
Effective Entity Augmentation ByQuerying External Data Sources

Christopher Buss
Oregon State University
bussch@oregonstate.edu

Jasmin Mosavi
Oregon State University

mousavij@oregonstate.edu

Mikhail Tokarev
Oregon State University

tokarevm@oregonstate.edu

Arash Termehchy
Oregon State University

termehca@oregonstate.edu

David Maier
Portland State University

maier@pdx.edu

Stefan Lee
Oregon State University
leestef@oregonstate.edu

ABSTRACT
Users often want to augment and enrich entities in their datasets
with relevant information from external data sources. As many ex-
ternal sources are accessible only via keyword-search interfaces, a
user usually has tomanually formulate a keyword query that extract
relevant information for each entity. This approach is challenging
as many data sources contain numerous tuples, only a small fraction
of which may contain entity-relevant information. Furthermore,
different datasets may represent the same information in distinct
forms and under different terms (e.g., different data source may use
different names to refer to the same person). In such cases, it is
difficult to formulate a query that precisely retrieves information
relevant to an entity. Current methods for information enrichment
mainly rely on lengthy and resource-intensive manual effort to
formulate queries to discover relevant information. However, in
increasingly many settings, it is important for users to get initial
answers quickly and without substantial investment in resources
(such as human attention). We propose a progressive approach to
discovering entity-relevant information from external sources with
minimal expert intervention. It leverages end users’ feedback to
progressively learn how to retrieve information relevant to each
entity in a dataset from external data sources. Our empirical evalu-
ation shows that our approach learns accurate strategies to deliver
relevant information quickly.

PVLDB Reference Format:
Christopher Buss, Jasmin Mosavi, Mikhail Tokarev, Arash Termehchy,
David Maier, and Stefan Lee. Effective Entity Augmentation By Querying
External Data Sources. PVLDB, 14(1): XXX-XXX, 2022.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
URL_TO_YOUR_ARTIFACTS.

1 INTRODUCTION
There is a recognized need to collect and connect information
from a variety of data sources [14, 18, 23]. As an example, we have

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

recently worked in a large-scale NIH-funded project to augment the
information of biomedical entities by querying other biomedical
data sources [49]. The main focus of this project is to repurpose
current drugs to treat or mitigate the symptoms of diseases for
which there is insufficient time or resources to develop effective
treatments (e.g., new or rare diseases) [2]. Biomedical researchers
often have some local dataset of available drugs (e.g., a dataset of
FDA-approved uses of drugs). Given a drug in the local dataset, a
researcher usually needs to query external data sources to find
additional information about the drug (e.g., its off-label uses).

Due to a lack of access or resources, external information often
must be retrieved through querying [14, 47]. Many data sources
are only accessible via query interfaces or APIs. Even with access,
it may require too much of a resource (e.g., storage space, time) to
download and maintain an up-to-date copy of the external dataset.
Thus, information relevant to some local entity must often be gath-
ered on a as-needed basis by querying external data sources. For
example, as many biomedical data sources are available only via
query APIs, the users of the aforementioned drug repurposing data
collection system must often query the information relevant to
their current drug of interest through query APIs.

However, formulating a query that extracts specific information
can be troublesome. Different data sources often represent the same
concept in distinct forms [12, 15] such that one needs to tailor their
query to specific external data sources. Figure 1 illustrates a case
where users have a local dataset of FDA-approved uses of drugs,
named FDA-Approved Uses, and would like to query an external
data source that contains the off-label uses of those drugs, named
Off-Label Uses. A drug that is identified by one of its brand names
(e.g., Zoloft) in FDA-Approved Uses is referred to by its generic name
(e.g., Sertraline) in Off-Label Uses. Because of heterogeneities, one
may not know how to query for a specific external entity prior to
investigating the content and structure of the data in the external
source. Consider a biomedical researcher who seeks additional in-
formation about the drug Zoloft in their local dataset. Since they
are only aware of the structure and content of their local dataset,
they query the external data source for Zoloft, but that elicits no
results. They try again using a much more general description of
Zoloft (i.e., being a serotonin reuptake inhibitor). However, their
under-specified query produces many results, most of which are
irrelevant (i.e., contain information about drugs that are not Zoloft).
After additional trial-and-error, they find a query that retrieves Ser-
traline. More work is required to then merge the local and external
entities into one coherent representation.

https://doi.org/XX.XX/XXX.XX
URL_TO_YOUR_ARTIFACTS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

Query Policy 𝜋

Featurization Φ
Brand Drug Class Approved Use Description

Provigil wake-promoting
central nervous agent Narcolepsy affects attention areas

in the brain

Zoloft selective serotonin
reuptake inhibitor

Clinical
depression

increases serotonin,
controls mood & panic

Paxil selective serotonin
reuptake inhibitor

Obsessive-
compulsive
disorder

boosts serotonin,
reduces stress

Mediator generates keyword query2

User selects a local entity
and passes it to mediator1 User

Example Local Datasource: FDA-Approved Uses

“serotonin
depression

panic”

Example External Datasource: Off-Label Uses

User provides relevance feedback;
used to update query policy4

RewardFeedback Response

Entity

Generic M. Formula Off-Label Use How Works

Sertraline 𝐶!"𝐻!"𝐶𝑙#𝑁 Fibromyalgia
raises serotonin levels in
the brain, stops panic,
may reduce depression

Paroxetine 𝐶!$𝐻#%𝐹𝑁𝑂& IBS
raises serotonin levels in
the brain, improves
mood, controls stress

Quetiapine 𝐶#!𝐻#'𝑁&𝑂# Anxiety
decreases serotonin &
dopamine in the brain,
improves thinking and

Query Interface

External returns top
results for the generated

query to the user
3

Query

Figure 1: An example of our framework for a single user and single external data source. The user selects (by query, GUI, etc,.)
the local entity Zoloft. The mediator uses its learned query policy to extract the relevant entity (Sertraline) from the external
source. The user provides relevance feedback on the results, which is then used to further refine the mediator’s querying policy.

Manually querying for specific external entities takes too much
time and financial resources. Continuing our example, if the re-
searcher needs additional information for another drug in their
local dataset, they will need to repeat the entire process. Moreover,
if they need information from additional external data sources, then
the work required to query for each drug is greatly exacerbated.
Furthermore, any other researcher with a similar information need
must repeat the same such work themselves.

To alleviate the burden, one can use a shared system that
automates query formulation. Thismediator system acts as
a go-between for users and external data sources: a user specifies
a local entity (e.g., Zoloft) perhaps through a query or a graphical
user interface, and the mediator maps the local entity to queries
that retrieve the relevant external entities (e.g., Sertraline) from
their respective external sources.

To the best of our knowledge, such mediators are currently cre-
ated bymanually writing programs that generate queries for specific
external sources to retrieve relevant records to a given local entity.
Each program implements a set of manually written rules specific to
its external source. These rules cannot necessarily be reused across
data sources. Thus, the mediator requires a significant amount of
labor and expert attention to build and maintain. Instead of conduct-
ing their own research, biomedical researchers in our NIH-funded
project spend most of their time writing these programs and in-
vestigating the content and structure of every external source to
ensure that the programs formulate appropriate queries.

In this paper, we examine methods for learning the mediator’s
query policy online through user interaction. As illustrated in Fig-
ure 1, after the user specifies a local entity, the mediator formulates
a query to retrieve records from an external source according to its
query policy and shows the returned external records to the user.
The user then provides feedback on the relevance of the returned
records to the local entity. Our mediator learns to revise its query
policy and improves its performance using the user’s feedback.

An alternative to this online learning paradigm is to use offline
training data to learn query formulation but collecting and labeling
such data still requires considerable manual effort from domain
experts [14]. Particularly, it is challenging to gather useful training
data from external sources. The data collection/labeling might need
to be repeated as the external datasets evolve. In many domains
(e.g., drug repurposing for emerging viral diseases), users cannot
wait long to prepare offline training data.

Of course, online learning of query policies comes with its own
set of challenges. First, the mediator should learn to formulate
reasonably accurate queries over external sources early on. We
assume the mediator must be effective in the short run so users will
continue to provide feedback. It is particularly difficult to meet this
goal over large local or external datasets as the amount of required
feedback for accurate learning generally grows with the number of
entities. Second, the mediator should improve its querying policy
and increase the effectiveness of its results in the long run. Online
learning literature indicates that a policy that is effective in the
short run (i.e., meets the first challenge) might not be accurate in
the long run as it might become biased to early observations or
decisions that do not deliver accurate results in the long run [42].
Third, due to lack of prior knowledge about the precise content
and structure of the relevant external information, the number of
candidate queries for a local entity might be enormous. This large
search space makes finding effective queries difficult.

Due to the wide-spread use of keyword query interfaces over ex-
ternal sources, we develop online learning methods for formulating
keyword queries. There are systems for automatic keyword query
formulation, but they assume returned results are always relevant,
which is not usually true and is the challenge that we address [47]
(see Section 8). Our contributions are as follows:

• We present a framework for on-demand collection of relevant
external entities only accessible via query interfaces (Section 2).
• We define the problem of online query-policy learning within
the context of the aforementioned framework (Section 3).
• We present a method that learns a separate query policy for
each individual local entity. We show that this approach does
not scale to large local datasets as it might require a great deal
of user feedback (Section 4).
• We propose an entity-conditional method that learns a query

policy jointly over all local entities. This approach significantly
reduces the amount of user feedback required to learn effective
query policies. To overcome representational heterogeneity
across the local and external sources, we propose techniques
to use features and keywords from the external results in our
model and queries, respectively (Section 5).
• If the local dataset contains many diverse entities, it might not
be possible to learn effective queries for many entities using a
shared model. Hence, we propose an approach that gradually

2

replaces a shared model with entity-specific ones based on the
effectiveness of the shared model. The resulting models will
retain the desirable properties of the shared model in the short
run and learn more effective queries in the long run (Section 6).
• We explore whether the broad language understanding capa-
bilities of state-of-the-art large language models can improve
query generation. We train a neural network over features ex-
tracted by large-scale pretrained Longformer [5] and LLaMA
[44] models to serve as our query policy (Section 6).
• We perform extensive empirical studies using six pairs of real-
world datasets from different domains, including biology, prod-
ucts, and news. Our studies indicate that our proposed methods
learn reasonably effective queries quickly and improve their
accuracy in the long run over large datasets (Section 7).

2 GENERAL FRAMEWORK
The mediator wraps the local dataset and the query interface
over the external data source. We assume the mediator has full
access to the local dataset, but can only access external datasets
through their query interfaces. Given a user-specified entity from
the local dataset, the mediator must devise and submit a query to
the interface to extract external entities relevant to the given local
entity. This framework is not tied to a particular method by which
a user specifies the local entity (e.g., through query or GUI).
Local Dataset. To simplify our exposition, we assume the local
dataset is a single relational table where each tuple stores infor-
mation about a distinct entity. One may extend our approach to
multi-relational datasets by defining an entity as the join of its
related tuples. We denote the set of local dataset entities as E.
External Dataset. Like the local dataset, we model the external
dataset as a set of entities (i.e., tuples). Given local entity 𝑒 and
external dataset 𝐷 , 𝑋 (𝑒) ∈ 𝐷 represents the external entity that is
relevant to the local one. The definition of "relevant entity" depends
on the domain. For example, a clinical trial is relevant to the drug
that it concerns. For notational convenience, we assume only one
relevant external entity exists for each local entity, however, in the
case of more than one, we can easily extend 𝑋 (𝑒) to be the set of all
relevant entities. If no relevant entities exist, then extracting 𝑋 (𝑒)
is impossible regardless of the method used. Thus, to accurately
evaluate our methods, we assume that 𝑋 (𝑒) always exists.

Example 1. Figure 1 shows excerpts of a local (left) and an exter-
nal (right) dataset. E consists of all drugs in FDA-Approved Uses. If
𝑒 is Zoloft then the relevant tuple 𝑋 (𝑒) in Off-Label Uses is Sertra-
line. We show the content of 𝑋 (𝑒) for explanation’s sake. In a real
setting, the content of 𝑋 (𝑒) would not be known a priori.

Querying Policy.We call the queries submitted by the mediator to
the external data source mediator queries. We denote the set of all
possible mediator queries as Q. Q is a subset of the queries accepted
by the external query interface. The precise definition of Q varies
based on the characteristics and capabilities of the external query
interfaces. A querying policy (policy) is a mapping 𝜋 : E → Q. To
our knowledge, policies are traditionally written manually.

Example 2. Given 𝑒 = Zoloft, the mediator must devise a keyword
query to extract 𝑋 (𝑒) = Sertraline. One policy is to use the content

of the input entity (Zoloft) within the output mediator query. How-
ever, the content in Brand and Approved Use are likely unique to
the local dataset. Given this observation, assume the mediator’s
policy ignores terms from Brand and Approved Use and prefers
terms from Drug Class and Description. Thus, this policy maps
𝑒 (Zoloft) to the keyword query "serotonin depression panic".

Query Result. External query interfaces usually return results of
query 𝑞 as a list of entities inverse sorted based on the degree by
which the query interface deems the entities relevant to 𝑞. More
precisely, the result of query 𝑞 ∈ Q, 𝐷 [𝑞], is a list of entities in 𝐷 .
Query Effectiveness. Ideally, we would like the mediator query 𝑞
submitted for local entity 𝑒 to return the external entity relevant
to 𝑒 , i.e., 𝑋 (𝑒) is placed in a relatively high position in 𝐷 [𝑞]. Given
mediator query 𝑞 for local entity 𝑒 , we define the effectiveness of
𝑞 over external dataset 𝐷 as a real-valued function 𝑓 (𝑋 (𝑒), 𝐷 [𝑞])
whose range is in [0, 1]. The precise mechanics of 𝑓 depends on
the domain. For instance, there are standard metrics in information
retrieval and data management to measure how effectively queries
achieve this goal given their returned results [37]. For example,
precision@𝑘 is the fraction of relevant answers in the top-𝑘 returned
results. Another frequently used metric is reciprocal rank (RR) 1

𝑟
where 𝑟 is the position of the first relevant answer. One metric
may be more appropriate than another for a specific setting. For
instance, reciprocal rank may be a better indication of effectiveness
than precision@𝑘 if there are at most a couple relevant answers to
the query. One can choose 𝑓 based on the domain. In this paper,
we use reciprocal rank.

Example 3. Themediator submits𝑞 = "serotonin depression panic"
to the query interface over the external dataset in Figure 1, which
returns the ranked results 𝐷 [𝑞] = (Paroxetine, Sertraline). Since
𝑋 (𝑒) = Sertraline, the reciprocal rank of these results would be 1

2 .

Effectiveness of Policy. A mediator’s policy is evaluated based
on the effectiveness of the queries it produces. More formally, the
effectiveness of policy 𝜋 for local dataset E and external dataset 𝐷
is 𝐹 (E, 𝐷, 𝜋) = ∑

𝑒∈E
𝑃 (𝑒) 𝑓 (𝑋 (𝑒), 𝐷 [𝜋 (𝑒)]) where 𝑃 (.) is the prior

probability of choosing local entities for augmentation by users.
Unless otherwise noted, we assume that P(.) is uniform.
Optimal Policy. Optimal policy delivers the maximum effective-
ness across the entire local dataset. More precisely, the optimal pol-
icy𝜋∗ for local dataset E and external dataset𝐷 is argmax

𝜋
𝐹 (E, 𝐷, 𝜋).

Problem Statement. Given local dataset E and external dataset
𝐷 , the mediator seeks to find the optimal policy 𝜋∗ from the set of
all possible policies. Finding the optimal policy requires a sufficient
understanding of both the representation of entities in E and how
query interface over 𝐷 answers queries.
Merging Local and External Information. One might have to
merge local data with its relevant external data by performing other
steps of data integration, such as schema matching [14]. However, it
takesmore than one paper to investigate all steps of data integration.
Thus, we assume that in these settings, users leverage existing data
integration tools to create the final dataset and focus on the task of
collecting information from external sources effectively.

3

3 LEARNING QUERY POLICY PROGRESSIVELY
In our online approach, themediator refines its querying policy over
time as users provide feedback on the effectiveness of its queries.
External relevant information would be presented to the user on-
demand as they identify entities of interest in the local dataset [35].
The mediator queries external information relevant to the entity of
interest using its current policy, presents the results to the user, and
collects their feedback on the quality of the results. The mediator
may then use the collected feedback to revise and improve its policy
to produce progressively better queries and results.

Though our realized system would depend on real-user interac-
tion, we focus on the fundamental question of whether effective
querying policies can be learned online and reserve user studies for
future work. Thus, we assume a simple user interface and feedback
scenario. After the mediator gathers the external results, they are
returned to the user. Users can inspect the external results and
provide feedback to the mediator. The feedback may be explicit
(click-through [45]) or implicit (skipping results [31]).

Our approach is meant to provide users with an additive, non-
disruptive experience that improves over time as they provide feed-
back. Users may interact with the local data source as they normally
would and either leverage the external results or ignore them al-
together. The mediator learns from the collective feedback of all
users, so no single user bears the full responsibility of training it.
Thus, as long as some users provide feedback, the mediator can
improve, providing progressively better external results for each
local entity, for all users of the system.

3.1 Objective and Challenges
Algorithm 1Mediator (Online Query Policy Learning)

1: for t = 1, 2, 3,...,T do
2: Observe local entity 𝑒𝑡 sampled from E
3: 𝑞𝑡 ← 𝜋𝑡 (𝑒𝑡)
4: d← 𝐷 [𝑞𝑡] ⊲ Results over external data source 𝐷
5: Present results to user.
6: Observe degree of effectiveness 𝑓𝑡 ← 𝑓 (𝑋 (𝑒𝑡), d)
7: 𝜋𝑡+1 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝜋 (𝑓𝑡)
Algorithm 1 describes the mediator’s general procedure for our

online query-policy learning approach. The mediator is involved
in a series of interactions with the external data source 𝐷 and a
group of local data source users. An interaction at time 𝑡 is initiated
by sampling a local entity for augmentation. How 𝑒𝑡 is sampled
can reflect one local user’s preference for augmenting that specific
entity at time 𝑡 . The mediator uses its current policy 𝜋𝑡 to map 𝑒𝑡
to query 𝑞𝑡 . It then submits this query to the external data source
to obtain a ordered list of results d as explained in Section 2. Since
query interfaces often enforce top-k constraint on their returned
results [16, 29], we assume that |𝑑 | ≤ 𝑘 . The mediator presents d
to the user and evaluates its effectiveness 𝑓𝑡 using user’s feedback,
where 𝑓𝑡 depends on the unknown qualities of the external data
source (how it ranks and returns results relative to𝑞𝑡). Themediator
uses 𝐿𝑡 to update its current policy and find progressively more
effective and eventually optimal policies.

Regret. The objective of Algorithm 1 is to find optimal policies
quickly. Thus, it is not enough that Algorithm 1 eventually find the
optimal policy: a successful method must also return reasonably

effective results as it searches for said policy. We use the concept of
regret to formalize this property. Regret is often used to evaluate
the performance of online learning algorithms [42]. Let the policy
of Algorithm 1 at time 𝑡 be 𝜋𝑡 . The regret after 𝑇 interactions is

𝑅(𝑇) = 𝑇 × 𝐹 (E, 𝐷, 𝜋∗) − E
[
𝑇∑︁
𝑡=0

𝑓 (𝑋 (𝑒𝑡), 𝐷 [𝜋𝑡 (𝑒𝑡)])
]

(1)

where expectation is computed over the probability of choosing
entities and policies at time 𝑡 . Regret aggregates the difference
between the effectiveness of results delivered by the algorithm’s
policy and the one of the optimal policy in interactions 0 ≤ 𝑡 ≤ 𝑇 .
Problem Statement. The problem of online learning of querying
policy is to find policy(s) 𝜋𝑡 , 0 ≤ 𝑡 ≤ 𝑇 , that minimize 𝑅(𝑇).
Challenges. The sooner the algorithm finds the optimal (or a
relatively effective) policy, the less its regret. To meet this challenge,
a mediator must accomplish two goals:

1. Balance Exploration and Exploitation. As themediator neither
knows the content of entities in the external source nor the ranking
method used by its query interface accurately, finding effective
policies requires searching the space of all policies. To minimize
regret, the mediator must search the policy space intelligently: if it
exploits the best query found thus far, it may ignore queries that are
more effective; if it strictly explores until it has found the optimal
query for each entity, then it will accumulate a large amount of
regret in the process since, many queries are likely ineffective. Thus,
we design methods that have the mediator balance both exploiting
what it knows and exploring the space of policies for better queries.

2. Maintain Users’ Engagement. Policy search requires user feed-
back, thus the mediator must also keep users engaged while search-
ing. Due to the large number of local entities, large set of possible
queries, and the different representations of information in the local
and external, it might not be possible to find an effective policy
in just a few interactions. Nevertheless, if effectiveness remains
relatively low for an extended period, users might become discour-
aged and abandon the system. It is assumed that users have some
tolerance for poor policies during their initial use of the system
granted that more effective policies are eventually found. But users
may stop providing feedback if the policies continue to perform
poorly even after a modest amount of feedback is provided.

Hence, our objective is to design methods that minimize regret
across two phases: the short run and the long run. The short run is
the first 𝑇𝑠𝑡 interactions. Within the short run, the mediator must
find a policy such that 𝑅(𝑇𝑠𝑡) ≤ 𝑅∗ (𝑇𝑠𝑡) + 𝜖 where 𝑅∗ (𝑇𝑠𝑡) is the
regret of 𝜋∗. Both 𝑛 and 𝜖 depend on user tolerance for sub-optimal
results. As factors that lead to user abandonment are complicated
[13], we do not establish an explicit 𝜖 range for tolerance and note
that it is specific to the domain and the end-users. User tolerance
may be high if the alternative to providing feedback is onerous
(i.e., hand-crafting the queries themselves in a complex domain).
Furthermore, since the mediator leverages feedback from all users,
𝑇𝑠𝑡 also depends on the number of users. For example, for small 𝜖 ,
𝑇𝑠𝑡 = 500 is likely unreasonable for a system with 5 users; however,
it may be reasonable for a system with 50 users. The number of
users as well as their expectations may change over time, thus both
𝑇𝑠𝑡 and 𝜖 also change over time. Success in the short run requires

4

expedient sufficiency: the model must at least meet minimal user
expectations to retain usefulness and continue gathering feedback.

In the long run, the goal is to minimize regret as 𝑡 →∞. At this
stage, user abandonment is no longer the primary concern. Rather,
the challenge is to maximize user satisfaction. In this stage, models
should be concerned with further minimizing their regret.
Keyword Query Interface and Results. A keyword query 𝑞 is a
finite string comprised of terms (keywords). The number of terms
in each query is its length. We indicate that term 𝑘 appears in query
𝑞 with 𝑘 ∈ 𝑞. Where appropriate, we denote the set of queries of
length ℓ using 𝑄ℓ . To save resources, query interfaces might limit
the number of terms in their input queries. For example, Yelp!’s
Fusion API will return no results if more than 8 terms are used
and Google.com limits queries to 32 terms. These limits are usu-
ally recorded in the query-interface documentation. We assume
that all queries submitted to an external data source 𝐷 have a
given fixed length. We explain how to relax this assumption in Sec-
tion 7.2. Though they are relatively simple, keyword queries present
a unique set of challenges. Unlike formal query languages, such
as SQL, keyword queries are inherently vague [29, 37]. Moreover,
limits on the length of keyword queries often reduce the flexibility
of formulating informative queries.
3.2 Managing the Policy Space
The space of potential policies is correlated with the size of Q (i.e.,
the co-domain): the larger Q is, the more ways that local entities
can be mapped to queries. Furthermore, treating each query in Q as
producing unique results from the external data source is problem-
atic for two reasons. First, queries containing the same keywords
should produce somewhat similar results. Second, assuming each
query produces unique results makes evaluating policies more dif-
ficult. Under this uniqueness assumption, two policies that send
similar queries for any given entity will still be considered entirely
different if none of their output queries are exactly the same. To
make our policy space more manageable, we both prune Q and
take a term-centric approach when mapping entities to queries.

Entity-Specific Pruning. For any input local entity, only a small
subset of Q will be useful. Though Q could be manually pruned
using domain expertise, we opt for general methods that do not
require this extra attention. In order to remove a large fraction of
ineffective queries, we limit the terms considered to only those
that effectively express the given local entity. We define an entity-
dependent co-domain Q𝑒 ⊆ Q. Let 𝐿(𝑒) be the set of terms that
make up the content of 𝑒 . That is, if term 𝑘 appears in the local
entity 𝑒 , then 𝑘 ∈ 𝐿(𝑒). For every entity 𝑒 ∈ E, Q𝑒 contains every
possible concatenation of distinct terms from 𝐿(𝑒). In other words,
the mediator maps 𝑒 to a keyword query 𝑞 by concatenating a
subset of the terms in the local tuple 𝐿(𝑒). 𝐿(𝑒) might not contain
all the terms necessary to form 𝑞∗𝑡 , but given that relevant entities
from related domains often share terms, it is reasonable to believe
that an effective query could still be found in many cases. As We
will discuss in Section 5.3, Q𝑒 can be expanded to include other
terms and more effective queries during the interaction.

Term Effectiveness. In order to generalize its knowledge across
policies, themediator evaluates the effectiveness of keyword queries
based on their content. We take advantage of the fact that many

keyword queries overlap with respect to the terms they contain.
Intuitively speaking, if a subset of terms is shared across effective
queries for some entity 𝑒 , then it is likely that same subset that has
significantly influenced each query’s effectiveness. Thus, a desirable
policy would map 𝑒 to queries containing that same subset. Follow-
ing this logic, we consider methods that track the effectiveness of
terms used within keyword queries rather than the effectiveness of
whole keyword queries. Furthermore, we assume that terms within
keyword queries are independent. This assumption allows our poli-
cies to construct output queries term-by-term based on each term’s
effectiveness. We call the set of terms 𝑘 ∈ 𝐿(𝑒) the candidate terms
for 𝑒 because it consists of all of the possible terms that could be
selected one-at-a-time to form Q𝑒 .
4 ENTITY-LEVEL LEARNING
A natural approach to learn queries is to maintain a model for each
local entity. The policy for the whole dataset would be the union
of each entity-specific model. Precisely, the mediator maps entities
𝑒 ∈ E to queries 𝑞 ∈ Q𝑒 by selecting candidate terms based on their
effectiveness in previous queries for the same entity.

At time 𝑡 and given entity 𝑒𝑡 , the mediator could calculate the
expected accuracy of including a candidate term 𝑘 ∈ 𝐿(𝑒𝑡) within
a query for 𝑒𝑡 over 𝐷 based on the previous queries used for 𝑒𝑡 .

E[𝑘] = 1∑𝑡−1
𝑗=0 𝐼 (𝑘, 𝑗, 𝑡)

𝑡−1∑︁
𝑗=0

𝑓 (𝑋 (𝑒 𝑗), 𝐷 [𝑞 𝑗])𝐼 (𝑘, 𝑗, 𝑡) (2)

where 𝐼 (𝑘, 𝑗, 𝑡) is 1 if 𝑘 ∈ 𝑞 𝑗 , 𝑘 ∈ 𝑋 (𝑒 𝑗), 𝑒 𝑗 = 𝑒𝑡 , and 0 otherwise.
The expected reward for a candidate term 𝑘 ∈ 𝐿(𝑒𝑡) would be the
mean of the rewards for those queries generated for 𝑒𝑡 in previous
interactions [0, 𝑡 − 1] where 𝑘 exists in both the generated query
𝑞 𝑗 and the content of the relevant external tuple 𝑋 (𝑒𝑡). If a term
did not appear in 𝑋 (𝑒𝑡) then it very likely had no positive affect on
extracting𝑋 (𝑒𝑡), thus the reward associated with including 𝑘 in the
query is assumed to have been 0. After calculating the expectation
of each candidate term, the mediator could then greedily generate a
query with the greatest mean expected reward by selecting ℓ terms
with the highest expected rewards: 𝑞𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑞∈𝑄ℓ
𝑒

1
ℓ

∑
𝑘∈𝑞 E[𝑘].

However, since these term estimates are based only on previously
sent queries, a mediator that strictly acts in a greedymanner will fail
to explore the space of possible queries. As discussed in Section 3.1,
focusing solely on exploiting its current knowledge will prevent
the mediator from finding better policies.

Multi-Armed Bandit Formulation. Balancing exploration and
exploitation of candidate terms online can be modeled as a Stochas-
tic Multi-Armed Bandit (MAB) problem. The goal of MAB problems
is to learn, from a set of candidate arms with unknown reward
distributions, the arm with the largest mean reward [42]. In each
round, an MAB algorithm picks an arm and observes its reward.
MAB algorithms aim at minimizing regret [42]. There are asymp-
totically optimal algorithms, called Upper Confidence Bound (UCB),
that estimate confidence bounds on the expected reward of each
arm and pick the arm with the largest upper limits [3, 30].

It is, however, challenging to scale the entity-level approach
to large datasets with many entities. Because each entity has its
own model, each entity also represents a distinct learning problem.

5

The asymptotic amount of feedback required to learn an effective
policy would be approximately linear in the number of entities in
the dataset: users may have to wait for thousands if not hundreds
of thousands of interactions to get relevant information in a local
dataset with hundreds of thousands of entities.

5 DATASET-LEVEL LEARNING
To reduce the amount of feedback required to find an effective
query policy, we consider an entity-conditional model of query
quality that is learned jointly over all entities. We share learning
across entities while recognizing the distinct characteristics of each
entity for generating its queries. Like the entity-level model, each
arm in this approach is a candidate term. However, the reward (i.e.,
effectiveness) of using each term varies based on the local entity
(i.e., context) for which the term is used. Since the reward of each
arm depends on its context, we cast our online query formulation
problem as a contextual multi-armed bandit (contextual bandit)
problem [42]. The input of a contextual bandit problem is a finite
set of arms and contexts, where at each round only one of the
contexts is active. An arm might be used in different contexts. The
reward of each arm depends on the context in which it is used.

5.1 A Linear Bandit Approach
LinUCB extends the idea of UCB to the contextual bandit problem.
It assumes the reward of each arm to be a linear function of some
vector representations of the arm and the current context [10]. The

regret of LinUCB is of order
√︃
𝑇𝑑 ln3 𝐾𝑇 ln𝑇

𝛿
where 𝑇 , 𝑑 , and 𝐾

are the number of trials, dimension of the vector representation of
arms and contexts, and number of arms, respectively. It provides
an asymptotic regret close to the lowest possible one,𝑂 (

√
𝑇𝑑) [10].

We use LinUCB to learn the query model.
More precisely, we assume that the expected reward for each

term 𝑘 ∈ 𝑞𝑡 is a linear function 𝑓𝑡 parameterized by an unknown
weight vector𝑤∗ ∈ R𝑑 as 𝐴𝑡 (𝑘, 𝑒𝑡) ·𝑤∗ + 𝜖𝑡 , where 𝐴𝑡 (𝑘, 𝑒𝑡) ∈ R𝑑
is a vectorized representation of term 𝑘 and entity 𝑒𝑡 , and 𝜖𝑡 is
Gaussian noise with mean 0 and variance 1 (i.e., 𝜖𝑡 ∼ N(0, 1)).
Our goal is to learn the weight vector𝑤∗ online. In this approach,
feedback on the effectiveness of each query is used to update the
parameters of the reward function of all terms of all queries. Hence,
the learned function can also be used to estimate the reward of
never-before-used candidate terms. Training this model amounts
to leveraging user feedback to find a set of weights 𝑤 that most
accurately model the true reward function.

Example 4. Assume the vectorized representation of a term 𝑘 ∈
𝐿(𝑒𝑡) indicates the attribute(s) for which 𝑘 appears in the content of
𝑒𝑡 . Since terms from Brand are unlikely to yield any matches from
a dataset that only knows drugs by their generic names (i.e., the
external data source in Figure 1), the mediator would quickly learn,
irrespective of local entity, that terms from Brand do not produce a
sufficient enough reward to be used in queries.

Like the entity-level model, the dataset-level model uses a term
selection strategy that balances exploration and exploitation. Let
𝑊 be the set of all possible weight vectors in R𝑑 . At interaction 𝑡 ,
LinUCB constructs a confidence region 𝐶𝑡 ⊂𝑊 that contains𝑤∗
with (high) probability of 1−𝛿 using the information from previous

interactions. It then picks a candidate term with the largest possible
reward over 𝐶𝑡 . The larger the observed average reward of a term
is and the fewer times it has been tried up to round 𝑡 − 1, the
larger its maximum possible reward over 𝐶𝑡 will be. The degree of
exploration is controlled by input parameter 𝛼 ≥ 0.

5.2 Representations of Terms & Entities
We represent𝐴𝑡 (𝑘, 𝑒) using lexical, distributional, and schematic fea-
tures of terms. Lexical features are based on a term’s word type (e.g.,
noun or adjective) as indicated by WordNet [38]. The distributional
features of terms are based on the properties of terms over the en-
tire local dataset. For example, let Dataset Frequency (DF) of a term
denote the fraction of entities in the local dataset in which the term
appears. Inverse Dataset Frequency (IDF) of a term is the inverse of
its DF. The IDF of a term quantifies how well that term identifies
the entity within the dataset and we use it as a distributional feature
in our model. We use a combination of domain-specific (e.g., IDF
of a term in the local dataset) and non-domain-specific (e.g., word
types from WordNet) features. The non-domain-specific features
are meant to capture the general characteristics of terms that are
not biased to their domain-specific representations. To capture the
context (i.e., the local entity for which a term appears) we include
entity-specific features of terms, such as the frequency of 𝑘 in the
content of 𝑒 and the attribute(s) for which 𝑘 appears in the content
of 𝑒 . We normalize features, such as frequencies of terms in entities,
to ensure that they are comparable across different entities.

5.3 Using External Terms & Features
A local entity and its relevant external entities might share few
to no terms. Hence, policies that only consider queries formed
from the content of a given local entity may lack the ability to
build effective queries for that entity. To address this problem, we
propose two methods for expanding the set of candidate terms for
certain local entities by borrowing terms from entities appearing
in external results. We distinguish these two methods based on
whether external terms are borrowed based on user feedback and
external results (supervised) or just external results (unsupervised).

Supervised Term Borrowing. For a keyword query to extract
𝑋 (𝑒) from the external dataset, it must contain at least some terms
that appear in the content of 𝑋 (𝑒). Thus, expanding the set of
candidate terms for 𝑒 to include those terms in𝑋 (𝑒) would allow for
queries that more effectively extract 𝑋 (𝑒). After the user identifies
𝑋 (𝑒) within the returned results, the mediator adds the terms in
𝑋 (𝑒) to its set of candidate terms for entity 𝑒 . In future interactions,
when the mediator is asked to map 𝑒 to a query, it can use these
additional terms to increase the effectiveness of its query. These
terms may improve the ranking of 𝑋 (𝑒) in subsequent interactions.

Unsupervised Term Borrowing. When the mediator lacks the
candidate terms to retrieve 𝑋 (𝑒), we must expand the set of can-
didate terms with something other than the content of 𝑋 (𝑒). The
added terms should have some relation to the local entity while
also reflecting the term distribution of the external dataset. Since
the mediator’s policy is trained to map 𝑒 to queries that extract
external entities related to 𝑒 , those same external entities may be
transitively related to 𝑋 (𝑒). Thus, these related entities may reveal
additional terms that can be used to retrieve 𝑋 (𝑒). For example,

6

similar drugs may have similar biological effects, meaning similar
terms in attributes like How Works in Figure 1. Unsupervised term
borrowing could saturate the candidate set with unrelated terms.
Thus, we take a conservative approach and only borrow terms
from the external entity in the top position of the returned results.
Furthermore, we only apply unsupervised term borrowing to local
entities that meet the following criteria: 1) 𝑋 (𝑒) has not been ex-
tracted yet, and 2) a sufficiently large fraction of candidate terms
from the content of 𝑒 have been tried. Setting the aforementioned
fraction to a large value (e.g., 100%) might delay borrowing and
deliver ineffective results for a relatively long time. Using smaller
values for this fraction might lead to borrowing terms too quickly
and before the mediator policy has collected enough information
about potentially related entities to 𝑋 (𝑒). In our experiments, we
set this to a value between the two extremes (70%) (Section 7.4).

External Features. For our candidate terms, we use external fea-
tures that reflect how effectively those terms can pinpoint entities
over the external source. For example, the frequency with which a
term appears in an external entity might indicate how effectively
this term can pinpoint the entity in the external source. Since the
mediator does not have access to the entire external dataset, we use
only the external features that can be computed during querying
the external source using the returned results (e.g., frequency of
terms in the returned (relevant) entities). We use external features
for both borrowed external and local terms.

6 OVERCOMING ENTITY DIVERSITY
The dataset-level model learns a linear approximation of term ef-
fectiveness over all local terms using relatively few features. Thus,
it should converge to one of its most effective policies with few
interactions. However, the dataset-level model may lack the power
to represent the more nuanced properties of terms that determine
their effectiveness. Thus, its most effective policies will likely be
less effective than the entity-level model’s. As large datasets often
contain many diverse entities, the dataset-level model may lack
the capacity to sufficiently estimate rewards of candidate terms for
all entities. Thus, we propose methods that can approximate term
reward quickly while having greater representational power.

6.1 From Dataset-Level to Entity-Level Learning
In contrast to the dataset-level approach (Section 5), the entity-level
approach (Section 4) would eventually result in a (near-)optimal
policy given many interactions. To combine the strengths of these
methods, we introduce a two-stage approach called Hybrid that
quickly learns a shared model and then leverages this model to
warm-start entity-specific learning. This method combines the
benefits of shared query learning (i.e., keeping users engaged by
learning a relatively effective model quickly) and the entity-level
query-learning models (i.e., learning an effective model for each
entity in the long run). It starts with learning the shared query
model using the approach explained in Section 5. It then switches
to entity-specific models for entities that the shared model cannot
find effective queries for (e.g., cannot return any relevant answers)
after trying the queries learned by the shared model for those en-
tities sufficiently many times. Dividing the input space of local
entities across different models can increase overall performance

by reducing under-fitting. By introducing entity-specific models,
Hybrid not only removes outliers that its shared model cannot fit to
but also fits dedicated entity-specific models to those same outliers.

We, however, modify the entity-level method proposed in Sec-
tion 4 to 1) speed up its learning and 2) enable it to leverage the
available information in the learned shared model. As candidate
solutions in the entity-level model are terms, it may take too long
to learn effective policies for each entity. Thus, instead of using the
entity-level model, we use LinUCB to find accurate queries for each
selected entity in entity-level learning. We represent each term in
the entity as a vector of features used to train the shared model. We
train a weight vector𝑤𝑠ℎ𝑎𝑟𝑒𝑑 until some point and then initialize
the space of solutions for each entity-specific model for entity 𝑒 ,𝑤𝑒 ,
based on all previous feedback on queries sent for 𝑒 . Additionally,
we subtract all previous feedback on queries sent for 𝑒 from𝑤𝑠ℎ𝑎𝑟𝑒𝑑 .
This way, we warm-start𝑤𝑒 with only the most relevant feedback
and reduce the effect that outlier 𝑒 had on𝑤𝑠ℎ𝑎𝑟𝑒𝑑 . One might use
additional entity-specific features (e.g., the frequencies of a term
appearing in the relevant or non-relevant results for the entity) in
the feature vector for each entity-specific model.

Transition Details. Hybrid starts with a dataset-level model for all
entities and keeps track of two metrics: (1) the MRR in the last two
windows of 𝑛 interactions each, and (2) the last RR observed for
individual local entities. For a given local entity, Hybrid will switch
to an entity-specific model if the dataset-level model has reached
capacity (i.e., MRR has not increased between the twowindows) and
has shown poor performance over the local entity (i.e., the previous
RR observed for it is less than threshold 𝛽). Hyper-parameter 𝑛
determines both the amount of feedback the dataset-level model
must receive before entity-specific models can be instantiated and
the sample size used to assess the dataset-level model’s recent
performance. If 𝑛 is too small, then the mediator will instantiate
models for local entities that may have performed well under the
dataset-model. Optimally, 𝑛 should be set according to the amount
of feedback it takes for the dataset-level model to reach its capacity.
The threshold 𝛽 can be thought of as the lower-bound on acceptable
performance. As 𝑛 shrinks (grows) and 𝛽 grows (shrinks), Hybrid
approaches pure entity-level (dataset-level) learning.
6.2 Language Model Based Query Learning
The simplicity of a linear model is attractive in online learning since
it treats estimation as a convex problem, and if the features used are
good predictors of term effectiveness, then a linear model should
perform well even with little feedback. However, the linear model’s
simplicity is also a limitation on its ability to discover more nuanced
predictors of a terms’s quality. Hence, we also explore using a model
that leverages state-of-the-art transformers for richer representa-
tions of tuples and keywords. Specifically, we consider large-scale
pretrained language models (LMs) LLaMA [44] and Longformer
[5]. In contrast to linear models, LMs can encode entire tuples
jointly such that individual term quality can be predicted based
on keyword representations contextualized on high-dimensional
representations of the entire entity. This flexibility comes at the
cost of significantly more parameters and non-convex optimization.

Encoding Tuples and Scoring Terms. Given an entity 𝑒𝑡 , we
concatenate all terms 𝑘𝑖 ∈ 𝐿(𝑒𝑡) into a single string 𝑠𝑡 and pass it

7

through the model after standard byte-pair-encoding tokenization.
The output of the model provides a contextualized representation
ℎ𝑖 for each input token. Note that the byte-pair-encoding may break
candidate terms into multiple inputs or candidate terms may appear
multiple times in the entity, so to produce feature ℎ𝑖 corresponding
to term 𝑘𝑖 , the output encodings of all these instance are averaged.
For convenience, we write this process as: ℎ1, ..., ℎ𝑛 = LM(𝑠𝑡)

These representations capture information about each term
given the context of the entity. To further enrich these features
with dataset-level information, the feature vector from the linear
model 𝐴𝑡 (𝑘𝑖 , 𝑒𝑡) is concatenated onto each corresponding repre-
sentation forming 𝑓𝑖 = [𝐴𝑡 (𝑘𝑖 , 𝑒𝑡), ℎ𝑖] where [·, ·] denotes concate-
nation. Vector 𝑓𝑖 is then passed through a small fully connected
neural network to predict reward 𝑟𝑖 for each term. In our setting,
𝑟𝑖 is an estimate for reciprocal rank and bounded between 0 and 1.

Selecting Queries and Updating.We apply an 𝜖-greedy approach
to query formulation [42]— selecting either the next-highest-scoring
term or, with probability 𝜖 , a random term until the desired query
length is achieved. Once user feedback is received, the RR for the
query is calculated and used to supervise the network. Specifically,
the observed RR is recorded as a prediction target for all query terms
appearing in the returned external matches. Unobserved terms have
targets of 0 assigned. These term-entity-RR tuples are added to a
first-in-first-out buffer of examples for the last 50 observed terms.
We train the model by stochastic gradient descent with batches of
8 samples from the buffer at each interaction.

Implementation Details. LLaMA consists of 32 layers, 4096 hid-
den representation size, 32 attention heads, and 7 billion parame-
ters. Longformer consists of 12 layers, 768 hidden representation
size, 12 attention heads, and 125 million parameters. They both
use pretrained models from the Huggingface Transformers library,
utilizing their respective byte-pair-encoding tokenizers. Through
pretraining, they acquire strong reasoning capabilities about Eng-
lish words and sentences that are frequently used in our examined
entities. To train the fully-connected neural network, we use Py-
torch’s implementation of Adam with default hyper-parameters.
We use mean squared error as the loss function.

7 EMPIRICAL EVALUATION
7.1 Experimental Setup

Datasets.We evaluate our methods over a variety of domains using
the datasets listed in Table 1. Each dataset contains a local dataset
and an external dataset. We include the entity count for each source
along with the average number of terms per entity. Every entity in
a local dataset has at least one relevant entity in its external dataset,
but some external datasets have additional irrelevant entities that
can appear in results. For this reason, we also specify the number
of external entities that are relevant to at least one local entity.

Both DrugCentral and ChEBI are derived from datasources
used in the NIH project discussed in Section 1. For both, we use
DrugBank as the local source, which contains comprehensive molec-
ular information about drugs [48]. DrugCentral uses Drug Central
as its external source. Drug Central stores regulatory information
associated with drugs [4]. ChEBI broadly tracks molecular enti-
ties used to intervene in the processes of living organisms [27].

WDC is derived from the non-normalized English WDC Product
corpus, containing products scraped from many different sites [39].
CORD-19 contains records about scientific papers and research
related to COVID-19 [46]. We split CORD-19 into two separate
sources: one containing abstracts (local) and one containing the
remaining attributes (external). Drugs contains drug reviews from
Drugs.com (local) [24] and descriptions of the same drugs scraped
from Wikipedia (external). News is derived from a dataset cov-
ering 38 major mass-media companies [25]. It contains titles and
summaries of articles (local) and the articles themselves (external).

Perfect MRR (ℓ = 4) in Table 1 indicates the best Mean Recip-
rocal Rank (MRR) achievable for each dataset when using queries
of length 4. This metric was calculated offline by searching the
entire space of queries for each local entity and keeping track of
the highest achievable RR. Due to the runtime required, we have
calculated this metric over 5% subsets of each local dataset except
for CORD-19. Due to CORD-19’s large size and high number of
candidate terms per local entity, we could only calculate this metric
over a 544 local entity sample. Though it is unrealistic to assume
that anything but computationally expensive offline algorithms can
achieve this performance, we include it as an indicator of dataset
difficulty and term overlap.
Interactions. We simulate a series of interactions between a medi-
ator and a query interface. Each interaction is initiated by sampling
a local entity. Given the local entity, the mediator generates a query
of length ℓ and submits it to the external data source. The external
data source returns its top-20 results based on a static ranking func-
tion (BM25), which we implement using the Whoosh package [9].
The query is assigned a reward based on the reciprocal rank of the
top-relevant result using simulated feedback (i.e., ground truth).
Evaluation Metric. To mitigate variations across entities, we com-
pute MRR as a sliding average over the previous 500 interactions.
Each graph plots this average against the current interaction. We
report MRR for our methods as the average of five runs each com-
prising 2000 interactions. Error bands are included around each
average (line) to show a 95% interval for standard error across the
runs. Due to lack of space, we report illustrative examples of trends
and complete results are in [7]. We omit the runtime of experiments,
but note that much of it is dedicated to external query processing:
our models take relatively little time to execute and update.
Hyperparameters. Unless specified otherwise, we treat query
length as a hyperparameter and evaluate our methods using ℓ ∈
{4, 8, 16, 32}. These values reflect limits on real interfaces (see Sec-
tion 3.1) and illustrate how query length affects policy performance.
Dataset-Level (Section 5) and Hybrid (Section 6.1) use LinUCB as
their exploration strategy while LM-Based models (Section 6.2) use
𝜖-greedy. Both strategies use a hyperparameter to control the extent
to which they explore. For LinUCB we use 𝛼 = 0.2 and for 𝜖-greedy
we use 𝜖 = 0.05. We evaluate how the degree of exploration affects
performance in Sections 7.2 and 7.3.
Static IDF Benchmark. To help contextualize the performance
of our methods, we present a naive policy for comparison. Static
IDF always produces queries using the top-ℓ terms in the content
of 𝑒 based on their Inverse Dataset Frequency (IDF). As explained
in Section 5.2, IDF, a common measure of term specificity [29],
quantifies how unique a term is to an entity within a dataset.

8

dataset source attributes avg. terms entities #relevant Perfect MRR (ℓ = 4)

DrugCentral Local name, description, indication, pharmacodynamics, ... 178 3,475
External formula, name, fda_labels, drug_class, active_ingredient, ... 279 4,927 3,457 0.9971

Drugs Local drugName, condition, review 108 13,725
External page_title, wikipedia_summary 168 46,976 413 0.9822

News Local title, article_summary 42 30,000
External article_content 547 30,000 30,000 0.9763

WDC Local category, brand, prod_title, description, ... 67 57,109
External category, brand, prod_title, description, ... 72 55,247 55,247 0.8697

ChEBI Local name, description, indication, pharmacodynamics, ... 178 5,483
External status, name, definition, charge, formula, mass, ... 73 189,467 5,753 0.8953

CORD-19 Local abstract 305 250,575
External sha, source_x, paper_title, doi, pmcid, ... 48 340,826 250,575 0.8325

Table 1: Details of datasets used in our evaluation, sorted according to the number of entities within the external source.

7.2 Dataset-Level Model
Our first questions of interest are (1) can Dataset-Level outperform
the Static IDF benchmark?, (2) can Dataset-Level find a sufficiently
effective policy in the short run?, and (3) how does query length
affect performance and how can we set it apriori? A defining chal-
lenge of a newly deployed mediator is that it will have no expe-
rience generating queries for most local entities. To simulate this
challenge, we sample local entities uniformly. This setup mimics a
difficult learning task where the mediator must generalize what it
has learned to novel entities. Figures 2 and 3 show the performance
of Dataset-Level relative to the Static IDF Benchmark (IDF). For both
models, local entities are sampled uniformly at each interaction.
However, since IDF’s policy does not change, we calculate its MRR
over all interactions and present it as a single vertical line.
Exploration.We evaluate Dataset-level with varying degrees of
exploration 𝛼 ∈ {0, .2, .5, 1, 2} and find that a small degree of ex-
ploration (i.e., 𝛼 = .2) provides the most consistent performance,
balancing the mixed effects that exploration can have over dif-
ferent datasets. For some datasets, a small degree of exploration
provides marginally better performance than no exploration; for
other datasets, performance slightly degrades as the degree of ex-
ploration increases. The negative effect of exploration is at least
partially determined by the structure of the local source. For ex-
ample, the local source for both CHeBI and DrugCentral has the
most attributes of any dataset, resulting in many features per can-
didate term. However, few features tend to be positively correlated
with query effectiveness. As ℓ increases, we find that the effect
of exploration is neutralized. This is likely due to the reduced ef-
fect of exploratory terms themselves: a set of exploratory terms
will have a greater impact on the outcome of a short query than a
long query. Furthermore, a higher ℓ forces the mediator to select a
greater diversity of terms even when no exploration is used.
Dataset-Level quickly finds policies that outperform IDF.
Early on, IDF achieves higher MRR on most datasets. However,
Dataset-Level eventually surpasses it, often within the first 100
interactions. One exception to this trend is News (Figures 2a/3a)
where the local IDF of terms is correlated with their effectiveness:
both the input local entity and its relevant external entity tend to
share distinguishing terms. This result is not too surprising, as titles
of news articles often share specific terms with their respective con-
tent. However, our experiments show that this trait is uncommon.
Thus, methods that learn to adapt to particular external sources are
likely to have better policies than models that stick to one heuristic
of term effectiveness (e.g., IDF of local terms).

Dataset-Level with small ℓ has the most reliable performance.
Performance differences between Dataset-Level and IDF tend to be
greatest when ℓ is small. However, there is no general correlation
between query length and model performance. In some instances,
increasing ℓ improves the performance of both models to the point
of convergence (Figure 3a). In other instances, increasing ℓ reduces
the performance of both models (Figures 3b/3c). When ℓ is small,
models use only those top few keywords with the highest predicted
effectiveness; but as ℓ grows, there is a higher liklihood that the
models will include noisy terms that reduce the rank of the top
relevant entity. Furthermore, long keyword queries may not be
accepted by external data sources. Given these findings, more dis-
criminating polices that send few terms are preferable since they
neither run the risk of degrading performance nor having their
queries outright rejected by the external source.
Dynamic Query Length (DQL). As the best value for ℓ tends to
be dataset-specific, we present a method for dynamically altering ℓ
based on a model’s estimate of individual candidate terms. Instead
of selecting the top ℓ terms, we use nucleus sampling which has
been shown to be an effective strategy in natural language gen-
eration [28]. The initial candidate term estimates are normalized
using the softmax function 𝑘𝑖 = exp(E[𝑘𝑖])/

∑
𝑘 𝑗 ∈𝐿 (𝑒) exp(E[𝑘 𝑗]).

The top 𝑘 terms are then selected based on a threshold 𝑃 ∈ (0, 1]
which determines the total probability mass of terms to select. For
example, if 𝑃 = .8, then the minimal number of top terms would be
selected such that their probability mass exceeds .8. To align with
other experiments, we set 32 terms as a hard cutoff point for query
lengths.
For reasonable 𝑃 DQL tends towards optimal query lengths.
We evaluate 𝑃 ∈ {.1, .2, .4, .6, .8} and find that DQL adjusts query
size according to input local entities in all cases. Of the values tested
for 𝑃 , we find [.2, .6] to be a reasonable range, thus we include DQL
with 𝑃 = .4within Figures 2 and 3. Intuitively, if the threshold is too
low (.1), then informative terms will be excluded; if the threshold is
too high (.8), then many noisy terms will be included. Furthermore,
it is likely that only a relatively small portion of candidate terms
increase query effectiveness. For 𝑃 ∈ {.2, .4, .6}, DQL tends towards
the optimal query lengths. For example, for 𝑃 = .4, of all queries
sent for CORD-19 (where a large ℓ leads to better performance), at
least 50% had a length within [27, 32]. Similarly, of all queries sent
for ChEBI (where a small ℓ leads to better performance), at least
50% had a length within [10, 32].
For reasonable 𝑃 , DQL is robust to the choice of hyperparme-
ter. Even as 𝑃 is pushed to the boundaries of the range [.2, .6], we

9

(a) News

(b) ChEBI

(c) DrugCentral

Figure 2: Dataset-Level and IDF (uniform 4/8)

find that DQL maintains the observed behavior. For 𝑃 = .2 and
𝑃 = .4, 50% of queries sent for CORD-19 are within the range of
[13, 21] and [32, 32] respectively. For ChEBI, we observe [4, 28] and
[16, 32]. This indicates that DQL with 𝑃 ∈ [.2, .6] is a reasonable
choice when we are unsure of the optimal query length.

Averaged over all datasets, Dataset-level with ℓ = 4 finds policies
that produce an MRR of roughly 0.5 within the first 250 interactions.
We consider this performance to be sufficiently effective in the
short run, given such limited feedback. However, it shows little
improvement with additional feedback. Thus, it is quick to hit its
capacity to account for local entity diversity.

7.3 Overcoming Entity Diversity
In the following experiments, we compare Hybrid (Section 6.1) and
LM-Based (Section 6.2) againstDataset-Level. We seek to understand
whether our methods can continue to improve their query policies
in the long run. To more accurately measure long-run performance,
we adjust our sampling strategy for local entities.

Studies suggest that entity preference follows a near-Zipf distri-
bution 1/𝑖𝑠 where 𝑖 is the rank of the 𝑖′𝑡ℎ most popular entity and
𝑠 ≈ 1 [1, 11, 22]. Thus, users request the 𝑖′𝑡ℎ most popular entity
approximately twice as often as the (𝑖 + 1)′𝑡ℎ most popular entity.
Following this evidence, we simulate user preference by sampling
local entities from a Zipf distribution (𝑠 = 1). Since our datasets
do not indicate entity popularity, we randomly assign the order of
popularity, which is held constant across different models. Figures 4
and 5 show the performance of Dataset-Level, LM-Based, and Hybrid
under a Zipf sampling of local entities.

(a) News

(b) ChEBI

(c) DrugCentral

Figure 3: Dataset-Level and IDF (uniform 16/32)

Hybrid Hyperparameters. To avoid the risk of instantiating too
many entity-specific models too soon, we use 𝑛 = 50 and 𝛽 = 1

15 .
Hybrid improves MRR over Dataset-Level in the long run. To
better understand how the addition of entity-specific models affect
performance in the long run, we evaluate Dataset-Level and Hybrid
over the same stream of local entities for 10,000 interactions. We
compare the MRR of the two methods over three sets of local enti-
ties: 1) those that Hybrid has initialized entity-specific models for
thus far (𝑀𝑅𝑅𝑒𝑠), 2) those that Hybrid uses its dataset-level model
for thus far (𝑀𝑅𝑅𝑑𝑙), and 3) all local entities encountered thus far
(𝑀𝑅𝑅𝑎𝑙𝑙). Generally, we find that Hybrid meets or exceeds Dataset-
level’s 𝑀𝑅𝑅𝑎𝑙𝑙 , with the most dramatic improvement on CORD-19
with ℓ = 4. Within 3,000 interactions, we observe a 1.35 perfor-
mance increase with Hybrid at 0.2443 (± 0.03) 𝑀𝑅𝑅𝑎𝑙𝑙 and Dataset-
level at 0.1808 (± 0.0179)𝑀𝑅𝑅𝑎𝑙𝑙 . By 10,000 interactions, the perfor-
mance increase is 1.55, withHybrid at 0.2896 (± 0.0396)𝑀𝑅𝑅𝑎𝑙𝑙 and
Dataset-level at 0.1861 (± 0.018)𝑀𝑅𝑅𝑎𝑙𝑙 . Furthermore, we observe a
2.12 performance increase in𝑀𝑅𝑅𝑒𝑠 and a 1.2 performance increase
in𝑀𝑅𝑅𝑑𝑙 with Hybrid at 0.2306 (± 0.0683)𝑀𝑅𝑅𝑒𝑠 and Dataset-level
at 0.1087 (± 0.0365) 𝑀𝑅𝑅𝑒𝑠 and Hybrid at 0.2858 (± 0.0089) 𝑀𝑅𝑅𝑑𝑙
and Dataset-level at 0.2388 (± 0.0232) 𝑀𝑅𝑅𝑑𝑙 respectively. This
supports our claim that entity-specific models can increase the
performance of the dataset-level model by reducing under-fitting
through the elimination of outlying local entities.
Exploration.We evaluate Hybrid with varying degrees of explo-
ration 𝛼 ∈ {0, .2, .5, 1, 2} and find that a small degree of exploration
tends to benefit Hybrid more than Dataset-level. LinUCB shrinks its
upper confidence bounds on features by trying terms with those

10

(a) Drugs

(b) CORD-19

(c) ChEBI

Figure 4: Dataset, Hybrid and LM-based (Zipf 4/8)

features sufficiently enough. Thus, models with little feedback (i.e.,
newly instantiated entity-specific models) will explore to a high
degree. We find the most significant benefit on CORD-19 and Prod-
ucts, where 𝛼 = 0.2 results in higher MRR in the long run. Results
over ChEBI further suggest that high degrees of exploration (i.e.,
𝛼 = 1 and 𝛼 = 2) should be avoided, as the negative effects of ex-
ploration over this dataset tend to be exacerbated by entity-specific
models. For News, DrugCentral, and Drugs, we find that entity-
specifc models do not significantly affect the relationship between
degree of exploration and performance.
Longformer’s rich representations increases its predictive
power but also make its performance inconsistent. Though
Longformer shows a minor improvement in performance over Hy-
brid in few instances, it also exhibits a more dramatic improvement
over Drugs with ℓ = 32 (Figures 5a). Interestingly, Drugs is another
dataset where model performance degrades as ℓ increases. This
trend suggests that Longformer’s richer representation of terms
may allow it to better identify and avoid noisy terms. On the other
hand, Longformer also exhibits some of the worst performance of
any of our models on CORD-19 (Figures 4b/5b) and ChEBI (Fig-
ures 4c/5c). Furthermore, Longformer exhibits a large standard error
over both datasets, implying a high variance in performance.
LLaMA’s extensive model size enhances its representational
power; however, it leads to decreases in performance. Our
findings indicate both Longformer and Dataset-level perform better

(a) Drugs

(b) CORD-19

(c) ChEBI

Figure 5: Dataset, Hybrid and LM-based (Zipf, 16/32 keys)

than LLaMA on all datasets, except for ChEBI with ℓ = 4 (Fig-
ure 4c). The intricate nature of LLaMA’s features and representa-
tions necessitates a complex non-linear function to fully exploit its
benefits. It is challenging to fit such a function online. While Long-
former’s smaller model size results in lower representational power,
it compensates by reducing complexity. This enables Longformer
to extract valuable information and outperform LLaMA.

Both Hybrid and Longformer show signs of improvement beyond
the capacity of Dataset-Level. Though Longformer shows promise
in overcoming capacity issues, its less-than-stable performance
indicates that it may not always converge to a sufficiently effectively
policy quickly. On the other hand, Hybrid shows some promise for
overcoming the capacity issue without any noticeable deterioration
in performance compared to Dataset-level.

7.4 External Terms & Features
We evaluate whether we can improve query effectiveness through
the use of external terms and features. We find external terms and
features have similar effects on Dataset-Level and Hybrid. Thus, for
the sake of readability, we include only the results of Hybrid.
Supervised Term Borrowing improves performance for most
datasets. External terms boost performance to varying extents for
most datasets (Figure 6a/7a). The one exception is DrugCentral at
ℓ = 4, 8, where external terms and features have no affect on per-
formance. This result is likely due to the models already achieving
high performance (Figure 2c/3c). By expanding the set of candidate
terms with more reliable options, Hybrid achieves the overall best

11

(a) CORD-19 (4/8 keys)

(b) ChEBI (4/8 keys)
Figure 6: Hybrid (external feature comparison) (Zipf 4/8)

(a) CORD-19 (16/32 keys)

(b) ChEBI (16/32 keys)
Figure 7: Hybrid (external feature comparison) (Zipf 16/32)

performance on some datasets (Figure 6a/7a) and uses fewer noisy
terms at high ℓ values on other datasets (Figure 6b/7b).
Unsupervised Term Borrowing helps extract relevant exter-
nal entities. Over Drugs, News, WDC, ChEBI, and CORD-19, we
find minor improvements in MRR for the local entities with ex-
panded candidate term sets. For example, on News with ℓ = 8,
unsupervised term borrowing boosts MRR from 0 to 0.149 (± 0.006).
Thus, unsupervised term borrowing can help extract relevant ex-
ternal entities that could not be extracted using only those terms
that appear in the content of the local entities.
8 RELATEDWORK
Pay-as-you-go Data Integration. Researchers have proposed
pay-as-you-go integration systems that rely on user feedback [19,
35, 51]. Some systems use pay-as-you-go methods to construct a
unified schema and query interface over multiple databases [51].

The developer of this system uses available schema-mapping and
record-linking tools to explore the schema and content of datasets,
which requires access to the entire content of external dataset. We,
however, do not have access to the entire content of external dataset.
ML for Data Integration. Researchers have used ML methods
for some data integrating tasks (e.g., schema mapping and entity
matching) [6, 14, 21, 23, 26, 43]. As opposed to our setting, these
systems require access to the entire content of integrated datasets
during training. Moreover, they usually use offline ML methods.
Some use active learning for schema mapping and entity match-
ing where the system selects and shows training examples (e.g..
matching candidates) to users for labeling [26, 40, 43]. This method
is different from ours as it does not provide any results during
training. Also, users do not choose entities.
Data Discovery and Augmentation. Given a query table as an
input, data discovery methods seek to find related tables within
a large pool of tables (crawled from web, data lakes, companies
with many disparate tables across multiple data sources) quickly
[8, 17, 20, 41, 50, 53]. Our system, however, aims at finding external
information relevant to each local entity. They often preprocess
candidate corpora, often by building indexes across (external) tables,
which requires access to the entire meta-data and content of those
tables. Such accesses do not exist in our setting.
Data Acquisition. Researchers have proposed methods to acquire
training examples from external sources to train an ML model [32].
As opposed to our setting, they assume that every query over the
external source returns accurate results.
DeepWeb Crawling & Querying.Web crawlers aim at extracting
the entire information stored in external data sources to organize
it for future use (e.g., search [16, 34, 36, 47, 52]). Many Web data
sources can be accessed only via form interfaces (i.e., deep Web).
Researchers have proposed techniques that find a minimal set of
queries to crawl all accessible tuples of these data sources [16,
36]. As opposed to our setting, they do not consider the notion
of relevance to a given entity. Some systems provide a unified
query interface over multiple Web-form query interfaces so users
can query multiple sources via a single interface [16, 52]. They
preprocess query forms to translate the queries over the unified
interface to the ones over external query interfaces. Our system,
however, finds information relevant to local entities over keyword
query interfaces. It also does not perform any preprocessing to
understand the query answering methods of the external sources.
Keyword Query Formulation. Researchers have proposed meth-
ods to automate keyword query formulation without writing com-
plicated source-specific programs [47]. However, these methods
assume that the external query interface is perfectly accurate and
does not return any non-relevant answers, which is not usually true
[33, 37]. They do not consider the issue of data heterogeneity and
thus lack the ability to adjust their query formulation to account for
it. The goal of these methods are also different as they aim to find
information related to an entire dataset rather than to an entity.

REFERENCES
[1] Virgilio Almeida, Azer Bestavros, Mark Crovella, and Adriana De Oliveira. 1996.

Characterizing reference locality in theWWW. In Fourth International Conference
on Parallel and Distributed Information Systems. IEEE, 92–103.

12

[2] Ted T. Ashburn and Karl B. Thor. 2004. Drug repositioning: identifying and
developing new uses for existing drugs. Nature Reviews Drug Discovery 3, 8
(2004), 673–683.

[3] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. 2002. The
nonstochastic multiarmed bandit problem. SIAM journal on computing 32, 1
(2002).

[4] Sorin Avram, Thomas B Wilson, Ramona Curpan, Liliana Halip, Ana Borota,
Alina Bora, Cristian G Bologa, Jayme Holmes, Jeffrey Knockel, Jeremy J Yang, and
Tudor I Oprea. 2022. DrugCentral 2023 extends human clinical data and integrates
veterinary drugs. Nucleic Acids Research 51, D1 (12 2022), D1276–D1287. https:
//doi.org/10.1093/nar/gkac1085 arXiv:https://academic.oup.com/nar/article-
pdf/51/D1/D1276/48441389/gkac1085.pdf

[5] Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The Long-
Document Transformer. arXiv:2004.05150 (2020).

[6] Angela Bonifati, Radu Ciucanu, and Sławek Staworko. 2014. Interactive Join
Query Inference with JIM. Proc. VLDB Endow. 7, 13 (aug 2014), 1541–1544.
https://doi.org/10.14778/2733004.2733025

[7] Christopher Buss, Jasmin Mosavi, Mikhail Tokarev, Arash Termehchy, Maier
David, and Stefan Lee. 2023. Effective Entity Augmentation By Querying External
Data Sources. Technical Report. https://web.engr.oregonstate.edu/~termehca/
papers/entityarg.pdf

[8] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel
Madden, and Michael Stonebraker. 2018. Aurum: A Data Discovery System. In
2018 IEEE 34th International Conference on Data Engineering (ICDE). 1001–1012.
https://doi.org/10.1109/ICDE.2018.00094

[9] Matt Chaput. 2016. Whoosh: Fast, pure-Python full text indexing, search, and
spell checking library. https://pypi.org/project/Whoosh/

[10] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. 2011. Contextual Bandits
with Linear Payoff Functions. In AISTATS. 208–214.

[11] Carlos Cunha, Azer Bestavros, and Mark Crovella. 1995. Characteristics of WWW
client-based traces. Technical Report.

[12] Dong Deng et al. 2017. The Data Civilizer System. In CIDR.
[13] Abdigani Diriye, Ryen White, Georg Buscher, and Susan Dumais. 2012. Leaving

so soon? Understanding and predicting web search abandonment rationales. In
Proceedings of the 21st ACM international conference on Information and knowledge
management. 1025–1034.

[14] AnHai Doan, Alon Halevy, and Zachary Ives. 2012. Principles of Data Integration
(1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[15] Xin Luna Dong and Divesh Srivastava. 2013. Big Data Integration. PVLDB 6, 11
(2013).

[16] Eduard C. Dragut, Weiyi Meng, and Clement T. Yu. 2012. Interface Understanding
Deep Web Query and Integration. Morgan & Claypool Publishers.

[17] Mahdi Esmailoghli, Jorge-Arnulfo Quiané-Ruiz, and Ziawasch Abedjan. 2021.
COCOA: COrrelation COefficient-Aware Data Augmentation. In International
Conference on Extending Database Technology.

[18] National Science Foundation and National Institutes of Health. 2021. Smart
Health and Biomedical Research in the Era of Artificial Intelligence and Advanced
Data Science (SCH). https://www.nsf.gov/pubs/2021/nsf21530/nsf21530.htm

[19] Michael J. Franklin, Alon Y. Halevy, and David Maier. 2008. A first tutorial on
dataspaces. PVLDB 1, 2 (2008).

[20] Sainyam Galhotra, Yue Gong, and Raul Castro Fernandez. 2023. METAM: Goal-
Oriented Data Discovery. In IEEE 39th International Conference on Data Engineer-
ing (ICDE).

[21] Lise Getoor and Ashwin Machanavajjhala. 2013. Entity Resolution for Big Data.
1527.

[22] Steven Glassman. 1994. A caching relay for the world wide web. Computer
Networks and ISDN systems 27, 2 (1994), 165–173.

[23] Behzad Golshan, Alon Y. Halevy, George A. Mihaila, and Wang-Chiew Tan. 2017.
Data Integration: After the Teenage Years. In PODS.

[24] Felix Gräßer, Surya Kallumadi, Hagen Malberg, and Sebastian Zaunseder. 2018.
Aspect-based sentiment analysis of drug reviews applying cross-domain and
cross-data learning. In International Conference on Digital Health. 121–125.

[25] Max Grusky, Mor Naaman, and Yoav Artzi. 2018. Newsroom: A Dataset of 1.3
Million Summaries with Diverse Extractive Strategies. In NAACL.

[26] Sairam Gurajada, Lucian Popa, Kun Qian, and Prithviraj Sen. 2019. Learning-
Based Methods with Human-in-the-Loop for Entity Resolution. In CIKM.
2969–2970.

[27] Janna Hastings, Gareth Owen, Adriano Dekker, Marcus Ennis, Namrata Kale,
Venkatesh Muthukrishnan, Steve Turner, Neil Swainston, Pedro Mendes, and
Christoph Steinbeck. 2016. ChEBI in 2016: Improved services and an expanding
collection of metabolites. Nucleic acids research 44, D1 (2016), D1214–D1219.

[28] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2019. The
Curious Case of Neural Text Degeneration. International Conference on Learning
Representations (2019).

[29] Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou. 2003. Efficient
IR-Style Keyword Search over Relational Databases. In VLDB.

[30] Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sébastien Bubeck. 2014. lil’
UCB : AnOptimal ExplorationAlgorithm forMulti-Armed Bandits. In Proceedings

of The 27th Conference on Learning Theory, Vol. 35. 423–439.
[31] Diane Kelly and Jaime Teevan. 2003. Implicit Feedback for Inferring User Prefer-

ence: A Bibliography. SIGIR Forum 37, 2 (2003).
[32] Yifan Li, Xiaohui Yu, and Nick Koudas. 2021. Data Acquisition for Improving

Machine Learning Models. Proc. VLDB Endow. 14, 10 (jun 2021), 1832–1844.
https://doi.org/10.14778/3467861.3467872

[33] Tie-Yan Liu. 2009. Learning to Rank for Information Retrieval. Foundations and
Trends® in Information Retrieval 3, 3 (2009), 225–331.

[34] Weimo Liu, Saravanan Thirumuruganathan, Nan Zhang, and Gautam Das. 2014.
Aggregate Estimation over Dynamic Hidden Web Databases. PVLDB 7, 12 (2014),
1107–1118.

[35] Jayant Madhavan, Shawn R. Jeffery, Shirley Cohen, Xin (Luna) Dong, David
Ko, Cong Yu, and Alon Halevy. 2007. Web-scale Data Integration: You can only
afford to Pay As You Go. In CIDR.

[36] Jayant Madhavan, David Ko, Łucja Kot, Vignesh Ganapathy, Alex Rasmussen,
and Alon Halevy. 2008. Google’s DeepWeb Crawl. PVLDB 1, 2 (2008), 1241–1252.

[37] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Intro-
duction to Information Retrieval. Cambridge University Press.

[38] George A Miller. 1998. WordNet: An electronic lexical database. MIT press.
[39] Anna Primpeli, Ralph Peeters, and Christian Bizer. 2019. The WDC training

dataset and gold standard for large-scale product matching. In Companion Pro-
ceedings of The 2019 World Wide Web Conference. 381–386.

[40] Kun Qian, Lucian Popa, and Prithviraj Sen. 2017. Active Learning for Large-Scale
Entity Resolution. In Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management (CIKM ’17). Association for Computing Machinery,
New York, NY, USA, 1379–1388. https://doi.org/10.1145/3132847.3132949

[41] Aécio Santos, Aline Bessa, Fernando Chirigati, Christopher Musco, and Juliana
Freire. 2021. Correlation Sketches for Approximate Join-Correlation Queries. In
Proceedings of the 2021 International Conference on Management of Data (SIGMOD
’21). Association for Computing Machinery, New York, NY, USA, 1531–1544.
https://doi.org/10.1145/3448016.3458456

[42] Aleksandrs Slivkins. 2019. Introduction to Multi-Armed Bandits. Found. Trends
Mach. Learn. 12, 1-2 (2019).

[43] Balder ten Cate, Phokion G. Kolaitis, Kun Qian, and Wang-Chiew Tan. 2018.
Active Learning of GAV Schema Mappings. In Proceedings of the 37th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS ’18).
Association for Computing Machinery, New York, NY, USA, 355–368. https:
//doi.org/10.1145/3196959.3196974

[44] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[45] Aleksandr Vorobev, Damien Lefortier, Gleb Gusev, and Pavel Serdyukov. 2015.
Gathering additional feedback on search results by multi-armed bandits with
respect to production ranking. InWWW.

[46] Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar, Russell Reas, Jiangjiang Yang,
Darrin Eide, Kathryn Funk, Rodney Michael Kinney, Ziyang Liu, William Merrill,
P. Mooney, D. Murdick, Devvret Rishi, J. Sheehan, Zhihong Shen, Brandon
Stilson, Alex DWade, KuansanWang, ChristopherWilhelm, Boya Xie, Douglas A.
Raymond, Daniel S.Weld, Oren Etzioni, and Sebastian Kohlmeier. 2020. CORD-19:
The COVID-19 Open Research Dataset. ArXiv (2020).

[47] Pei Wang, Ryan Shea, Jiannan Wang, and Eugene Wu. 2019. Progressive Deep
Web Crawling Through Keyword Queries For Data Enrichment. In SIGMOD.
229–246.

[48] DS Wishart, YD Feunang, AC Guo, EJ Lo, A Marcu, JR Grant, T Sajed, D Johnson,
C Li, Z Sayeeda, et al. 2017. DrugBank 5.0: a Major Update to the DrugBank
Database for 2018. In Nucleic Acids res. 2017 Nov 8.

[49] E. C. Wood, Amy K. Glen, Lindsey G. Kvarfordt, Finn Womack, Liliana Acevedo,
Timothy S. Yoon, Chunyu Ma, Veronica Flores, Meghamala Sinha, Yodsawalai
Chodpathumwan, Arash Termehchy, Jared C. Roach, Luis Mendoza, Andrew S.
Hoffman, Eric W. Deutsch, David Koslicki, and Stephen A. Ramsey. 2021. RTX-
KG2: a system for building a semantically standardized knowledge graph for
translational biomedicine. bioRxiv (2021). https://www.biorxiv.org/content/
early/2021/11/01/2021.10.17.464747

[50] Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit Chaudhuri.
2012. InfoGather: Entity Augmentation and Attribute Discovery by Holistic
Matching with Web Tables. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’12). Association for Computing Ma-
chinery, New York, NY, USA, 97–108. https://doi.org/10.1145/2213836.2213848

[51] Zhepeng Yan, Nan Zheng, Zachary G Ives, Partha Pratim Talukdar, and Cong Yu.
2013. Actively soliciting feedback for query answers in keyword search-based
data integration. PVLDB 6, 3 (2013).

[52] Nan Zhang and GautamDas. 2011. Exploration of DeepWeb Repositories. PVLDB
4, 12 (2011).

[53] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE:
Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In
Proceedings of the 2019 International Conference on Management of Data (SIGMOD
’19). Association for Computing Machinery, New York, NY, USA, 847–864. https:

13

https://doi.org/10.1093/nar/gkac1085
https://doi.org/10.1093/nar/gkac1085
http://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/51/D1/D1276/48441389/gkac1085.pdf
http://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/51/D1/D1276/48441389/gkac1085.pdf
https://doi.org/10.14778/2733004.2733025
https://web.engr.oregonstate.edu/~termehca/papers/entityarg.pdf
https://web.engr.oregonstate.edu/~termehca/papers/entityarg.pdf
https://doi.org/10.1109/ICDE.2018.00094
https://pypi.org/project/Whoosh/
https://www.nsf.gov/pubs/2021/nsf21530/nsf21530.htm
https://doi.org/10.14778/3467861.3467872
https://doi.org/10.1145/3132847.3132949
https://doi.org/10.1145/3448016.3458456
https://doi.org/10.1145/3196959.3196974
https://doi.org/10.1145/3196959.3196974
https://www.biorxiv.org/content/early/2021/11/01/2021.10.17.464747
https://www.biorxiv.org/content/early/2021/11/01/2021.10.17.464747
https://doi.org/10.1145/2213836.2213848
https://doi.org/10.1145/3299869.3300065

//doi.org/10.1145/3299869.3300065

14

https://doi.org/10.1145/3299869.3300065

	Abstract
	1 Introduction
	2 General Framework
	3 Learning Query Policy Progressively
	3.1 Objective and Challenges
	3.2 Managing the Policy Space

	4 Entity-level Learning
	5 Dataset-Level Learning
	5.1 A Linear Bandit Approach
	5.2 Representations of Terms & Entities
	5.3 Using External Terms & Features

	6 Overcoming Entity Diversity
	6.1 From Dataset-Level to Entity-Level Learning
	6.2 Language Model Based Query Learning

	7 Empirical Evaluation
	7.1 Experimental Setup
	7.2 Dataset-Level Model
	7.3 Overcoming Entity Diversity
	7.4 External Terms & Features

	8 Related Work
	References

