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Machine Learning Pipeline

Most data scientists spend ~ 80% of their time preparing data 

Data preparation is important for ML but expensive
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raw data 

Rain No rain

Data point with 
missing humidity

Cleaning missing data is important in data preparation for ML
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City Temperature (F) Humidity (%)
Rain (1) or no 

rain (-1)

Seattle 65 80 1

Portland null 30 -1

San Diego 60 null 1

Missing 
Data

Predict whether rains or not

correct cleaning → correct model incorrect cleaning → incorrect model

Need to clean missing data to learn an accurate ML model



Existing popular methods cleaning missing dataDeleting records with missing values

City Temperat
ure (F)

Humidity 
(%)

Rain (1) 
or no rain 

(-1)
Seattle 65 80 1

Portland null 30 -1

San 
Francisco

54 45 -1

San Diego 60 null 1

ØLoss of valuable information
ØMight introduce bias
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City Temperat
ure (F)

Humidity 
(%)

Rain (1) 
or no rain 

(-1)
Seattle 65 80 1

San 
Francisco

54 45 -1



Data imputation

ØHigh cost: resources to impute data or train an imputation model
ØNot clear if repaired data is accurate
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City Temperat
ure (F)

Humidity 
(%)

Rain (1) 
or no rain 

(-1)
Seattle 65 80 1

Portland null 30 -1

San 
Francisco

54 45 -1

San Diego 60 null 1

City Temperat
ure (F)

Humidity 
(%)

Rain (1) 
or no rain 

(-1)
Seattle 65 80 1

Portland 50 30 -1

San 
Francisco

54 45 -1

San Diego 60 70 1

Repaired data



Our question:
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Raw training data

Check if 
missing data is 

influential

No

Learn an accurate ML model 
independent to missing data

Yes
Data repairing

Learn a model

When can we learn accurate ML models without cleaning missing data ?

Our proposal

Ø Save significant data cleaning costs
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City Temperature 
(F) Humidity (%)

Seattle 65 80

Portland null 30

San Francisco 54 90

City Temperature 
(F) Humidity (%)

Seattle 65 80

Portland 60 30
San Francisco 54 90

... 
City Temperature 

(F) Humidity (%)

Seattle 65 80

Portland 80 30
San Francisco 54 90

Repair 1

Repair n

Repair: a complete data set that replaces “null” values with data values 

There are many possible repairs

Repairs of a dataset with missing values



We propose the concept of certain models: optimal for all repairs
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Model 
training 

City Temperature 
(F) Humidity (%)

Seattle 65 80

Portland 60 30

San Francisco 54 90

Repair 1

City Temperature 
(F) Humidity (%)

Seattle 65 80

Portland 80 30

San Francisco 54 90

Repair n

Model 
training 

... ... 

optimal model 
(certain model)

A certain model exists Imputation is unnecessary

City Temperature 
(F) Humidity (%)

Seattle 65 80

Portland null 30

San Francisco 54 90

Raw data



A model 𝒘∗	is a certain model if:

∀𝑿𝒓 ∈ 𝑿𝑹, 𝒘∗ = 𝒂𝒓𝒈 min
𝒘∈𝓦

𝑳 𝒇(𝑿𝒓, 𝒘 , 𝒚)

Certain model definition
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Model learning: 
minimizing training loss

Repair 𝑋! from the set 
of all possible repairs 𝑋"

Features: X Label: y

Loss function: L

Certain model minimizes training loss for all repairs



A model 𝒘∗	is a certain model if:

∀𝑿𝒓 ∈ 𝑿𝑹, 𝒘∗ = 𝒂𝒓𝒈 min
𝒘∈𝓦

𝑳 𝒇(𝑿𝒓, 𝒘 , 𝒚)

Certain model definition

10

x1 x2 x3 y

1 0 0 1

0 1 0 1

0 0 null 0

Features Label Example: linear regression

Certain model	𝒘∗ = 1, 1, 0  minimizes training loss in all repairs:

∀ 𝒙"# ∈ 𝒙"$, 1 ∗ 	𝒙%+ 1 ∗ 	𝒙& + 0 ∗	𝒙"# - y = 0 



Checking existence of certain models is challenging
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This is incredibly slow because there are numerous repairs

Model 
training 

City Temperature 
(F) Humidity (%)

Seattle 65 80

Portland 60 30

San Francisco 54 90

Repair 1

City Temperature 
(F) Humidity (%)

Seattle 65 80

Portland 80 30

San Francisco 54 90

Repair n

Model 
training 

... ... 

The same optimal 
model ?

City Temperature 
(F) Humidity (%)

Seattle 65 80

Portland null 30

San Francisco 54 90

Raw data



We propose efficient algorithms for checking and learning 
certain models
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Ø Linear Regression

    
Ø Linear Support Vector Machine

Ø Support Vector Machine with Kernels: polynomial kernel, RBF Kernel

Ø Neural Network: feed-forward neural network (approximated)

We have proved the correctness of the algorithms (proof in the paper) 



x2

x1

y

x3
(incomplete)

Example: 
Checking certain models efficiently for linear regression
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x1 x2 x3 y

1 0 0 1

0 1 0 1

0 0 Null 0

● x3 does not contribute to minimizing loss in any repair

Features

x3 ⊥ the regression residue between the label and 
complete features (a zero vector) since y ∈ col (x1, x2)

Label

● Our algorithm checks if the incomplete feature vectors are orthogonal to the residue vector in all repairs



Certain model conditions are often too strict → we propose relaxed version
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Optimal Models
Approximately 
Certain Model

≈

≈

≈

Model 
training 

City Temperature 
(F) Humidity (%)

Seattle 65 80

Portland 60 30

San Francisco 54 90

Repair 1

City Temperature 
(F) Humidity (%)

Seattle 65 80

Portland 80 30

San Francisco 54 90

Repair n

Model 
training 

... ... 
City Temperat

ure (F)
Humidity 

(%)
Seattle 65 80

Portland null 30

San Francisco 54 90

Raw data

Model 
training 

Approximately certain model (𝑤≈): 
● not optimal but sufficiently close in all repairs
● acceptable in practice



Approximately certain model definition

A model 𝒘≈	is an approximately certain model (ACM) if:

∀𝑿𝒓 ∈ 𝑿𝑹, 𝑳 𝒇(𝑿𝒓, 𝒘≈ , 𝒚) 	−	 min
𝒘∈𝓦

𝑳 𝒇(𝑿𝒓, 𝒘 , 𝒚) ≤ 	𝜺
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Minimal training lossLoss with ACMRepairs User-defined threshold



We propose efficient algorithms for checking and learning 
approximately certain models
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We have proposed algorithms for all ML models with convex loss function:
 
For example:

Ø Linear Regression

    
Ø Linear Support Vector Machine

Ø Logistic Regression

We have proved the correctness of the algorithms (proof in the paper) 



Experimental setup 

oReal world datasets containing missing values
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Missing Factor:  # of examples with at least one missing value / total # of examples



Methods in our experiments
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Comparing in terms of imputation costs (# of examples imputed), and learning (+ imputation) time (sec) 

Ø No Imputation (NI): Delete all incomplete examples
   
Ø Imputations: 
    1) Mean Imputation (MI): Impute by a simple mean of the feature values
    2) KNN-Imputer (KI): Impute through a KNN classifier
    3) MIWAE (DI): A deep-learning-based imputation framework featured by high imputation quality

Ø On-demand Cleaning: 
     ActiveClean (AC): a data cleaning framework also aims to avoid unnecessary data cleaning 

Ø Our Approaches:
    1) Certain Model (CM)

    2) Approximately Certain Model (ACM)



When certain model exists
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Saving cleaning costs

Computational overhead is small

Guarantee optimal model

Data Set Imputations On-demand Cleaning Deletion Our Method

MI/KI/DI AC NI CM

NFL 3101 12.0 0 0

COVID 32325 33.6 0 0

Data 
Set

Imputation On-demand Cleaning Deletion Our Method

DI AC NI CM

NFL 394.18 49.91 0.13 7.11

COVID 1944.10 100.59 0.28 438.79

Number of Examples Cleaned

Learning  (+imputation) Time (sec)

Data Set Imputation On-demand Cleaning Deletion Our Method

DI AC NI CM

NFL 0.00 0.02 0.00 0.00

COVID 0.00 2.07 0.00 0.00

Regression MSE



When CM does not exist, but ACM exists
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Saving cleaning costs

Computational overhead is small

Guaranteeing approximately 

optimal model

Data Set Imputations On-demand Cleaning Deletion Our Method

MI/KI/DI AC NI CM ACM

Communities 1494 319.6 0 0 0

Data Set Imputation On-demand Cleaning Deletion Our Method

DI AC NI CM ACM

Communities 4088.46 2.10 0.08 1.45 3.74

Number of Examples Cleaned

Learning  (+imputation) Time (sec)

Regression MSE

Data Set Imputation On-demand Cleaning Deletion Our Method

DI AC NI ACM

Communities 0.35 0.06 2.30 0.03



When neither exists
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Computational overhead of CM 

and ACM is small

High variability among cleaning methods

Data Set Imputation On-demand Cleaning Deletion Our Method

DI AC NI CM ACM

Air Quality 111.08 0.87 0.01 0.01 4.62

Learning  (+imputation) Time (sec)

Regression MSE

Data Set Imputation On-demand Cleaning Deletion

DI AC NI

Air Quality 2.11 28.22 3.47



Conclusion
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► We propose CM/ACM to learn accurate model without cleaning

► We propose efficient algorithms for learning CM & ACM for a wide variety of ML models

►Our algorithms learn accurate models efficiently over real-world datasets

Ongoing work

► When CM does not exist, our algorithms propose a set of tuples to repair to get CM

► We work on extending algorithms to find minimal sets of repairs
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