
Managing Structurally Heterogeneous Databases
in Software Product Lines

Parisa Ataei, Arash Termehchy, and Eric Walkingshaw

Oregon State University, Corvallis OR 97331, USA
{ataeip,termehca,walkiner}@oregonstate.edu

Abstract. Data variations are prevalent while developing software prod-
uct lines (SPLs). A SPL enables a software vendor to quickly produce
different variants of their software tailored to variations in their clients’
business requirements, conventions, desired feature sets, and deployment
environments. In database-backed software, the database of each variant
may have a different schema and content, giving rise to numerous data
variants. Users often need to query and/or analyze all variants in a SPL
simultaneously. For example, a software vendor wants to perform com-
mon tests or inquiries over all variants. Unfortunately, there is no system-
atic approach to managing and querying data variations and users have
to use their intuition to perform such tasks, often resorting to repeat-
ing a task for each variant. We introduce VDBMS (Variational Database
Management System), a system that provides a compact, expressive, and
structured representation of variation in relational databases. In contrast
to data integration systems that provide a unified representation for all
data sources, VDBMS makes variations explicit in both the schema and
query. Although variations can make VDBMS queries more complex than
plain queries, a strong static type system ensures that all variants of the
query are consistent with the corresponding variants of the database.
Additionally, variational queries make it possible to compactly repre-
sent and efficiently run queries over a huge range of data variations in a
single query. This directly supports many tasks that would otherwise be
intractable in highly variational database-backed SPLs.

Keywords: Variational databases · Variational queries · VSQL · Varia-
tional relational algebra · Software product lines ·Heterogeneous databases

1 Introduction

Data variation is ubiquitous when developing software. Each domain contains
numerous databases which differ in terms of schema, data representation, and/or
content. In fact, even a single software vendor or project may need to maintain
many different data representations of the same concepts. One way this arises is
in the context of a software product line (SPL), which is a single software project
that can be used to generate many different program variants [1]. For instance,
software vendors often customize their software and create distinct variants for
each client based on the client’s geographical settings, business requirements, and



2 P. Ataei et al.

Feature Associated relation

- message(ID , sender , date, subject , body)
- recepientInfo(rid , ID , rtype)
Encryption encryption(ID , isEncrypted , encryptionKey)
Signature signature(ID , signed , signKey)
Verification verification(ID , isVerified)
US person(ID ,firstName,middleName, lastName)
France person(ID ,firstName, lastName)
Iceland person(ID ,firstName, fatherName, gender)

Table 1. A subset of features in an email system SPL and the relations associated with
them. If a feature is enabled, the schema of the email database includes the correspond-
ing relation. The first two relations are included in all variants of the SPL. The three
different employee relations, associated with different countries’ naming conventions,
are mutually exclusive.

the capabilities it wants. Most open source projects have hundreds or thousands
of static configuration options, yielding a staggering number of variants [8].

Different variants of a SPL require different data representations. Consider a
vendor that develops an email messaging system for customers around the globe.
Each country may have a different standard of naming people, for example, in
contrast to the US, there is no notion of a middle name in France, and in Iceland,
a person’s last name is determined by their gender and their father’s name.
Hence, this vendor may have to create a distinct relation schema for the relation
person according to the country of the customer as shown in Table 1. A common
intent in this email system is to retrieve a person’s ID by their full name. To
express this intent, a developer of the system has to write a distinct SQL query
for each naming convention in their code. This problem grows multiplicatively
when different variations interact, for example, a query to retrieve full names
combined with an optional privacy feature, may require two distinct queries
for each naming convention. Thus, a developer may end up writing many SQL
queries to express the same intent across many software variants.

The database community has long recognized that users must modify their
queries to preserve their semantic and syntactic correctness over various schemas
and has proposed (declarative) schema mappings to solve this problem [3,5]. For
example, in the context of schema evolution, one first defines or discovers the
mapping between the original and new schemas. Given this schema mapping,
one can safely and automatically translate the queries written over the original
schema to the new one. Of course, the new schema must contain the information
the query needs. However, the variations in a SPL do not enjoy this property. For
instance, if one knows the mapping between the schema for the client in the US
and the one in France, they cannot automatically translate the query written for
the France-based client to the one for the US-based client as the schema mapping
does not imply the need to use the attribute middle name to preserve the intent
behind the query. In fact, if one follows the mapping between the schemas, the
query written for the US-based client will not use the attribute middle name!



Managing Structurally Heterogeneous Databases in SPLs 3

In Section 2, we describe how such variation is managed in real-world SPLs and
why current approaches are unsatisfactory to developers.

As a solution, we propose VDBMS (Variational Database Management Sys-
tem), a system that manages structurally heterogeneous databases in similar
context and allows users to query multiple variants simultaneously without los-
ing data provenance. In Section 3, we describe the core concepts of VDBMS,
and describe the architecture of the VDBMS system in Section 4.

2 Motivating Example

One way of defining a SPL is to identify and model the features that give rise
to different variants of the software [1]. For our purposes, a feature is a name
that corresponds to some potentially optional unit of functionality, and a feature
model describes the relationship between features. In the example illustrated in
Table 1, US , France, and Iceland are features corresponding to different nam-
ing conventions and are mutually exclusive according to the feature model (not
shown in the table). Other features in the email system include Encryption,
Signature, and Verification. If, say, the Encryption feature is enabled, then the
corresponding software variants will encrypt and decrypt emails. Features can
be combined in different ways and extend or modify a shared code base that
implements the basic requirements of the system shared across all variants, such
as sending and receiving messages in an email system. By organizing the vari-
ability of a SPL around features, a vendor or project can share significant costs
and effort in developing and maintaining many software variants [1].

Generating, managing, and maintaining separate schemas for each variant in
a SPL is not simply tedious, but often impossible since the number of variants
grows exponentially with the number of independent features. From our conver-
sation with SPL experts, the dominant workaround is to create a global schema
that contains all relations and attributes used across all variants of the software,
then write queries over this global schema. However, such a schema may not be
meaningful. For instance, in our email system example, the global schema must
contain all attributes required to store various naming conventions for the rela-
tion person, which will not have any instance in the real world. Also, numerous
tuples in the database will contain null values, e.g. middle names for all people
in France. If the database is deployed and resides on the client’s location, the
client has a large schema but uses only a small subset of it. Developers must
write distinct SQL queries for different software variants to express an intent
that is shared among all variants. It may also be error-prone to write a query
directly over such a global schema, as the query has access to many attributes
and relations that do not make sense in its variants.

A cleaner approach is to define a view over the global schema for each variant
and write queries for each variant against its view. However, developers then have
to generate and maintain numerous view definitions and must still write many
SQL queries to express the same intent. The developer must manually generate
and manage the mappings between views and the global schema for each client.



4 P. Ataei et al.

As a result, while querying database variants, they face similar problems to ones
mentioned for schema mapping methods in Section 1. Moreover, update queries
after deployment must deal with the problems of view-updating since the base
tables of the products are defined as views. This approach works for a SPL with a
small number of clients/variants. However, it doesn’t scale to open-source SPLs
where the selection of an individual variant is up to the end-user, and the space
of potential variants is massive.

VDBMS introduces a novel abstraction called a variational schema, a com-
pact representation of all schemas used by the software variants of a SPL, where
the presence of relations and attributes in the schema is defined in terms of the
features of the SPL. It also provides a novel variational query language that en-
ables SPL programmers to refer to features explicitly. Instead of writing separate
queries for each variant of a SPL, programmers can express an intent over all
possible schema variants of a SPL in a single query. By making variation explicit
in schema and queries, VDBMS simplifies the task of testing and maintaining
database-related functionality across software variants. Finally, it provides op-
portunities for sharing query processing across multiple schema variants.

3 Variational Database Framework

A variational database (VDB) is conceptually a set of relational database vari-
ants that may each have a different schema. It is conceptually useful in any
context where one wants to work on some/all of these variants simultaneously.

3.1 Variational Schema

Similar to relational databases, we need to compactly express the schema of a
VDB. We assume that different variants of a SPL can either include or exclude
a relation, and if they include a relation they can either include or exclude an
attribute of that relation. A variational schema (v-schema) concisely encodes the
plain relational database schemas for all of the software variants in a SPL [2].
The representation of v-schemas is based on the formula choice calculus [4,7].

Conceptually, a variational schema is just a relational schema with embed-
ded choices that locally capture the differences among variants. A choice F 〈x, y〉
consists of a feature expression F and two alternatives x and y. A feature ex-
pression is a propositional formula over the features of the SPL, where each
feature can either be enabled (true) or disabled (false). For a particular set of
enabled features, the choice F 〈x, y〉 can be replaced by x if F evaluates to true,
or y otherwise. Each software variant of the SPL corresponds to a set of enabled
features (its configuration); the plain schema for that variant can be obtained
by simply eliminating each of the choices in the v-schema as described above.

A v-schema allows for the embedding of choices within the sets of attribute
names, forming variational relation schemas. We illustrate this in Example 1.

Example 1. Assume our schema contains the relation person and our SPL con-
tains the country-specific features. Then A = US〈l1∪{middleName},France〈l1, l2〉〉



Managing Structurally Heterogeneous Databases in SPLs 5

encodes the set of attribute names for the person relation shown in Table 1, where
l1 = {ID ,firstName, lastName}, l2 = {ID ,firstName, fatherName, gender}. Note
that l2 contains the attributes for the Iceland feature, which are included when
neither US nor France are enabled. The entire v-schema can be represented as
S = (US ∨ France ∨ Iceland)〈person(A),∅〉, where person(A) is a variational
relation schema (v-relation schema) and ∅ indicates a non-existing schema.

A v-relation is a set of tuples that conform to the same v-relation schema, where
each tuple has a feature expression that indicates the software variants that
include the tuple (its presence condition). A set of v-relations form a VDB.

Within a SPL, not all configurations yield valid software variants. For ex-
ample, any valid configuration of our email system contains exactly one of
the features US , France, and Iceland . In practice, the set of valid configura-
tions of a SPL is described by a feature model [1]. Here, we consider a feature
model to be a feature expression that is satisfied iff the configuration is valid.
For example, the corresponding fragment of our email system feature model is:
(US ∧ ¬France ∧ ¬Iceland)∨(¬US ∧ France ∧ ¬Iceland)∨(¬US ∧ ¬France ∧ Iceland)

The feature model is an input to VDBMS and is implicitly applied globally.
For example, given the feature model above, the nested choice US 〈x,France〈y, z〉〉
will resolve to x for the US, y for France, and z for Iceland. Although for sim-
plicity we use propositional formulas for feature expressions and feature models,
our model can be easily generalized to other encodings, such as first-order logic.

3.2 Variational SQL

To query a VDB, we introduce the notion of a variational query (v-query),
which returns a v-relation. We define variational SQL (VSQL) as an extension
of SQL with a new function CHOICE(f, e1, e2), where f is a feature expression
and e1 and e2 may be VSQL queries, attribute sets used in a SELECT clause,
relations (or joins of some relations) used in a FROM clause, or conditions in
a WHERE clause. With VSQL, the SPL developer can use the CHOICE function to
indicate different attributes, conditions, and relations to use for different variants
of the database. This enables expressing a single intent across a potentially huge
number of configurations in a single v-query.

In our examples, we use variational relational algebra (VRA) rather than
VSQL, for brevity. VRA is relational algebra extended by the choice notation
introduced in Section 3.1. However, we expect end-users to prefer the VSQL
notation. Example 2 illustrates different ways of writing a v-query in VRA.

Example 2. Consider again the schema sketched in Table 1 and defined in Ex-
ample 1. Suppose a developer would like to express the intent of querying a
last name by projecting the last name attribute for US and France, and the
father’s name and gender in Iceland. They can do this with the following query:
Q1 = π(France∨US)〈{lastName},{fatherName,gender}〉person . The output of this query is a
v-relation that has the lastName attribute for both US and France variants and
the fatherName and gender attributes for the Iceland variant of the data. The



6 P. Ataei et al.

user may also submit the following query with nested choice expression to artic-
ulate the same intent: Q′

1 = πFrance〈{lastName},(US〈{lastName},{fatherName,gender}〉)〉person

. Without choices and a VDB, expressing this query requires executing two dif-
ferent plain queries against three different databases.

Since VSQL is a strict superset of SQL, a developer may still write queries in
plain SQL when the intent is expressed the same way across all variants. That is,
VSQL does not impose additional complexity when it is not needed. Additionally,
we employ type inference and a strong static type system that enables omitting
choices in many cases where the variation in the v-query is completely determined
by the corresponding variation in the v-schema. For example, we can express
query Q1 in Example 2 more simply as πlastName,fatherName,gender person. This
will project the lastName attribute for the US and France, and the fatherName
and gender attributes for Iceland, and the inferred type of this query will track
which attributes and tuples are present in which variants.

The type system also supports usability by ruling out invalid v-queries. For
example, a query that contains the condition lastName = fatherName would be
invalid since there is no configuration of the database that includes both the
lastName and fatherName attributes of the person relation.

Type inference enables omitting the “boring” choices that would only be
needed to ensure consistency between the v-query and the v-schema, which in
turn ensures that each variant of the v-query is structurally consistent with its
corresponding variant of the VDB. This frees choices to be reserved for the more
interesting cases where a v-query must describe unsystematic or non-structurally
determined differences amongst its variants. This is illustrated in Example 3.

Example 3. Suppose we want to read the body of all emails. Our query must
take into account whether an email is encrypted or not. This is illustrated by
the following query with a choice over the feature Encryption, where ∆ is a
user-defined function that takes attributes encryptionKey and body and decodes
the body according to the key.

Encryption〈π∆(body,encryptionKey)(σisEncrypted=truemessage onID=ID encryption)

∪ πbody(σisEncrypted=falsemessage onID=ID encryption), πbodymessage〉

Note that variation in this query is not determined by the v-schema since each
alternative of the choice not only queries different attributes and relations, but
must also perform different functionality (namely, decoding the email body).

4 VDBMS Architecture

Fig. 1 shows the architecture of VDBMS. V-schema and v-query are supported
by the VDBMS abstraction layer to enable the SPL developer to interact with
the VDB. The SPL developer can include v-queries in the SPL codebase or input
them to VDBMS directly. In this section, we briefly report our ongoing effort of
implementing VDBMS using an existing RDBMS.



Managing Structurally Heterogeneous Databases in SPLs 7

Fig. 1. Overview of VDBMS. The v-schema captures variation in database layouts and
is accessible from all modules within the VDBMS layer.

4.1 Encoding the Variational Database

We implement VDBMS on top of PostgreSQL. All variants of a v-relation are
encoded as a single relational table in PostgreSQL. This table contains the union
of all attributes contained in all variants of the relation schema. We encode both
the v-schema and the feature model as additional tables in PostgreSQL. The
v-schema associates with each attribute a feature expression, called the presence
condition, indicating in which variants the attribute is included.

A key aspect of a VDB is that it conceptually represents many different
variant databases, and often it is important to both keep these databases distinct,
and to keep track of which results come from which databases. One scenario
where this is especially important is when features correspond to different clients,
in which case we want to ensure that data associated with different clients do not
mix. Therefore, our system must not only manage structural differences between
variants, but also track which data is associated with which variants. We do this
by attaching a presence condition to each tuple that indicates the variants in
which the tuple is present. The presence condition is represented as a feature
expression that VDBMS maintains and updates throughout the execution of a
v-query. The key property enforced by maintaining presence conditions on tuples
is variation preservation, which states that running a v-query on a v-database
yields a v-relation that is equivalent to running each variant of the v-query on
the corresponding variant of the v-database.

4.2 Optimizing and Evaluating Variational Query

The evaluation of a v-query proceeds in several steps. First, the query validator
applies the rules of the type system to check whether the query is consistent with



8 P. Ataei et al.

the variational schema. For example, the query π(France〈middleName,∅〉)person is
invalid since it projects the middleName attribute when the France feature is
enabled, but this attribute is present only when the US feature is enabled.

The query optimizer translates the v-query into a tree whose internal nodes
are either relational operators or choices, and whose leaves are v-relations. The
optimizer then applies equivalence laws from relational algebra and the choice
calculus to achieve better performance.

Conceptually, the query executor executes an optimized variational query by
translating it into a sequence of relational query operations interspersed by oper-
ations that enforce the variation-preservation property (Section 4.1). In practice,
this is achieved efficiently by embedding user-defined functions in queries that
can be executed entirely with the PostgreSQL DBMS. During the execution of
a variational query, tuples can be filtered out of intermediate results not only by
the selection predicate, but also because the tuples are not present in the vari-
ations that are applicable to that part of the query. Additionally, the presence
conditions of tuples will be refined as they are processed by the query.

Finally, VDBMS must return a v-relation to the user. The result builder
module collects the results, including the presence conditions of the relation,
attributes, and tuples, and assembles them into a v-relation to return. Note that
the query executor and result builder modules can work in a pipeline since the
tuples’ presence conditions are independent from one another.

5 Related Work

OrpheusDB supports database versioning [6]. Both OrpheusDB and VDBMS
provide access to some versions or variants of a database at a time. However, un-
like database versioning, which manages heterogeneity of content only, VDBMS
also supports heterogeneous structure, that is, different schemas for different
variants. Both database version and VDBMS support data sharing among ver-
sions/variants. In VDBMS, this is supported by presence conditions on tuples
that are consistent with many different configurations. For example, a tuple with
presence condition US ∨France is included in all variants with either the US or
France feature enabled (regardless of the configuration of other features).

Multi-tenant databases [9] take an architectural approach towards sharing
resources among various organization that use different applications and hence
different databases without any limitation on database variations. They do so by
storing data ownership and the database schema in relational tables. However,
VDBMS is only used for databases in similar contexts since it adds a level of
abstraction to both the schema and content of the database. As a result, it allows
for as much sharing as possible among database variants while multi-tenant
databases do not allow for any sharing since the variations can be completely
different. Interestingly, they both secure client’s information, VDBMS does so
by providing the variation-preservation property and multi-tenant databases do
so by tagging the client ID to data.



Managing Structurally Heterogeneous Databases in SPLs 9

6 Conclusion and Future Work

While developing SPLs, developers must deal with many variants of a database
corresponding to different configurations of the software. Maintaining each data-
base and its corresponding set of queries manually doesn’t scale to highly config-
urable SPLs. Alternative solutions, such as including all of the information for
all variants in a single schema, are error-prone and don’t address the problem
of unsystematic variation, that is, when different configurations of the software
may require different queries to express the same intent, which are not deter-
mined by differences in structure alone. We introduced a conceptual framework
for VDBMS, including v-schemas, which compactly represents the schema asso-
ciated with each configuration of an SPL, and variational queries, which enable
users to express both systematic and unsystematic variations of a single intent
across all variants of the database. We have also introduced the VDBMS archi-
tecture, including how it integrates with the SPL and how it is realized in the
underlying DBMS, PostgreSQL. VDBMS enforces a variation-preservation prop-
erty that ensures that queries and data associated with different configurations
remain distinct and consistent.

We plan to extend VDBMS to allow for disciplined overriding of the variation-
preservation property, to enable combining results from many different variants
in a single v-query. We also plan to explore further optimizations to the system
to improve performance, and how to extend VDBMS to support other use cases
besides SPL development.

References

1. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines. Springer-Verlag, Berlin (2016)

2. Ataei, P., Termehchy, A., Walkingshaw, E.: Variational Databases. In: Int. Sym. on
Database Programming Languages (DBPL). pp. 11:1–11:4 (2017)

3. Doan, A., Halevy, A., Ives, Z.: Principles of Data Integration. Morgan Kaufmann,
San Francisco (2012)

4. Erwig, M., Walkingshaw, E.: The Choice Calculus: A Representation for Software
Variation. ACM Trans. on Software Engineering and Methodology (TOSEM) 21(1),
6:1–6:27 (2011)

5. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data Exchange: Semantics and
Query Answering. In: Int. Conf. on Database Theory (ICDT) (2003)

6. Huang, S., Xu, L., Liu, J., Elmore, A.J., Parameswaran, A.: OrpheusDB: Bolt-on
Versioning for Relational Databases. Proc. of the VLDB Endowment 10(10), 1130–
1141 (Jun 2017)

7. Hubbard, S., Walkingshaw, E.: Formula Choice Calculus. In: Int. Work. on Feature-
Oriented Software Development (FOSD). pp. 49–57 (2016)

8. Liebig, J., Apel, S., Lengauer, C., Kästner, C., Schulze, M.: An Analysis of the
Variability in Forty Preprocessor-based Software Product Lines. In: ACM/IEEE
Int. Conf. on Software Engineering. pp. 105–114 (2010)

9. Weissman, C.D., Bobrowski, S.: The Design of the Force.com Multitenant Internet
Application Development Platform. In: ACM SIGMOD Int. Conf. on Management
of Data (SIGMOD). pp. 889–896 (2009)


	Managing Structurally Heterogeneous Databases in Software Product Lines

