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ABSTRACT
Imputing missing data is typically expensive, and as a result, people
seek to avoid it when possible. To address this issue, we introduce
a method that determines when data cleaning is unnecessary for
machine learning (ML). If a model can minimize the loss function re-
gardless of the missing data’s actual values, then data cleaning is not
required. We offer efficient algorithms for checking this condition
in multiple ML problems, and by analyzing the algorithms, we show
that data cleaning is unnecessary when dealing with irrelevant and
redundant data. Our preliminary experiments demonstrate that
our algorithms can significantly reduce cleaning costs compared
to a benchmark method, without incurring much computational
overhead in many cases.
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1 INTRODUCTION
The performance of machine learning (ML) relies on the quality of
training data. Raw data often has its part missing, bringing a high
cost of data cleaning to the ML pipeline: data engineers spend more
than 80% of their time cleaning and processing data for ML[1].

The easiest way to handle missing values is by dropping the rows
or columns with missing values. Nonetheless, this approach may
lose out on useful features or training examples [6]. Anothermethod
is to replace missing data with some value, i.e., data imputation.
However, data imputation usually requires a significant amount
of manual effort by data scientists or domain experts. There are
some techniques to reduce human effort in data cleaning for model
training [3]. These methods, however, still require experts to spend
a significant amount of time and effort to clean subsets of data.
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It is sometimes possible to learn an accurate model without
cleaning the training data. For instance, if the tuples with erro-
neous values do not significantly influence the target model, the
user can learn an accurate model over raw data without any data
cleaning effort. If users can efficiently check these cases, they can
learn accurate models without any data preparation effort. This
approach has been first successfully applied for learning relational
models [5]. Researchers have later used this approach for learning
K-nearest neighbor classifiers [2]. However, it remains unclear if
these methods can generalize to other ML algorithms.

To overcome this limitation, our goal is to find a generalizable
method to check efficiently whether one can learn an accurate
model over dirty data. In this paper, we propose an efficient method
that checks the necessity of data cleaning over datasets withmissing
values for a couple of popular ML models. Our method efficiently
checks whether there is a model that minimizes training loss irre-
spective of missing data values

(a) Data cleaning is not needed (b) Data cleaning is needed

Figure 1: Data cleaning may not always necessary

Example 1.1. Our aim is to create a linear hard-margin SVM
classifier for rain prediction using temperature and humidity values
from different cities. Figures 1a) and 1b) display two sets of data with a
missing humidity value, possibly due to a malfunctioning sensor. The
green line represents the range of possible values for the missing data,
while support vectors are circled in blue. In Figure 1a), the missing
value is not a support vector, and the model (indicated by the blue
dashed line) can maximize the margin without requiring imputation.
However, in Figure 1b), accurate results require data cleaning to obtain
the actual value of the missing data for the optimal model.

In summary, this paper makes the following contributions:
• We formally define the condition where data cleaning is not
needed for model training (Section 3).

• We propose efficient algorithms for checking the existence
accurate models over datasets with missing values and learn-
ing such models for linear regression and SVM problems
(Sections 4 and 5).
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• Weexperimentally demonstrate that our algorithm efficiently
checks the existence of and learns accurate models over
datasets with missing values (Section 8).

The proofs and pseudo-code for algorithms are available in [7].

2 BACKGROUND
This paper presents examples related to supervised learning includ-
ing linear regression and SVM. The ideas can also be applied to
unsupervised learning models as long as they can be formulated as
optimization problems.

2.1 Supervised Learning
Training set. Given 𝑑 features and 𝑛 training examples, a training

set consists of feature inputX = [x1, ..., x𝑑 ] = [e1, ..., e𝑛]𝑇 and label
output y = [𝑦1, ..., 𝑦𝑛]𝑇 . x𝑖 , e𝑖 , and 𝑦𝑖 are the 𝑖𝑡ℎ feature vector, the
𝑖𝑡ℎ training example, and the 𝑖𝑡ℎ label, respectively. 𝑋𝑖 𝑗 denotes the
𝑗𝑡ℎ feature input in the 𝑖𝑡ℎ training example.

Model training. Given a target function 𝑓 mapping from X to y,
the model training process finds the optimal model w∗ that mini-
mizes training loss 𝐿(𝑓 (X,w), y), i.e., w∗ = argmin

w∈𝓌
𝐿(𝑓 (X,w), y).

2.2 Missing Values and Repairs
Missing values. Any 𝑋𝑖 𝑗 or 𝑦𝑖 is a missing value if it is unknown

(marked by null). 𝐼 and 𝐽 are sets of rows and columns with missing
values, respectively. 𝑀𝑉𝑋 = {(𝑖, 𝑗) |𝑋𝑖 𝑗 is missing} and 𝑀𝑉𝑦 =

{𝑖 |𝑦𝑖 is missing} are index sets of missing values for feature inputs
and label outputs, respectively.

Repairs. A repair is a missing-value-free version of the raw data
where all missing data are replaced with values.

Definition 1. For a feature input X having missing values, X𝑟 is
a repair to X if 1) 𝑑𝑖𝑚(X𝑟 ) = 𝑑𝑖𝑚(X), 2) X𝑟 does not have missing
values, and 3) ∀(𝑖, 𝑗) ∉ 𝑀𝑉𝑋 , X𝑟

𝑖 𝑗
= X𝑖 𝑗 .

Similarly, y𝑟 is the repair to y if the label has missing values. An
infinite number of repairs may exist. Therefore, we further denote
X𝑅 and y𝑅 as the union set of all possible repairs to X𝑟 and y𝑟 ,
respectively.

Example 2.1. Table 1 is a dummy training set comprising two
features, temperature and humidity, and rain/no rain label. Notably,
the humidity value for the New York entry is missing. Replacing the
missing data with a value (e.g., 90) yields a valid repair. However,
deleting either the humidity feature or the New York entry does not
constitute a valid repair despite eliminating the missing value.

Table 1: Training set with missing value

Temperature (F) Humidity (%) Rain (1) or not (-1)

Seattle 65 80 1
New York 50 𝑛𝑢𝑙𝑙 -1

3 CERTAIN MODELS
Our initial step is to provide a formal definition of certain models
that minimize training loss irrespective of the missing data’s values.

Definition 2. A model w∗ is a certain model if:

∀X𝑟 ∈ X𝑅,∀y𝑟 ∈ y𝑅,w∗ = argmin
w∈𝓌

𝐿(𝑓 (X𝑟 ,w), y𝑟 ) (1)

When a certain model exists, imputing missing data is unnec-
essary since this model is always optimal in model training for
all repairs. Figure 1 demonstrates this, as a certain model exists in
Figure 1a but not in Figure 1b. In unsupervised learning, certain
models are defined in the same way as supervised learning but only
considering the repairs for feature inputs: there are no label outputs
in unsupervised learning.

In the case of a data set with missing values, the first challenge
is determining whether a certain model exists. If a certain model
exists, we can confidently ignore missing data and use this model
for downstream ML. Therefore, the second challenge is learning a
certain model if it exists.

Given Equation 1, a baseline algorithm to check for the existence
of a certain model is: (1) learning models from all repairs one by one,
and (2) a certain model exists if all repairs share at least one mutual
optimal model. However, this baseline method can be incredibly
slow due to a large number of repairs, so we aim to find a faster
algorithm. In fact, it’s challenging to develop an efficient algorithm
that applies to all ML models because solving the optimization
problem in Equation 1 is generally hard without strong assumptions.
Therefore, we present efficient algorithms for specific ML models
such as linear regression in Section 4 and SVM in Section 5. To
simplify, we assume the missing values are only present in feature
input, not label output, for the two ML models.

4 CERTAIN MODELS FOR LINEAR
REGRESSION

The problem formulation for certain model w∗ in linear regression
is: ∀X𝑟 ∈ X𝑅 , w∗ = argmin

w∈𝓌
| |X𝑟w − y| |22. Linear regression finds

the best set of linear coefficients (i.e.,𝑤∗
1 , ...,𝑤

∗
𝑑
) such that the linear

combination of column vectors,𝑤∗
1x1 + ... +𝑤∗

𝑑
x𝑑 , has the shortest

Euclidean distance to the label vector y, i.e., the minimum training
loss. Intuitively, a certain model exists when this Euclidean distance
is independent of the columns x𝑗 , 𝑗 ∈ 𝐽 . Otherwise, for model w∗

that is optimal to repair X𝑟1, one can always find another repair
X𝑟2 that makes the training loss not minimum against w∗ due to
the dependency on x𝑗 , 𝑗 ∈ 𝐽 . To check if a certain model exists, we
can use Theorem 4.1, which avoids the need to check all possible
repairs. Denote a missing-value-free matrix C by the submatrix of
X such that C consists of all the columns x𝑗 , 𝑗 ∉ 𝐽 . The model w∗

𝐶
is learned from fitting C and y to linear regression, and t is the
residue from this fitting, i.e., t = Cw∗

𝐶
− y.

Theorem 4.1. A certain model exists if and only if ;∀𝑗 ∈ 𝐽 ,
the two conditions are met: 1) for any (𝑖, 𝑗) ∈ 𝑀𝑉𝑋 , 𝑡𝑖 = 0; 2)∑

(𝑖, 𝑗)∉𝑀𝑉𝑋 𝑋𝑖 𝑗 · 𝑡𝑖 = 0.

Theorem 4.1 states that a certain model exists for linear regres-
sion if and only if the residue vector t is orthogonal to all column
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vectors with missing values. In other words, if there is a certain
model, then the columns with missing values can be safely ignored
as they cannot contribute to a smaller training loss than the Eu-
clidean norm of t. Therefore, a more efficient algorithm than the
baseline is available to check certain models without traversing
over all repairs: 1) computing the residue vector t based on missing-
value-free columns, and 2) checking the orthogonality between t
and all missing columns. The proof for Theorems 4.1 and 5.1 and
the related algorithms are available here).

Further, we can obtain the certain model when it exists by filling
zero vectors into w∗

𝐶
, which ensures that the column vectors with

missing values are ignored by the zero linear coefficients.

5 CERTAIN MODELS FOR SVM
The hinge loss term in the loss function of SVM is𝐶

∑𝑛
𝑖=1𝑚𝑎𝑥{0, 1−

𝑦𝑖w𝑇 e𝑖 }. For 𝑖 ∈ 𝐼 , the hinge loss becomes 𝐶 max{0, 1 − 𝑦𝑖 (𝑤1 ·
𝑋𝑖1 + ... + 𝑤𝑑 · 𝑋𝑖𝑑 }. Suppose (𝑖, 𝑗) ∈ 𝑀𝑉𝑋 , intuitively, a certain
model exists when 𝑋𝑟

𝑖 𝑗
in any repair X𝑟 ∈ X𝑅 does not affect the

minimization of hinge loss. Given this, Theorem 5 offers a way of
checking certain models. Denote a missing-value-free matrix D by
another submatrix of X such that D consists of all the rows e𝑖 , 𝑖 ∉ 𝐼

from X. Correspondingly, a subvector y𝐷 is defined by consisting
of all 𝑦𝑖 , 𝑖 ∉ 𝐼 . w∗

𝐷
is the SVM model learned from D and y𝐷 .

Theorem 5.1. A certain model exists if and only if when the two
conditions hold: 1) ∀𝑗 ∈ 𝐽 ,𝑤∗

𝑗
= 0, and 2) ∀𝑖 ∈ 𝐼 , 𝑦𝑖

∑
𝑗∉𝐽 𝑤 𝑗𝑋𝑖 𝑗 > 1.

The theorem tells that a certain model for SVM exists if and only
if when none of the training examples that have missing values can
possibly be a support vector. Therefore, these training examples
are irrelevant or redundant given other missing-value-free training
examples. As a result, an efficient algorithm is also available for SVM
to avoid traversing over all repairs: 1) learning w∗

𝐷
with missing-

value-free training examples, and 2) checking the two conditions
in Theorem 5.1 against w∗

𝐷
.

If a certain model is determined to exist,w∗
𝐷
is exactly the certain

model based on the proof for Theorem 5.1.

6 LESSONS LEARNED
The algorithms for linear regression and SVM are designed to de-
termine if missing features or training examples are irrelevant or
redundant when minimizing training loss, given non-missing data.
In practice, data irrelevance and redundancy are often addressed
after handling missing data because missing data is typically as-
sumed to be significant. In the paper, our algorithms are focused
on cases where missing features/training examples are irrelevant
or redundant irrespective of the missing data’s actual values.

When dealing with certain models in practical ML problems,
three key issues can arise. Firstly, while certain models may allow
for the omission of missing features or training examples, this ap-
proach can lead to overfitting, particularly in datasets with a high
number of missing values. Secondly, checking certain models may
not be feasible in practice due to the strict optimality requirements
of all repairs. Thirdly, certain model algorithms rely on constraints
in the hypothesis space, such as linearity in linear regression, mak-
ing it difficult to efficiently verify certain models for flexible ML
models like neural networks.

To overcome these challenges, it is crucial to develop a relaxed
optimality condition and leverage non-missing values in missing
features/training examples. Additionally, probabilistic models with
repair sampling can facilitate the development of efficient algo-
rithms for general ML models. Finally, given the importance of
data cleaning in many scenarios, combining certain model algo-
rithms with popular progressive data cleaning frameworks may
prove effective in real-world datasets.

7 RELATEDWORK
ActiveClean. ActiveClean prioritizes cleaning training examples

with large model gradients and the training loss is incrementally
minimized using SGD until convergence to the true minimum[3].
Its goal aligns with certain models that guarantee minimum train-
ing loss. However, ActiveClean does not always stop sampling and
cleaning when a certain model exists. Here we compare the perfor-
mance of our work with ActiveClean by considering the problem: if
the data is dirty by missing values only and a certain model exists,
learn an optimal model. In terms of generalization, ActiveClean
only works for convex problems as required by SGD to converge
to a global minimum. In contrast, the baseline algorithm in Section
3 checks and learns certain models for all optimization-based ML
problems. Then, we divide the costs into cleaning and numerical
operations. For the cleaning costs, the worst-case scenario in Ac-
tiveClean is to clean all random values that replace missing values
at initialization since they are very likely wrong values. In com-
parison, the certain model method is completely cleaning-free. For
the costs of numerical operations, ActiveClean first pays O(𝑇𝑡𝑟𝑎𝑖𝑛)
to learn an initial model from the random repair. Then, it takes
O( 1

𝜖2
) iterations to converge as claimed in the paper. In our work,

the checking and learning of certain models cost O(|X𝑅 | ∗𝑇𝑡𝑟𝑎𝑖𝑛),
which reflects the baseline algorithm in Section 3. If the problem
is convex, faster algorithms may be available, e.g., O(𝑇𝑡𝑟𝑎𝑖𝑛) for
linear regression and SVM in this paper.

DLearn. Instead of imputing missing data, DLearn leverages the
database constraints and learns a relational model without cleaning
[5]. The cleaning-free method digests missing data by covering as
many positive and as few negative examples as possible. Therefore,
DLearn returns a model that is most likely optimal. However, the
method is limited to relational learning.

CPClean. CPClean is also a progressive cleaning framework but
checks for unnecessary data cleaning based on the certain predic-
tion of a model on the validation set [2]. However, this condition
does not necessarily guarantee an optimal model, especially when
the validation set is small or dirty. In comparison, our work focuses
on the training stage and guarantees a minimum training loss.

8 EMPIRICAL EVALUATION
We demonstrate the ability of our algorithms to check certain mod-
els and save cleaning costs compared to the benchmark method,
ActiveClean. Additionally, we analyze the time cost of running
these model algorithms on various training set sizes. We evaluated
the performance of these methods on Linear Regression and SVM,
using synthetic datasets.

https://oregonstate.box.com/s/taha9bxjyaaxq0ci0azgaipombz6mxku
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(a) (b) (c) (d)

Figure 2: # Records Cleaned vs # Training Samples for Linear Regression (2a) & SVM (2b)
Run-time cost vs # Training Samples for Linear Regression (2c) & SVM (2d)

8.1 Setup
To ensure strict optimality for all repairs in certainmachine learning
models, we created synthetic data that satisfied the optimality con-
ditions for both linear regression and SVM problems. To simulate
real-world datasets, we carefully selected parameters for data gen-
eration. The resulting dataset had between 1000–100, 000 records,
and the dimension of the feature vector was fixed to 5, 000 to mimic
real-world feature sizes. We also introduced missing values into
the dataset based on the Missing Factor, which had values ranging
from between 0.2–0.5. Finally, we used a fairly traditional 80%–20%
Train-Test split for our experiments.

The data for both Linear Regression and SVM problems was
generated through simulation. For Linear Regression, a linear com-
bination of informative and non-informative features was utilized
to predict the target value. The informative features contributed
to the target while the non-informative features did not. For SVM,
the data was drawn from a scaled uniform distribution with the
number of samples and features specified by the parameters. The
feature matrix and target vector were obtained by reflecting the
features along all dimensions except one and negating the labels,
which allowed for the model parameters corresponding to the se-
lected features to be equal to zero. To ensure real world scenarios
were accurately represented, we introduced missingness in the
dataset by randomly imputing some values based on the missing
factor. We implemented the models using Scikit-learn version 0.24.2
and compared our results to the code published by the authors of
ActiveClean[4].

8.2 Saving cleaning cost
Given the input data, we learned certain models by implementing
Algorithms for Linear Regression and SVM without performing
any cleaning. In comparison, ActiveClean continued cleaning large
amounts of data even though a certain model existed from the
initialization. As missing factors or training examples increased,
ActiveClean surprisingly performed less data cleaning before stop-
ping. We can probably attribute it to ActiveClean providing less
weightage to the feature with a lot of missing values as it wouldn’t
be affecting the target. We tested the performance of models learned
from both methods in testing sets by using the 𝑅2 score and Accu-
racy Score for Linear Regression and SVM respectively and found
that both methods had a perfect score due to the synthetic dataset’s
special setup. While lacking real-world data set results, our method

can learn a model with comparable performance to ActiveClean
while saving on cleaning costs if a certain model exists.

8.3 Comparing computational costs
Our findings demonstrate that both methods have similar time costs
across all testing parameters, particularly when a certain model
already exists. Even when a certain model is absent, the compu-
tational overhead from checking for it is equivalent to running
ActiveClean for the two ML problems. Additionally, as highlighted
in the ActiveClean paper, the primary time cost stems from hu-
man intervention in the cleaning process. By checking for a certain
model before implementing ActiveClean, significant time and re-
sources can be saved. Therefore, our results strongly suggest that
our approach can effectively optimize the cleaning process, while
minimizing the need for human intervention.

9 CONCLUSION
In this paper, we have presented certain models as the condition
to ignore missing data in ML. Efficient algorithms for checking
the existence of and learning certain models are offered for lin-
ear regression and SVM problems. Through experiments, we have
demonstrated the cleaning cost saving compared to a benchmark
"cleaning for ML" method while not bringing much overhead to
the running time cost.
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