
Progressive Interaction for Autonomous Entity
Matching

Ben McCamish and Arash Termehchy

Oregon State University, Corvallis, Oregon
mccamisb@oregonstate.edu, termehca@oregonstate.edu

Abstract. Since users often require information from multiple data
sources to satisfy their information needs, they have to integrate data
from several sources. Data integration is particularly challenging as each
data source may represent the same information in a distinct form, e.g.,
each data source may use a different name for the same person. Currently,
data from different representations are translated into a unified one via
lengthy and costly expert attention and tuning. Such a method can-
not scale to the rapidly increasing number and variety of available data
sources. We propose a novel approach to data integration in which data
sources collaborate and learn to establish a common representation with
minimal expert intervention. We model the process of achieving these
mappings as a communication game between multiple data sources. One
data source will attempt to communicate what data it desires from the
other DBMS using a common language. Thus, the data sources will use
this game to facilitate communication in order to successfully build a
mapping between them.

Keywords: Entity matching · Schema mappings · Game theory · Reinforcement
learning

1 Introduction

The abundance of data in virtually every domain provides exiting opportunities
to discover interesting and useful insights. The information relevant to a query or
analysis, however, is usually stored in several data sources. Therefore, users have
to integrate difference pieces of information from different data sources to find
an accurate and reliable answers to their queries. The data integration task is
challenging as, among other reasons, each data source may represent information
in a distinct form. For example, every data source may refer to the same entity
under a distinct name or organize information about an entity differently. Users
have to translate their queries to forms that are understandable by underlying
data sources and translate the returned results back to a unified representation
to construct the final answer.

The aforementioned process is traditionally done by writing a set of poten-
tially declarative programming rules called mappings, which takes the query or



2 Ben McCamish and Arash Termehchy

data organized in one form and translates it to the query/ data under another
representation [3, 8, 9, 4]. In other words, a mapping allows for one data source
to map its own entities to the ones stored in another data source. Well-known
examples of such mappings are schema mappings, which establish relationships
between schema elements in multiple data sources [3, 9]

Mappings provide a power abstraction for data integration and exchange.
They, however, take a significantly long time and a great deal of manual labor
to develop and maintain [10]. One may use supervised learning techniques to
develop them [8]. However, training data is hard to find for data integration.
Also, the rules learned for one representation do not usually generalize to others
and as the underlying data sources frequently evolve, one has to repeatedly find
fresh training data to re-train and construct their mappings [7]. Thus, current
state-of-the-art techniques cannot address users’ needs in the face of rapidly
increasing number of data sources in today’s environment [6, 11, 16].

Nature, however, has successfully created and maintained an effective infor-
mation mapping system between millions of data sources: human language.
In this system, one may consider humans’ minds as data sources that contain
their intents of communications in some unobserved representations, e.g., the
internal representation of the object book on one’s brain. A natural language is
a mapping from these intents to a vocal representation, e.g., the word for book
[17].

As opposed to engineered data mapping systems, it is well established that
a natural language is created gradually through a collaborative process called
language game [17]. In its simplest form, the game is played between two hu-
mans, a speaker and a listener, each with her own identical language, where
each language is a mapping from the objects/intent in the domain of interest
to a set of shared primitive utterances or signals. In each round of the game,
the speaker communicates an object by picking one of its associated signals in
her language and sharing it with the listener. The listener translates this sig-
nal by selecting one of the objects associated with it in her own language and
shares this interpretation with the speaker, e.g., by pointing to that object in the
environment. The interaction is successful if the listener interprets the shared
signal correctly. Based on the results of the communication, the speaker and lis-
tener revise their languages to make them more compatible. For example, they
positively (negatively) reinforce the association of the communicated signal and
object in their languages according to the success (failure) of the interaction.
Using simple human learning mechanisms, e.g., simple reinforcement learning,
this process converges to an effective shared language in a population [14, 17].

Given the success of this method, we propose an autonomous and progressive
approach to mapping construction. Assume that to answer a user’s query, a local
data source needs some information stored in an external data source. The local
data source does not know how to express its need such that the external data
source understands it. Nevertheless, data sources usually support common query
languages, such as keyword queries, of which the local data source can express its
information need. Of course, because keyword queries are inherently vague, the



Progressive Interaction for Autonomous Entity Matching 3

external data source may not precisely understand the need of the local one and
return some non-relevant information or do not deliver all the relevant data it
has. The local data source may integrate the returned information with its own
local results and presents them to the user. According to the end user’s feedback
on the returned result, the local data source will revise its method of formulating
queries and the external data sources may modify how to answer queries. Over
the course of several interactions, they will learn how to communicate effectively.
This approach naturally extends for the communication of one data source with
multiple external databases.

As opposed to the enormous upfront cost and expert attention needed in tra-
ditional mapping development and maintenance, this approach leverages feed-
back from normal end users to create and maintain communication between
data sources. Our method builds on and extends current ideas on pay-as-you-go
data integration [10, 21] by using interactive communication in a common and
possibly vague query language between data sources to build mappings. Due to
the enormous upfront cost of creating and the huge resources needed to main-
tain data integration systems, the database community has recognized the need
to build pay-as-you-go integration systems [10, 21]. This approach can also use
available off-line training data for feedback.

There are, however, important challenges in adapting this approach to cre-
ate an effective data integration system. First, one has to develop an effective
learning algorithm for the local data source to communicate with several data
sources many which may not learn or learn at a different rate than the local
data source. Ideally, such a learning algorithm should converge to an accurate
mapping quickly. It should also scale to large databases. Second, it may take too
many interactions and user feedback to converge the interaction to a reasonably
effective common language. There may also be certain restrictions and/or cost
overheads on the number of interaction between data sources. Third, it is not
clear whether other data sources learn or learn at the same rate of the local
DBMS. Each data source may also use a different algorithm to adapt. Fourth, as
opposed to the current models used to describe the evolution of languages, the
intents and objects of communications between data sources are often complex
and structured. Moreover, the theoretical and empirical models in the study of
language evolution consider the set of shared signal to be relatively small [14].
Data sources, however, do not often agree on using a fixed and relatively small
set of queries apriori. For example, if the local and external data sources interact
via keyword queries, the set of possible queries will be enormous.

2 Framework

We model the aforementioned communication and collaboration paradigm be-
tween data sources as a repeated game with identical interest between multiple
players, i.e., data sources, whose common goal is to increase their communication
effectiveness by communicating through queries and results and receiving feed-
back. We assume that one local data source receives users’ queries and communi-



4 Ben McCamish and Arash Termehchy

cates with and integrates information from multiple other external data sources.
For the sake of simplicity, we assume that the information in each data source is
stored in a single relational table. Data integration is sometimes done through
middle-ware called mediator, which communicates and collects the information
from data sources [7]. Our model extends to this architecture by considering the
mediator as a local data source.

We use Tables 1(a) and 1(b), which illustrate fragments of product databases
in different companies, as our running example. Users of Products wish to see
who sells the given products. This information is stored in an external data source
containing the relation Sellers. Since databases store the information about the
same product in different forms, Products has to learn how to properly query
the database in Sellers in order to find the companies that sell the respective
products and join the results on both databases.

2.1 Local Query

Each round of the game starts when the a user of the local data source submits
a query. The local data source may find a set of tuples that satisfy this query in
its own data storage.

2.2 External Query

After receiving a query from the user, the local data source formulates and
submits a keyword query to the external one in order to extract information
relevant to the local query. This query, called external query, must effectively
convey to the external data source the intent behind its corresponding user query.
The local data source, however, does not know precisely the representation of the
data in the external one, therefore, it has to leverage the information available in
the user query, the matched tuples in its own database, and its experience form
previous communications to formulate the external query. Since each tuple in the
local database may join with a set of relevant tuples in the external database,
the local data source may construct an external query per matching local tuple.
For instance, given that tuple product Soda is in the local answers to a user
query over Table 1(a), the local data source may submit external queries Soda
Drinks or Drinks.

2.3 Querying Strategy

The querying strategy reflects how the local data source expresses its intents
in a way the external data source understands, i.e., keyword queries. Roughly
speaking, each intent is a pair of user queries and one of its matching tuples
in the local database. Given an intent, subsets of values/terms in its tuple or
user query are obvious choice for its keyword queries. The local data source
may expand this set of keywords using the terms and values returned from the
external data source in previous interactions. It may also add the meta-data



Progressive Interaction for Autonomous Entity Matching 5

1(a) Products

ID Name Category
1 Soda Drinks
2 Beef Meat

1(b) Sellers

P_Name P_Category P_Seller P_Price
Pop Drinks Kroger 1
Hamburger Sandwich 7/11 4

Table 1: Local database of Products and external database of Sellers

2(a) External Queries

Query# Query
g1 ‘Soda Drinks’
g2 ‘Beef Meat’
g3 ‘Drinks’
g4 ‘Meat’

2(b) Querying strategy

g1 g2 g3 g4
s1 0.4 0.1 0.5 0
s2 0 0.4 0.1 0.4

2(c) Answering strategy

r1 r2
g1 0.8 0.2
g2 0.5 0.5
g3 0 1
g4 0.7 0.3

Table 2: External Queries, Querying Strategy, and Answering Strategy

information, such as the attributes names, to the keyword queries. The querying
strategy stochastically maps each intent to a set of potential keyword queries.
We use stochastic mapping to allow the local data source to both exploit the
keyword queries that have relatively successfully expressed the intent in the past
and explore other keyword queries that have not been tried sufficiently frequently.
Exploring new queries enables the local data source to learn and acquire more
knowledge [20]. As the number of intents and keyword queries may be too large,
we use their n-gram features to materialize and maintain the querying strategy.
The local data source cannot share its strategy with the user and the external
data sources. If there are several external data sources, the local data source may
maintain one querying strategy per external data source. It may also maintain a
single querying strategy per group of external data source if there are too many
external data sources.

Using our running example, let s1 and s2 denote the tuples with ids 1 and
2 in the local database shown in Table 1(a), respectively. The local data source
uses the four external queries in Table 2(a) to find the information related to
these tuples in the external data source. Table 2(b) shows a sample querying
strategy used by the local data source. If the local data source wishes to find
information related to s1, it will send the external query g1 with 40% probability.



6 Ben McCamish and Arash Termehchy

2.4 Answering Strategy

Each external data source decodes and answers the input keyword queries using
its answering strategy. It generally is a stochastic mapping from keyword queries
to tuples in the external database. Of course, some data sources may use a deter-
ministic mapping to answer queries, e.g., traditional TF-IDF retrieval formulas
[13]. The external data source may not materialize this strategy and implement
it using ranking models [13]. The external data source does not share its strat-
egy with the local data source. Consider the database instance of Products in
Table 1(b). The answering strategy for this DBMS is illustrated in Table 2(c),
where r1 and r2 are the first and second tuples in the instance, respectively. In
this example, if the external data source gets query g2, it will return tuples r1
or r2 with equal probability. The external queries received on the external data
source strategy do not need to be known ahead of time. Instead, when a new
external query is received, then a new entry is added into the strategy.

2.5 Reward and Feedback

After finding related tuple(s) in the external data source for each tuple in the
local results, the local data source joins the local and external results and present
them the user. For each tuple in the local database that has some corresponding
tuples in the external one, the local data source creates a new tuple that contains
information about both. The user will inform the local data source whether the
presented tuples are relevant to her query. The user feedback may be explicit,
e.g., click-through or eye movement information [12], or implicit, e.g., skipping
results [15].

The goal of all players in the game is to convey relevant and avoid delivering
non-relevant information to the user. Thus, we measure the amount of reward
in each round of the game for all players, i.e., data sources, using the well-
known effectiveness metric of precision at k, which is the ratio of relevant answers
returned in the top-k answers. One may use other effective metrics to measure the
accuracy of the returned answers. If the external data source supports feedback,
the local data source conveys the feedback to it. The expected payoff of the local
and external data sources are discounted average reward of U =

∑
t≥0 δ

tprec(t)
where t is the round of the game and 0 < δ < 1 is the discounting factor. The
value of the δ is set according to the users’ preferences, i.e., the larger values of
δ gives less importance to the reward in future interactions.

3 Learning Settings and Algorithms

Since local data source performs most of the data integration work, we focus on
learning querying strategy to express the intents of local data source effectively
such that external data source returns only relevant answers. We plan to improve
the accuracy of data integration gradually and as users interact with the local
data source and get some answers to their queries. This setting is more natural



Progressive Interaction for Autonomous Entity Matching 7

and useful as it avoids the enormous upfront cost of traditional data integration
by creating a desired integration system progressively. While users training the
system, may get some relevant answers to their queries, thus, they will not
get discouraged. Over the course It also naturally updates the settings of the
integration as the data sources evolve. Thus, one may use reinforcement learning
methods to adapt querying strategy gradually.

External data sources may also learn and modify their strategy in answering
keyword queries, e.g., online search engines. Thus, the method of adapting query
answering strategy must be effective in both static and dynamic settings. This
is challenging as it is known that the learning methods that are useful in static
settings do not deliver desired outcomes in the dynamic ones [1]. However, it
is known that the learning methods that are useful in static settings do not
deliver desired outcomes in the dynamic ones [1]. At the first glance, it may
also seem that if the local data source uses a reasonable learning mechanism,
the external data source’s learning can only help the both players to achieve
more reward. However, it has been shown that if the players do not use the right
learning algorithms in games with identical interests, the game and its reward
may not converge to any desired states [19]. Thus, choosing the correct learning
mechanism for the local data source is challenging. The following algorithmic
questions are of interest:
• How can the local data source adapt to the external data source’s fixed or
dynamic answering strategy?

• Will and how quickly the collaboration between data sources converge to an
optimal state?

• How this learning algorithm can be efficiently implemented over large databases?
We extend Roth and Erev algorithm [18], which is a well-known reinforcement

learning method in games, to learn querying strategy. Oversimplifying a bit,
in our context, it updates the probability of using an external query for an
intent proportional to the amount of its reward. This algorithm uses probabilities
to pick queries, therefore, we plan to leverage random sampling methods over
relational data [5] to implement it over relational data.

4 Reducing the Amount of Feedback

While our framework can take its training from interaction with the end and non-
expert users, like other reinforcement learning methods, it needs a great deal of
training data to learn an effective querying strategy. Of course, the amount of
supervision may considerably reduce over time. It can also use public databases,
e.g., Wikipedia, to leverage distant supervision and reduce the need for user
feedback. Since, these resources are not always available. we plan to use the
following techniques to reduce the amount of feedback.

First, we plan to investigate the real-world keyword query workloads and
perform user studies to identify and generalize the heuristics and methods by
which human users successfully express their intents in form of keyword queries



8 Ben McCamish and Arash Termehchy

and use them in our query strategy learning. For example, our preliminary in-
vestigations show that keyword queries usually contain some keywords that are
rare in the underlying database to pinpoint the answers relevant to the query.
Second, we plan to leverage the relationship between tuples in the local data
source to use the terms in the queries that are successful in communicating a
tuple in the queries formulated to express other tuples. For example, in our run-
ning example, the queries for all products that belong to the same category may
always contain the term of that category. Using relationships and grouping data
items is shown to significantly reduce the amount of training data in reinforce-
ment learning [2]. Finally, we plan to extend our learning to support other types
of feedback, such as identifying the join attributes between local and external
tuples. Keyword queries based on these attributes may significantly increase the
chance of finding matching tuples in the external data sources.

5 Conclusion and Future Work

To answer users’ queries, a database management system often needs to gather
additional information about entities of interest from external data sources. We
proposed a framework in which a local and an external database management
system collaborate to find an accurate matching between their entities to answer
user queries. We plan to develop efficient and effective learning mechanisms for
the database management systems that participate in this collaboration. More-
over, we plan to optimize our reinforcement learning algorithms to reduce the
amount of supervision and feedback from the end user. We will also analyze the
equilibria of the game and to which equilibria our proposed learning algorithms
converge.

References

1. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multi-
armed bandit problem. SIAM journal on computing 32(1) (2002)

2. Batra, T., Parikh, D.: Cooperative learning with visual attributes. CoRR
abs/1705.05512 (2017)

3. Bernstein, P., Melnik, S.: Model management 2.0: Manipulating richer mappings.
In: SIGMOD (2007)

4. Carey, M.J., et al.: Towards heterogeneous multimedia information systems: The
garlic approach. In: Data Engineering - Distributed Object Management. pp. 124–
131 (1995)

5. Chaudhuri, S., Motwani, R., Narasayya, V.: On random sampling over joins. In:
SIGMOD (1999)

6. Deng, D., et al.: The data civilizer system. In: CIDR (2017)
7. Doan, A., Halevy, A., Ives, Z.: Principles of Data Integration. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1st edn. (2012)
8. Dong, X.L., Srivastava, D.: Big data integration. PVLDB 6(11) (2013)
9. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and

query answering. Theor. Comput. Sci. 336(1) (2005)



Progressive Interaction for Autonomous Entity Matching 9

10. Franklin, M.J., Halevy, A.Y., Maier, D.: A first tutorial on dataspaces. PVLDB
1(2) (2008)

11. Golshan, B., Halevy, A.Y., Mihaila, G.A., Tan, W.: Data integration: After the
teenage years. In: PODS (2017)

12. Granka, L.A., Joachims, T., Gay, G.: Eye-tracking analysis of user behavior in
www search. In: SIGIR (2004)

13. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient IR-Style Keyword
Search over Relational Databases. In: VLDB (2003)

14. Hu, Y., Skyrms, B., Tarres, P.: Reinforcement learning in signaling game. arXiv
preprint arXiv:1103.5818 (2011)

15. Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: A bibliography.
SIGIR Forum 37(2) (2003)

16. Madden, S.: We are boring. In: CIDR. www.cidrdb.org (2017)
17. Nowak, M.A., Krakauer, D.C.: The evolution of language. Proceedings of the Na-

tional Academy of Sciences 96(14) (1999)
18. Roth, A.E., Erev, I.: Learning in extensive-form games: Experimental data and

simple dynamic models in the intermediate term. Games and economic behavior
8(1) (1995)

19. Shapley, L.S., et al.: Some topics in two-person games. Advances in game theory
52(1-29) (1964)

20. Vorobev, A., Lefortier, D., Gusev, G., Serdyukov, P.: Gathering additional feedback
on search results by multi-armed bandits with respect to production ranking. In:
WWW (2015)

21. Yan, Z., Zheng, N., Ives, Z.G., Talukdar, P.P., Yu, C.: Actively soliciting feedback
for query answers in keyword search-based data integration. PVLDB 6(3) (2013)


