

Learning Efficiently Over Heterogeneous Databases

Jose Picado, Arash Termehchy, Sudhanshu Pathak

IDEA Lab

Information and Data Management and Analytics

1. Information in a domain is often spread across multiple (heterogeneous) databases

		movies				movies2releasedate			
	id	titl	е	year		id	month	vear	
	m1	The Hangov	/er (2009)	2009		m1	lune	2009	•••
	m2	Star Wars: Ep The Force Awa	pisode VII - akens (2015)	2015		m2	December	2005	
m	ovies[title] ≈	<pre> movies2dist </pre>	ributors[tit	le] →		Matchi	ng depender	ncies (M	Ds) speci
m	novies[title] ≈ movies[tit	≠ movies2dist le]	ributors[tit 2distributo	le] → rs[title	2]	Matchi relation	ng depender ships betwe	ncies (M en datak	Ds) speci bases. Box Office
m	novies[title] ≈ movies[tit	≠ movies2dist le]	ributors[tit 2distributo	le] → rs[title	e]	Matchin relation	ng depender ships betwe ies2budget	ncies (M en datak	Ds) speci bases. Box Office
m	novies[title] ≈ movies[tit movies[tit	<pre>> movies2dist le]</pre>	ributors[tit 2distributo	le] → rs[title	2]	Matchin relation mov title	ng depender ships betwe ies2budget	ncies (M en datak budget	Ds) speci bases. Box Office

2. Learning over multiple databases

Expensive to integrate databases.

Star Wars: The Force Awakens | Buena Vista

Star Wars: The Force Awakens 245M

3. CastorX: cross-database relational learning system

- + Learn over non-IID data.

- Creates lots of solutions to the data integration. **Disadvantages:**
 - In order to learn, may not need to integrate all data.

4. One representation to encode all possible solutions to the data integration

Encode information about matching dependencies inside the model.

• Save computations by learning one model that is valid over all possible solutions of the data integration.

6. Enforcing matching dependencies

- After enforcing MDs, learned definitions may be:
 - Exactly the same
 - Equivalent (through homomorphism)
 - Different (can still get approximate answers)

HIV DB: chemical compounds

Sampling method	Precision	Recall	Time (minutes)
Naïve	0.84	0.87	27.99
Random	0.79	0.81	12.57
Stratified	0.84	0.90	24.97
Naïve	0.86	0.78	59.9
Stratified	0.95	0.78	95

7. Experiments

- R₁(x, v), R₂(t, u), R₂(v, w).
- Target: anti-HIV(compound)
- 7.8M tuples
- 2K positive, 4K negative examples
- IMDb + Box Office Mojo
- Target: highGrossing(title)
- 9M and 100K tuples
- 1K positive, 2K negative examples