers) after trying the learned queries
by the shared model for those entities sufficiently many times.

We, however, modify the entity-level method proposed in Sec-
tion 4 to 1) speed up its learning and 2) enable it to leverage the
available information in the learned shared model. Because candi-
date solutions in the entity-level model are terms, it may take too
long to learn accurate models for each entity. It cannot also use the
knowledge learned by the shared model. Hence, instead of using the
entity-level model, we use LinUCB to find accurate queries for each
selected entity in entity-level learning. We represent each term in
the entity as a vector of features used to train the shared model. We
train a weight vector𝑤𝑠ℎ𝑎𝑟𝑒𝑑 until some point and then initialize
the space of solutions for each entity-specific model for entity 𝑒 ,
𝑤𝑒 , with𝑤𝑠ℎ𝑎𝑟𝑒𝑑 . This way, the entity-level model may initialize its
model weights using the ones learned in the first step. One might
use additional entity-specific features (e.g., the frequencies of a term
appearing in the relevant or non-relevant results for the entity) in
the feature vector for each entity-specific model.
6.2 Longformer Query Learning Model
The simplicity of a linear model is attractive in online learning
since it treats estimation as a convex problem, and if the features
used are good predictors of term effectiveness, then a linear model
should perform well even with little feedback. However, the linear
model’s simplicity is also a limitation on its ability to discover more
nuanced predictors of a terms’s quality. Hence, we also explore
using a model that leverages state of the art transformers for richer
representations of tuples and keywords. Specifically, we consider
a large-scale pretrained Longformer [5] model. Contrasted with
the linear model, the Longformer model can encode entire tuples
jointly such that individual term quality can be predicted based on
keyword representations contextualized on high-dimensional repre-
sentations of the entire entity. However, this flexibility comes at the
cost of significantly more parameters and non-convex optimization.

Encoding Tuples and Scoring Terms Given an entity 𝑒𝑡 , we con-
catenate all terms 𝑘𝑖 ∈ 𝐿(𝑒𝑡 ) into a single string 𝑠𝑡 and pass this
through the Longformer model after standard byte-pair-encoding
tokenization. The output of the model provides a contextualized
representation ℎ𝑖 for each input token. Note that the byte-pair-
encoding may break candidate terms into multiple inputs or candi-
date terms may appear multiple times in the entity, so to produce
feature ℎ𝑖 corresponding to term 𝑘𝑖 , the output encodings of all
these instance are averaged. For notational convenience, we simply
write this process as: ℎ1, ..., ℎ𝑛 = Longformer(𝑠𝑡 )

These representations capture information about each term
given the context of the entity. To further enrich these features with
dataset-level information, the feature vector from the linear model
𝐴𝑡 (𝑘𝑖 , 𝑒𝑡 ) is concatenated on to each corresponding representation
forming 𝑓𝑖 = [𝐴𝑡 (𝑘𝑖 , 𝑒𝑡 ), ℎ𝑖 ] where [·, ·] denotes concatenation. 𝑓𝑖
is then passed through a small fully-connected neural network to
predict reward for each term 𝑟𝑖 . In our setting, 𝑟𝑖 is an estimate for
reciprocal rank (RR) and is bounded between 0 and 1.

Selecting Queries and UpdatingWe apply an 𝜖-greedy approach
to query formulation [34] – selecting either the next highest scoring
term or a random term with probability 𝜖 until the desired query
length is achieved. Once user feedback is received, the RR for the

query is calculated and used to supervise the network. Specifically,
the observed RR is recorded as a prediction target for all query
terms appearing in the returned external matches. Unobserved
terms have targets of 0 assigned. These term-entity-RR tuples are
added to a first-in-first-out buffer of examples holding the last 50
observed terms. We train the model by stochastic gradient descent
with batches of 8 samples from buffer at each interaction.

Implementation DetailsWe use the pretrained base longformer
model from the Huggingface Transformers library (longformer-
base-4096) along with its partner byte-pair-encoding tokenizer.
This pretraining gives it strong reasoning capabilities about Eng-
lish words and sentences that are frequently used in our examined
entities. The fully-connected nueral network is trained using Py-
torch’s implementation of Adam with default hyper-parameters.
Mean squared error is used as the loss function.

7 EMPIRICAL EVALUATION

7.1 Datasets
We evaluate our methods over a variety of domains using the
datasets listed in Table 2. Each dataset contains a local dataset
and an external dataset. We include the entity count for each source
along with the average number of terms per entity. Every entity in
a local dataset has at least one relevant entity in its external dataset,
but some external datasets have additional irrelevant entities that
can appear in results. For this reason, we also specify the number
of external entities that are relevant to at least one local entity.

Both DrugCentral and ChEBI are derived from datasources used
in the NIH project discussed in Section 1. For both, we use DrugBank
as the local source. DrugBank contains comprehensive molecular
information about drugs, their mechanisms, their interactions, and
their targets [38]. DrugCentral uses Drug Central as its external
source. Drug Central is similar to Drug Bank in terms of domain,
but has a greater focus on regulatory information associated with
drugs [4]. On the other hand, ChEBI uses Chemical Entities of
Biological Interest (ChEBI), which broadly tracks molecular entities
used to intervene in the processes of living organisms [23].

WDC is derived from the non-normalized English WDC Prod-
uct corpus, containing products scraped from many different sites
[33]. We include products that look to be successfully scraped and
distribute them amongst the local and external sources. In order
to make the querying task realistic, we remove shared IDs (ISBNs,
SKUs, etc.) that would make extracting relevant entities trivial.

CORD-19 contains records about scientific papers and research
related to COVID-19 [36]. We split CORD-19 into two separate
sources: one containing abstracts (local) and one containing the
remaining attributes (external). There are many overlapping terms
due to the entire dataset being COVID-19 related. This makes it
more difficult to identify which candidate terms are most effective.

Drugs contains drug reviews from Drugs.com (local) [20] and
descriptions of the same drugs scraped from Wikipedia (external).
There is a large diversity of terms within the reviews due to their
informal language which is sometimes only loosely related to the
drug.Wikipedia articles, on the other hand, are heavily editorialized.
For added realism, we include an additional 46K Wikipedia pages
that are not relevant to any local drug review.
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dataset source attributes avg. terms entities #relevant Perfect MRR (@3)

DrugCentral Local name, description, indication, pharmacodynamics, ... 178 3,475
External formula, name, fda_labels, drug_class, active_ingredient, ... 279 4,927 3,457 0.9942

Drugs Local drugName, condition, review 108 13,725
External page_title, wikipedia_summary 168 46,976 413 0.9641

News Local title, article_summary 42 30,000
External article_content 547 30,000 30,000 0.9603

WDC Local category, brand, prod_title, description, ... 67 57,109
External category, brand, prod_title, description, ... 72 55,247 55,247 0.8392

ChEBI Local name, description, indication, pharmacodynamics, ... 178 3,475
External status, name, definition, charge, formula, mass, ... 73 189,467 5,753 0.8575

CORD-19 Local abstract 305 250,575
External sha, source_x, paper_title, doi, pmcid, ... 48 340,826 250,575 0.7945

Table 2: Details of datasets used in our evaluation.

News is derived from a dataset covering 38 major mass-media
companies [21]. It contains titles and summaries of articles (local)
and the articles themselves (external). Authors drafted the sum-
maries using different techniques, resulting in varying amounts of
overlapping terms. The original dataset has three categories based
on the number of matching keywords. Our 30,000 record subsample
includes articles and summaries from all three categories.

Perfect MRR (@3) in Table 2 indicates the best Mean Reciprocal
Rank (MRR) achievable for each dataset when using queries of 3
or fewer terms. This metric was calculated offline by searching the
entire space of queries for each local entity and keeping track of
the highest achievable RR. Due to the runtime required, we have
calculated this metric only over 5% subsets of each local dataset.
Though it is unrealistic to assume that anything but computation-
ally expensive offline algorithms can achieve this performance, we
still include it as an indicator of dataset difficulty and term overlap.
7.2 Experimental Setup
Interactions. We simulate a series of interactions between a medi-
ator and a query interface. Each interaction is initiated by sampling
a local entity. Given the local entity, the mediator generates a query
of length ℓ and submits it to the external data source. The external
data source returns its top-20 results based on a static ranking func-
tion (BM25), which we implement using the Whoosh package [8].
The query is assigned a reward based on the reciprocal rank of the
top-relevant result using simulated feedback (i.e., ground truth).
Evaluation Metric. As the objective of our models is to maximize
Mean Reciprocal Rank (MRR), we also use it to measure their per-
formance. Local entities vary in difficulty, making the performance
of models partially dependent on the entities encountered and at
what time. To help mitigate this noise, we compute MRR as a sliding
average over the previous 500 interactions. Each graph plots this
average against the current interaction. We report MRR for each
model as the average of five runs each comprising 2000 interactions.
Error bands are included around each average (line) to show a 95%
interval for standard error across the runs. Due to lack of space, we
report and discuss illustrative examples of trends. However, more
in-depth results over all datasets can be found in our technical
report [7]. We do not include runtime of experiments, but note that
much of it is dedicated to external query processing: our models
take little time.
HyperparametersWe treat query length as a hyperparameter and
test our models using an ℓ of 4, 8, 16, and 32. These values reflect
limits on real interfaces (see Section 3.1) and illustrate how query
length affects policy performance. Both Dataset-Level (Section 5)

and Hybrid (Section 6.1) use LinUCB as their exploration strategy
while Longformer (Section 6.2) uses e-greedy. Both strategies use a
hyperparameter to control the extent to which they explore. For
LinUCB we use 𝛼 = 0.2 and for e-greedy we use 𝜖 = 0.05.
Static IDF Benchmark To help contextualize the performance
of our methods, we present a naive policy for comparison. Static
IDF always produces queries using the top-ℓ terms in the content
of 𝑒 based on their Inverse Dataset Frequency (IDF). As explained
in Section 5.2, IDF, a common measure of term specificity [24],
quantifies how unique a term is to an entity within a dataset. Thus,
the IDF of a termmay indicate howwell the term identifies an entity
in the local dataset. As local and external datasets may belong to the
same general domain, one might assume that their terms have the
same relative IDF (i.e., for terms 𝑡1 and 𝑡2, if 𝐼𝐷𝐹 (𝑡1) > 𝐼𝐷𝐹 (𝑡2) in
the local dataset, then 𝐼𝐷𝐹 (𝑡1) > 𝐼𝐷𝐹 (𝑡2) in external one). Hence,
if a term appears both in the local entity and its relevant external
ones and has relatively high IDF in the local dataset, it might also
effectively identify relevant entities in external source.

7.3 Dataset-Level Model
Our first questions of interest are (1) can Dataset-Level outperform
the Static IDF benchmark? and (2) can Dataset-Level find a suffi-
ciently effective policy in the short run? A defining challenge of a
newly deployed model is that it will have no experience generating
queries for most input local entities. To simulate this challenge, we
sample local entities uniformly. This mimics a difficult learning task
where the mediator must generalize what it has learned to novel lo-
cal entities. Figures 2 and 3 show the performance of Dataset-Level
relative to the Static IDF Benchmark (i.e., IDF ). For both policies,
local entities are sampled uniformly at each interaction. However,
since the IDF policy does not change, we calculate its MRR over all
interactions and present it as a single vertical line.
Dataset-Level quickly finds policies that outperform IDF Early
on, IDF shows higher MRR on most datasets. However, Dataset-
Level eventually surpasses it, often within the first 100 interactions.
One exception to this trend is News (Figures 2a/3a) where the
local IDF of terms is correlated with their effectiveness: both the
input local entity and its relevant external entity tend to share
distinguishing terms. This result is not too surprising, as titles
of news articles often share specific terms with their respective
content. However, our experiments show that this is an uncommon
quality in datasets. Thus, methods that learn to adapt to particular
external sources are likely to have better policies than models that
stick to one heuristic of term effectiveness (e.g., IDF of local terms).
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(a) News

(b) ChEBI

(c) DrugCentral
Figure 2: Dataset-Level and IDF (uniform 4/8)

Dataset-Level with small ℓ has the most reliable performance
Performance differences between Dataset-Level and IDF tends to be
greatest when ℓ is small. However, there is no general correlation
between query length and model performance. In some instances,
increasing ℓ improves the performance of both models to the point
of convergence (Figure 3a). In other instances, increasing ℓ reduces
the performance of both models (Figures 3b/3c). When ℓ is small,
models use only those top few keywords with the highest predicted
effectiveness; but as ℓ grows, there is a higher liklihood that the
models will include noisy terms that reduce the rank of the top
relevant entity. Furthermore, long keyword queries may not be
accepted by external data sources. Given these findings, more dis-
criminating polices that send few terms are preferable since they
neither run the risk of degrading performance nor having their
queries outright rejected by the external source.

Averaged over all datasets, Dataset-level with ℓ = 4 finds policies
that produce an MRR of roughly 0.5 within the first 250 interactions.
We consider this to be sufficiently effective performance for the
short term and given such little feedback. However, it shows little
improvement with additional feedback. Thus, it is quick to hit its
capacity to account for local entity diversity.

7.4 Overcoming Entity Diversity
Comparing the performance of Dataset-level’s converged policy
with that of Perfect MRR (@3) in Table 2, suggests that it is too
simple to account for the diversity in local entities. In the following

(a) News

(b) ChEBI

(c) DrugCentral
Figure 3: Dataset-Level and IDF (uniform 16/32)

experiments, we compare Hybrid (Section 6.1) and Longformer (Sec-
tion 6.2) against Dataset-Level. We seek to understand whether our
methods can continue to improve their query policies in the long
run. In order to more accurately measure long run performance, we
adjust our sampling strategy for local entities.

Studies suggest entity preference follows a near-Zipf distribution
1/𝑖𝑠 where 𝑖 is the rank of the 𝑖′𝑡ℎ most popular entity and 𝑠 ≈ 1
[1, 10, 17]. This suggests that users request the 𝑖′𝑡ℎ most popular
entity approximately twice as often as the (𝑖 + 1)′𝑡ℎ most popular
entity. Following this evidence, we simulate user preference by
sampling local entities from a Zipf distribution (𝑠 = 1). Since our
datasets do not indicate entity popularity, we randomly assign
the order of popularity which is held constant across different
models.Figures 4 and 5 show the performance of Dataset-Level,
Longformer, and Hybrid under a Zipf sampling of local entities.
Hybrid Hyperparameters. Hybrid starts with a dataset-level
model for all entities and keeps track of two metrics: (1) the MRR
in the last two windows of 𝑛 interactions each, and (2) the last
RR observed for individual local entities. For a given local entity,
Hybrid will switch to an entity-specific model if the dataset-level
model has reached capacity (i.e., MRR has not increased between
the two windows) and the dataset-level model has historically had
poor performance for the local entity (i.e., the previous RR observed
for it is less than some threshold 𝛽). The hyperparameters 𝑛 and 𝛽
are set to 50 and 1

15 respectively.
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(a) Drugs

(b) CORD-19

(c) ChEBI
Figure 4: Dataset, Hybrid and Longformer (Zipf 4/8)

(a) Drugs

(b) CORD-19

(c) ChEBI
Figure 5: Dataset, Hybrid and Longformer (Zipf, 16/32 keys)

Hybrid exhibits capacity for improvement over Dataset-Level.
Hybrid exhibits minor improvement on few datasets, including

CORD-19 (Figure 4b), but its performance is otherwise similar to
that of Dataset-Level. This is likely due to its conservative 𝛽 : in
order to instantiate an entity-specific model, the shared model
must be mapping the given local entity to queries that achieve
low RR. A small 𝛽 means the overall policy is unlikely to degrade
as entity-specific models are introduced. On the other hand, the
few instantiated entity-level models are able to reduce some of the
underfitting that the shared model experiences, providing a minor
improvement in overall performance.
Longformer’s rich representations increases its predictive
power but also make its performance inconsistent. Though
Longformer shows a minor improvement in performance over Hy-
brid in few instances, it also exhibits a more dramatic improvement
over Drugs with ℓ = 32 (Figures 5a). Interestingly, Drugs is another
dataset where model performance degrades as ℓ increases. This sug-
gests that Longformer’s richer representation of terms may allow
it to better identify the noisy ones and avoid them. On the other
hand, Longformer also exhibits the worst performance of any of
our models on CORD-19 (Figures 4b/5b) and ChEBI (Figures 4c/5c).
Furthermore, Longformer exhibits a large standard error over both
datasets, implying a high variance in performance across its runs.

Both Hybrid and Longformer show signs of improvement beyond
the capacity of Dataset-Level. Though Longformer shows promise
in overcoming capacity issues, its less-than-stable performance
indicates that it may not always converge to a sufficiently effec-
tively policy quickly (i.e., provide satisfactory performance in the
short term). On the other hand, Hybrid has consistent performance
and still shows some indication of overcoming the capacity issue
without any noticible deterioration in performance.

7.5 External Terms & Features
We seek to answer whether query effectiveness can be improved
through the use of external terms and features. We specifically
examine our supervised and unsupervised methods for expanding
the set of candidate terms for local entities (Section 5.3). We find
external terms and features have a similar effect on Dataset-Level
andHybrid. Thus, for the sake of readability, we only includeHybrid
in Figures 6 and 7 and omit Dataset-Level.
Supervised Term Borrowing improves performance across
most datasets. External terms boost performance by varying ex-
tents across most datasets over their corresponding versions using
the same ℓ (Figure 6a/7a). The one exception to this trend is Drug-
Central at ℓ = 4 and ℓ = 8 where external terms and features have
no affect on performance. This is likely due to the models already
achieving high performance even without external terms and fea-
tures (Figure 2c/3c). By expanding the set of candidate terms with
more reliable options (i.e., terms that exist in the relevant entities),
Hybrid achieves the overall best performance on some datasets
(Figure 6a/7a) and uses fewer noisy terms at high ℓ values on other
datasets (Figure 6b/7b). This indicates that models significantly
benefit from adopting features of the external data source

Unsupervised Term Borrowing We adopt term borrowing in an
unsupervised setting to determine if we can improve the perfor-
mance of local entities that have exhausted a percentage of local
terms and have yet to extract relevant external entities.We treat
the percentage of exhausted terms as a hyperparameter that

11



(a) CORD-19 (4/8 keys)

(b) ChEBI (4/8 keys)
Figure 6: Hybrid (external feature comparison) (Zipf 4/8)

tunes the tradeoff between the certainty that no local terms are
relevant to the external entity and how early we can start borrow-
ing terms. If the percentage of exhausted terms is too high (i.e.,
100%), it may take several interactions before models start borrow-
ing external terms. On the other hand, if the percentage is too low,
models may borrow external terms before sufficiently exploring
the local ones (e.g., there might be effective local terms that have
not yet been tried). To balance this tradeoff, we set the percentage
of exhausted terms to 70% in our experiments.

Unsupervised Term Borrowing can help models extract
relevant external entities. Over Drugs, News, WDC, ChEBI, and
CORD-19, we have found that unsupervised term borrowing can
help to extract relevant external entities that would otherwise not
be extracted. We compared local entities whose candidate terms
were expanded using unsupervised term borrowing with their coun-
terparts in models that did not use unsupervised term borrowing.
We found a minor improvement in MRR for the local entities that
did have their set of candidate terms expanded. For example, on
News with ℓ = 8, unsupervised term borrowing boosted the target
entities MRR from 0 to 0.149 (± 0.006).

8 RELATEDWORK
Keyword Query Formulation. Researchers have proposed meth-
ods to automate keyword query formulation without writing com-
plicated source-specific programs [37]. However, these methods
assume that the external query interface is perfectly accurate and
does not return any non-relevant answers, which is not usually true
[27, 31]. They do not consider the issue of data heterogeneity and
thus lack the ability to adjust their query formulation to account for
it. The goal of these methods are also different as they aim to find
information related to an entire dataset rather than to an entity.

Deep Web Crawling & Querying. Web crawlers aim at ex-
tracting the entire information stored in external data sources to
organize it for future use (e.g., search [14, 28, 30, 37, 40]). Many
Web data sources can be accessed only via form query interfaces

(a) CORD-19 (16/32 keys)

(b) ChEBI (16/32 keys)
Figure 7: Hybrid (external feature comparison) (Zipf 16/32)

(i.e., deep Web). Researchers have proposed techniques that find a
minimal set of queries to crawl all accessible tuples of these data
sources [14, 30]. As opposed to our setting, they do not consider
the notion of relevance to a given entity. Some systems provide a
unified query interface over multiple Web form query interfaces so
users can query multiple sources via a single interface [14, 40]. They
preprocess query forms to translate the queries over the unified
interface to the ones over external query interfaces. Our system,
however, finds information relevant to local entities over keyword
query interfaces. It also does not perform any preprocessing to
understand the query answering methods of the external sources.

Entity Resolution. Entity resolution is the problem of finding
records that refer to the same real-world entities potentially across
different datasets [16, 22]. As opposed to our setting, in entity
resolution, all records are available to the algorithms.

9 CONCLUSION
Users often query external sources to find information relevant to
entities in local datasets. This is usually done by manually writing
programs that given a local entity generate queries that return rele-
vant external entities. This approach takes a long time and a great
deal of resources. We proposes novel methods that learn to query
external sources online using end-user feedback. Our empirical
studies indicate that our methods learn reasonably accurate queries
in short run and improve the accuracy of their queries in long run.
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