## **Certain and Approximately Certain Models for Statistical Learning**

Cheng Zhen, Nischal Aryal, **Arash Termehchy**, Amandeep Singh Chabada



### Data preparation is important for ML but expensive



Most data scientists spend ~ 80% of their time preparing data

### **Cleaning missing data is important in data preparation for ML**





### Deleting records with missing values **ng data**

| City             | Temperat<br>ure (F) | Humidity<br>(%) | Rain (I)<br>or no rain<br>(-I) |  |
|------------------|---------------------|-----------------|--------------------------------|--|
| Seattle          | 65                  | 80              | I.                             |  |
| Portland         | null                | 30              | -1                             |  |
| San<br>Francisco | 54                  | 45              | -1                             |  |
| San Diego        | 60                  | null            | I.                             |  |

| City             | Temperat<br>ure (F) | Humidity<br>(%) | Rain (I)<br>or no rain<br>(-I) |
|------------------|---------------------|-----------------|--------------------------------|
| Seattle          | 65                  | 80              | I                              |
| San<br>Francisco | 54                  | 45              | -1                             |





| City             | Temperat<br>ure (F) | Humidity<br>(%) | Rain (I)<br>or no rain<br>(-I) |   |
|------------------|---------------------|-----------------|--------------------------------|---|
| Seattle          | 65                  | 80              | I.                             | ſ |
| Portland         | null                | 30              | -1                             |   |
| San<br>Francisco | 54                  | 45              | -1                             |   |
| San Diego        | 60                  | null            | I.                             |   |



| City             | Temperat<br>ure (F) | Humidity<br>(%) | Rain (I)<br>or no rain<br>(-I) |
|------------------|---------------------|-----------------|--------------------------------|
| Seattle          | 65                  | 80              | I                              |
| Portland         | 50                  | 30              | -1                             |
| San<br>Francisco | 54                  | 45              | -1                             |
| San Diego        | 60                  | 70              | I                              |

#### Repaired data

High cost: resources to impute data or train an imputation model
Not clear if repaired data is accurate

### **Our question:**

When can we learn accurate ML models without cleaning missing data ?



### Repairs of a dataset with missing values

**Repair**: a complete data set that replaces "null" values with data values

There are many possible repairs

|                          |       |          |          | City          | Temperature<br>(F) | Humidity (%) |     |
|--------------------------|-------|----------|----------|---------------|--------------------|--------------|-----|
|                          |       |          |          | Seattle       | 65                 | 80           | Re  |
|                          |       |          |          | Portland      | 60                 | 30           |     |
| Temperature<br>(F) Humid | Humid | lity (%) | Ender Ar | San Francisco | 54                 | 90           |     |
| 65                       |       | 80       |          |               | •••                |              |     |
| null                     |       | 30       |          |               |                    |              |     |
| 54 90                    | 90    |          |          | City          | Temperature<br>(F) | Humidity (%) |     |
|                          |       |          |          | Seattle       | 65                 | 80           | Rep |
|                          |       |          |          | Portland      | 80                 | 30           | ·   |
|                          |       |          |          | San Francisco | 54                 | 90           |     |

### We propose the concept of certain models: optimal for all repairs



A certain model exists

Imputation is unnecessary

### **Certain model definition**

A model  $w^*$  is a certain model if:



Certain model minimizes training loss for all repairs

### **Certain model definition**

A model  $w^*$  is a certain model if:

$$\forall X^r \in X^R, w^* = arg \min_{w \in W} L(f(X^r, w), y)$$



**Example: linear regression** 

Certain model  $w^* = [1, 1, 0]$  minimizes training loss in all repairs:

$$\forall x_3^r \in x_3^R, 1 * x_1 + 1 * x_2 + 0 * x_3^r - y = 0$$

### Checking existence of certain models is challenging



This is incredibly slow because there are numerous repairs

# We propose efficient algorithms for checking and learning certain models

> Linear Regression

> Linear Support Vector Machine

> Support Vector Machine with Kernels: polynomial kernel, RBF Kernel

> Neural Network: feed-forward neural network (approximated)

We have proved the correctness of the algorithms (proof in the paper)

#### Example: Checking certain models efficiently for linear regression



x3 ⊥ the regression residue between the label and complete features (a zero vector) since y ∈ col (x1, x2)



- **x3** does not contribute to minimizing loss in any repair
- Our algorithm checks if the incomplete feature vectors are orthogonal to the residue vector in all repairs

#### Certain model conditions are often too strict $\rightarrow$ we propose relaxed version

#### Approximately certain model ( $w^{\approx}$ ):

- not optimal but sufficiently close in all repairs
- acceptable in practice



Approximately

**Optimal Models** 

### **Approximately certain model definition**





We propose efficient algorithms for checking and learning approximately certain models

We have proposed algorithms for all ML models with convex loss function:

For example:

> Linear Regression

> Linear Support Vector Machine

> Logistic Regression

We have proved the correctness of the algorithms (proof in the paper)

### **Experimental setup**

### • Real world datasets containing missing values

| Data Set                | Task           | Features | Training Examples | Missing Factor |
|-------------------------|----------------|----------|-------------------|----------------|
| Breast Cancer           | Classification | 10       | 559               | 1.97%          |
| Intel-Sensor            | Classification | 11       | 1850945           | 4.05%          |
| NFL                     | Regression     | 34       | 34302             | 9.04%          |
| Water-Potability        | Classification | 9        | 2620              | 39.00%         |
| <b>Online Education</b> | Classification | 36       | 7026              | 35.48%         |
| COVID                   | Regression     | 188      | 60229             | 53.67%         |
| Air-Quality             | Regression     | 12       | 7192              | 90.99%         |
| Communities             | Regression     | 1954     | 1595              | 93.67%         |

Missing Factor: # of examples with at least one missing value / total # of examples

### **Methods in our experiments**

> No Imputation (NI): Delete all incomplete examples

#### > Imputations:

- I) Mean Imputation (MI): Impute by a simple mean of the feature values
- 2) KNN-Imputer (KI): Impute through a KNN classifier
- **3) MIWAE (DI)**: A deep-learning-based imputation framework featured by high imputation quality

#### > On-demand Cleaning:

ActiveClean (AC): a data cleaning framework also aims to avoid unnecessary data cleaning

#### > Our Approaches:

I) Certain Model (CM)

#### 2) Approximately Certain Model (ACM)

Comparing in terms of imputation costs (# of examples imputed), and learning (+ imputation) time (sec)

### When certain model exists

Saving cleaning costs

| Data Set | Imputations | On-demand Cleaning | Deletion | Our Method |
|----------|-------------|--------------------|----------|------------|
|          | MI/KI/DI    | AC                 | NI       | СМ         |
| NFL      | 3101        | 12.0               | 0        | 0          |
| COVID    | 32325       | 33.6               | 0        | 0          |

#### Number of Examples Cleaned

| Data  | Imputation | On-demand Cleaning | Deletion | Our Method |
|-------|------------|--------------------|----------|------------|
| Set   | DI         | AC                 | NI       | CM         |
| NFL   | 394.18     | 49.91              | 0.13     | 7.11       |
| COVID | 1944.10    | 100.59             | 0.28     | 438.79     |

#### Learning (+imputation) Time (sec)

| Data Set | Imputation | On-demand Cleaning | Deletion | Our Method |
|----------|------------|--------------------|----------|------------|
|          | DI         | AC                 | NI       | CM         |
| NFL      | 0.00       | 0.02               | 0.00     | 0.00       |
| COVID    | 0.00       | 2.07               | 0.00     | 0.00       |

Regression MSE

#### Computational overhead is small

Guarantee optimal model

### When CM does not exist, but ACM exists

Saving cleaning costs

| Data Set    | Imputations | On-demand Cleaning | Deletion | Our Method |     |
|-------------|-------------|--------------------|----------|------------|-----|
|             | MI/KI/DI    | AC                 | NI       | CM         | ACM |
| Communities | 1494        | 319.6              | 0        | 0          | 0   |

#### Number of Examples Cleaned

| Data Set    | Imputation | On-demand Cleaning | Deletion | Our Method |      |
|-------------|------------|--------------------|----------|------------|------|
|             | DI         | AC                 | NI       | СМ         | ACM  |
| Communities | 4088.46    | 2.10               | 0.08     | 1.45       | 3.74 |

Learning (+imputation) Time (sec)

Guaranteeing approximately

optimal model

| Data Set    | Imputation | On-demand Cleaning | Deletion | Our Method |  |
|-------------|------------|--------------------|----------|------------|--|
|             | DI         | AC                 | NI       | ACM        |  |
| Communities | 0.35       | 0.06               | 2.30     | 0.03       |  |

#### **Regression MSE**

#### Computational overhead is small

### When neither exists

Computational overhead of CM

and ACM is small

| Data Set    | Imputation | On-demand Cleaning | Deletion | Our Method |      |
|-------------|------------|--------------------|----------|------------|------|
|             | DI         | AC                 | NI       | CM         | ACM  |
| Air Quality | 111.08     | 0.87               | 0.01     | 0.01       | 4.62 |

Learning (+imputation) Time (sec)

High variability among cleaning methods

| Data Set    | Imputation | On-demand Cleaning | Deletion |  |
|-------------|------------|--------------------|----------|--|
|             | DI         | AC                 | NI       |  |
| Air Quality | 2.11       | 28.22              | 3.47     |  |

Regression MSE

### Conclusion

- ► We propose CM/ACM to learn accurate model without cleaning
- ► We propose efficient algorithms for learning CM & ACM for a wide variety of ML models
- ► Our algorithms learn accurate models efficiently over real-world datasets

### **Ongoing work**

- ► When CM does not exist, our algorithms propose a set of tuples to repair to get CM
- ► We work on extending algorithms to find minimal sets of repairs



Scan this code to connect with the lead-author Cheng Zhen

Contact:

zhenc@oregonstate.edu

# **THANK YOU!**

