
There Is No Dichotomy Between Effectiveness and
Efficiency in Keyword Search Over Databases

Vahid Ghadakchi 1, Arash Termehchy 2

School of Electrical Engineering and Computer Sciencec
Oregon State University
Corvallis, Oregon, USA

1 ghadakcv@oregonstate.edu
2 termehca@oregonstate.edu

I. INTRODUCTION

Ordinary users, such as scientists, are not familiar with
the concepts of schema and query language and rely on
query interfaces that can handle keyword queries or natural
language [1]. Moreover, users who know query languages such
as SQL, do not often know the content and/or structure of
the data sufficiently well to precisely specify their queries.
As imprecise queries do not exactly reflect the users’ intents,
the foremost challenge of a database system is to discover
the relevant answers to these queries. Roughly speaking, the
database system finds a list of plausible interpretations for
these queries using different IR, NLP and machine learning
techniques, runs these interpretations, and returns their results.
The returned results are significantly less effective than what
users want: they contain too many non-relevant answers and
few relevant answers, i.e., low precision and recall [2]. Fur-
thermore, to run a keyword query, the database system has
to process a considerable number of interpretations for each
input query. Each interpretation is a rather complex database
query with potentially large number of joins [3] which makes
the keyword query processing to become extremely time-
consuming. The rapid increase in the amount of data and size
of databases only exacerbates the mentioned problems. These
challenges poses the following question: can we redesign
the main components of a database system to improve both
effectiveness and efficiency of answering keyword queries
over a large database? We show that it is possible to achieve
this goal by presenting our effort on finding and caching an
optimal subsets of a database to improve both effectiveness
and efficiency of answering keyword queries.

II. FINDING OPTIMAL SUBSET OF THE DATABASE

To address the aforementioned problems, we investigate to
see if there is a subset of the database over which the query
interface can answer queries more effectively and efficiently
than over the entire database. It is known that accessing data
items in a database, generally follows a power-law distribution:
a large number of queries target relatively few, frequently
accessed data items. If the query interface conducts the search
over frequently accessed data, it is likely that it finds some
of the relevant answers within this subset. More importantly,
it is generally easier to find the relevant answers within a

smaller subset of candidate answers [4]. Thus, by submitting
the queries to a subset of frequently accesses tuples, one
might achieve a higher precision in answering queries. We
confirm this hypothesis by conducting extensive experimental
studies on real world data and queries. While finding a few
relevant answers over a smaller subset of the database is easier,
this subset may not contain all the relevant answers to most
queries. More accurately, using the subset may result in a
reduced recall (i.e. fraction of returned relevant answers by
the system over all relevant answers). In section III, we show
that our method increases the precision while maintaining a
reasonably high recall.

In order to find an optimal subset of a database, one has to
find the right size of the frequently accessed tuple set: a small
set may not contain the relevant answers to many queries and a
large one may make the search as difficult and time-consuming
as the entire database. We learn the right size of this set using
a probabilistic model learned over a sample of input queries.
More precisely, given a database, access counts of its tuples
and a sample of its query workload, we build a subset of the
database that contains N most frequently accessed tuples of
the database. To determine the value of N , we use a small
sample of queries and do a grid search over different subset
sizes and pick the one that results in the highest effectiveness.
We explain the details of this approach in Section III.

While the proposed method is reminiscent of using a
traditional main-memory cache to improve the running time
of queries over a database, it has two major differences with
the caching systems. 1) In traditional caching scenarios, the
size of the cache is an input of the problem. It is determined
based on the available resources and is fixed. A larger cache
has a better performance. However in our case, the size of the
subset should be determined by the system and a larger subset
does not necessarily have better effectiveness. 2) Traditional
caching is intended to just improve the efficiency of answering
queries, whereas the main goal of using an optimal subset
is to increase effectiveness. Furthermore, since the subset is
significantly smaller than the database, it will have a better
efficiency in answering queries. One may further improve this
efficiency by storing the subset in the main memory.

III. EXPERIMENTAL RESULTS

We perform several experiments using a real-world query
workload from MSN with 7000 queries and a benchmark
INEX query workload with 160 queries to test our approach.
We submit the queries to a snapshot of Wikipedia from 2013
with more than 11 million articles and their access counts.
Note that these access counts are obtained independent of the
queries in our query workloads. The results indicate that by
caching a small part of the database, we achieve significant
improvements in effectiveness of answering queries. To eval-
uate the effectiveness of query answering, we use reciprocal
rank, precision-at-20 (p@20), and recall [4]. We compute
the average of these metrics over the queries of each query
workload. Consider database I with tuples t ∈ I and access
counts w(t). We build Ii ⊂ I by picking the top i% tuples of
I based on the value of their access counts. It follows from the
definition that if i < j then 1) Ii (Ij , 2) the access counts of
the tuples in Ii are greater than or equal to the access counts
of the tuples in Ij .

Figure 1 shows the effectiveness of answering MSN queries
over I2, I4 . . . I100. The x axis shows the database subset Ii
over which we answer the input queries and the y axis shows
the value of mean reciprocal rank (a.k.a. MRR) and average
recall of the queries. MRR has its maximum value, 0.62, on
I2 that has 2% of the tuples of the original database. The
full database (I100) provides the lowest value of MRR, 0.25.
This indicates that I2 has sufficiently many relevant answers
for most queries in the query workload. Adding more tuples
to I2 may increase the number of relevant answers to the
input queries, but it puts significantly more tuples that are not
relevant to any query or are relevant to very few queries in
I2. Furthermore, this figure shows that the value of recall over
subset is very close to the value of recall over full database.
Since most queries in this workload have a single answer, we
do not report p@20 for this query workload.

Figure 2 shows the effectiveness of answering INEX queries
over I2, I4 . . . I100. As it is shown in this figure, the maximum
p@20 and recall happen at I12 and I28 respectively, which
shows that using proper subsets of a database to answer queries
will significantly increase the quality of ranking and recall
of the results. Unlike the results for MSN query workload,
in this experiment the smallest subsets do not have the best
average p@20 and recall. The reason is that these subsets do
not contain enough relevant tuples. Even though it is easy to
find the relevant tuples in these subsets, the limited number of
relevant tuples decreases the average p@20 and recall. Thus
based on the type of query workload, our proposed method is
able to pick an effective subset of the database.

To evaluate the robustness of the system, we repeat the
experiments using 10% of each query workload to find the
optimal dataset and test it using the rest of the queries. The
results of this evaluation is similar to the results presented in
the previous parts.

Lastly, we present the efficiency results of our system. The
average time spent on each MSN query over I2 and I100 is 0.07

Fig. 1. Effectiveness of MSN queries over different subsets

Fig. 2. Effectiveness of INEX queries over different subsets

and 0.36 seconds respectively. Furthermore, the average time
spent for each INEX query over I12 is 0.27 seconds whereas
for the entire database, the average spent time per query is 0.79
seconds per query. These results show our system can reach
high effectiveness and efficiency simultaneously. Note that on
average, MSN queries have less keywords than INEX queries
and that’s why MSN queries take less time to be executed.

IV. CONCLUSION

In this paper, we show how a small subset of a database can
answer queries more effectively and efficiently. Furthermore,
we show how one can pick the right subset based on a sample
of the query workload. The provided technique can be applied
to any database with an imprecise query interface such as
keyword query interface. The proposed system comes with
one caveat: It can not effectively answer rare queries on rarely
accesses tuples. As a future work, we are planning to extend
the system to help rare queries, while maintaining the high
average effectiveness for all queries.

REFERENCES

[1] Y. Chen, W. Wang, Z. Liu, and X. Lin, “Keyword search on structured
and semi-structured data,” in SIGMOD, 2009.

[2] J. Coffman and A. C. Weaver, “A framework for evaluating database
keyword search strategies,” in Proceedings of the 19th ACM international
conference on Information and knowledge management. ACM, 2010,
pp. 729–738.

[3] J. Coffman and A. Weaver, “An empirical performance evaluation of
relational keyword search techniques,” IEEE Transactions on Knowledge
and Data Engineering, vol. 26, no. 1, pp. 30–42, 2014.

[4] C. Manning, P. Raghavan, and H. Schutze, An Introduction to Information
Retrieval. Cambridge University Press, 2008.

