
Towards Scalable Schema Mapping using Large Language Models
Technical Report

Christopher Buss∗
bussch@oregonstate.edu
Oregon State University
Corvallis, Oregon, USA

Mahdis Safari∗
safarim@oregonstate.edu
Oregon State University
Corvallis, Oregon, USA

Arash Termehchy
termehca@oregonstate.edu
Oregon State University
Corvallis, Oregon, USA

Stefan Lee
leestef@oregonstate.edu
Oregon State University
Corvallis, Oregon, USA

David Maier
maier@pdx.edu

Portland State University
Portland, Oregon, USA

Abstract
The growing need to integrate information from a large number
of diverse sources poses significant scalability challenges for data
integration systems. These systems often rely on manually written
schema mappings, which are complex, source-specific, and costly
to maintain as sources evolve. While recent advances suggest that
large language models (LLMs) can assist in automating schema
matching by leveraging both structural and natural language cues,
key challenges remain. In this paper, we identify three core issues
with using LLMs for schema mapping: (1) inconsistent outputs
due to sensitivity to input phrasing and structure, which we propose
methods to address through sampling and aggregation techniques;
(2) the need formore expressive mappings (e.g., GLaV), which
strain the limited context windows of LLMs; and (3) the computa-
tional cost of repeated LLM calls, which we propose to mitigate
through strategies like data type prefiltering.

CCS Concepts
• Information systems→Mediators and data integration; •
Computing methodologies→ Natural language processing.

Keywords
Data Integration, Generative AI

1 Introduction
There is a recognized need to collect and connect information
from a variety of data sources [11, 13, 14]. As an example, we have
recently worked in a large-scale NIH-funded project to augment the
information of biomedical entities by querying other biomedical
data sources [35]. The main focus of this project is to repurpose
current drugs to treat or mitigate the symptoms of diseases for
which there is insufficient time or resources to develop effective
treatments (e.g., new or rare diseases) [4]. To support such a system,
its developers must find and combine a patchwork of data sources
to get a full picture of a drug (e.g., clinical trials, research literature,
and adverse effects). Collecting all this information is resource-
intensive and can be a barrier to important discoveries.

Data integration systems are complex and often ingest data from
a large number of diverse sources. For each source, programmers
must manually write mappings that reconcile structural differences.
∗Both authors contributed equally to this research.

Writing the correct mappings often requires understanding the
semantics of the source. Thus, programmers must cross-reference
natural-language descriptions (e.g., database documentation), the
logical model, and the actual representation of data.

Due to the complexity of mappings, the large number of sources,
and the fact that sources evolve over time, integration systems have
major scalability problems. Often, mappings are source-specific
and cannot be reused. Systems not only become more complex as
mappings are added, but with each new source, there is a higher
probability that any one source will change, disrupting the system
until developers repair the affected mappings. This results in high
maintenance costs. To contend with the growing number of sources,
we must develop new tools to reduce the manual effort required to
build and maintain data integration systems.

Due to the complicated nature of data integration, it requires
human-in-the-loop approaches. Many older works have focused
on rule-based tools [6, 10, 28], which lack semantic understanding,
limiting their usefulness. More recent work has proposed training
models to expand their ability beyond basic rules [39]. However,
doing so requires preparing labeled data specific to certain domains.

Even more recently, large language models (LLMs) have shown
promise in automating a broad range of data processing tasks [3, 25],
including schema alignment [26]. Importantly, LLMs are effective
on many of these tasks with little-to-no additional training. Addi-
tionally, in our own work, we have found LLMs to show promise
in adapting to different data domains while requiring little human
attention [7, 8]. However, to our knowledge, little-to-no work has
been done in investigating how LLMs could help support schema
mapping and its related tasks.

Recent studies have explored how large language models (LLMs)
can be used to generate schema mappings [15, 21, 22, 27, 29, 30, 36].
Since LLMs can incorporate a wide range of supporting information,
including schema metadata and natural language descriptions, they
are especially suited to generating mappings.

In this paper we describe three challenges with using LLMs for
generating schema mappings.

• Inconsistent Outputs: LLMs are highly sensitive to input
phrasing and structure, leading to unpredictable and diverse
results. We propose techniques for sampling and combining
multiple outputs, increasing our mapping coverage and
providing effective ways to filter out unlikely mappings. We

Buss et al.

Local Drugs

Drugs

Clinical_Trials

Trials

meds

m_id

generic_name

trial

m_id

findings

month

day

year

Adverse Effects

id

name

class

uses

drug_id

outcome

date
adverse_compounds

formula

adverse_effects

side_effects

Figure 1: Example integration scenario with a target (left)
and two sources (right). Green dashed lines represent seman-
tic correspondences between attributes (schema alignment).
Dotted represent inter-schema references (foreign keys).

provide preliminary results that illustrate the effectiveness
of our methods.

• GLaV with Limited Contexts: Existing LLM-based meth-
ods focus on limited mapping types, which are often insuf-
ficient for many real-world integration scenarios. Towards
supporting more integration systems, we consider the chal-
lenges associated with generating more expressive map-
pings (GLaV). Supporting such mappings would increase
complexity, requiring more sophisticated representations
and careful design to avoid overwhelming the LLM’s con-
text.

• Challenge: Efficient Prompting: LLM-based schemamap-
ping is computationally expensive due to repeated model
calls, especially with large datasets. This, in large part, is
thanks to its large input, which only becomes more difficult
to manage as we consider more expressive mappings.

2 Schema Mapping Assistant
Our discussion is inspired by tools [6, 10, 28], meant to assist the
user in the schema mapping process. Generally speaking, these
systems take the full set of possible mappings and filter them down
to a candidate set. The candidate set is then shown to the user so
they may verify them, selecting which mappings to implement.
This work focuses on mappings between relational databases, but
we assert that the challenges highlighted here apply to schema
mapping broadly, regardless of the logical models used.

It is expected that users will need to verify the output mappings
as the underlying model used to generate them will not know the
user’s latent intent. In essence, there is nearly always expectations
(e.g., business rules not represented within the schema) for which
the underlying model is not privy to.

2.1 Preliminaries
Data Integration System. Following previous works [19], we de-

scribe a data integration system I as a triple ⟨G,S,M⟩, where
• G is the target schema, which describes a unified view of

sources.

• S is the source schema, which specifies the structure of the
sources to integrate. For the sake of definitional simplicity,
we do not distinguish between different sources; instead,
we consider S to simply be the union of all source schemas.

• M is the mapping between G and S, constituted by a set
of rules, each describing how a subset of G semantically
corresponds to a subset of S.

Both S and G contain relations 𝑆1, 𝑆2, ...𝑆𝑛 and𝐺1,𝐺2, ...𝐺𝑚 respec-
tively. In turn, each relation contains a set of attributes denoted as
𝑎𝑡𝑡𝑟 (𝑆𝑖) = {𝑠1, 𝑠2, ..., 𝑠𝑙 } and 𝑎𝑡𝑡𝑟 (𝐺 𝑗) = {𝑔1, 𝑔2, ..., 𝑔𝑘 }.

Example 1. Figure 1 represents an integration scenario within
the drug domain. Specifically, to better understand whether certain
drugs can be used to treat certain rare diseases, we want to integrate
information about each drug’s clinical trials and adverse affects, and
likely many other sources not picture here. In our running example,
we focus on integrating information from the Trials source: given
S = {𝑚𝑒𝑑𝑠, 𝑡𝑟𝑖𝑎𝑙} and G = {𝐷𝑟𝑢𝑔𝑠,𝐶𝑙𝑖𝑛𝑖𝑐_𝑇𝑟𝑖𝑎𝑙𝑠}, we must define
a mapping (M).

Mapping Rules (st-tgds). We formally express rules as Source-to-
Target Tuple-Generating Dependencies (st-tgds) [12],

∀®𝑥
(
𝜙 (®𝑥) → ∃®𝑦 𝜓 (®𝑥, ®𝑦)

)
where

• 𝜙 (®𝑥) is a conjunction of atoms over the source S.
• 𝜓 (®𝑥, ®𝑦) is a conjunction of atoms over the target G.
• ®𝑥 are universally quantified variables.
• ®𝑦 are existentially quantified variables.

Both𝜙 (®𝑥) and𝜓 (®𝑥, ®𝑦) may include additional predicates (e.g., for fil-
tering tuples). In essence, each rule asserts a pattern over the source,
that, if matched, generates tuples adhering to the corresponding
pattern in the target.

Example 2. Continuing our example in 1, we indicate which tuples
in Trials should trigger the generation of tuples in Local Drugs.
Further, we indicate which attributes within the new target tuples
should be populated, and how that population is determined by the
attributes within the triggering source tuples.

∀𝑖, 𝑔, 𝑓 ,𝑚, 𝑑,𝑦
(
meds(𝑖, 𝑔) ∧ trial(𝑖, 𝑓 ,𝑚,𝑑,𝑦), 𝑦 > 1990

→ ∃𝑥1, 𝑥2, 𝑥3, 𝑥4
(
Drugs(𝑥1, 𝜏1 [𝑔], 𝑥2, 𝑥3, 𝑥4) ∧

Clinical_Trials(𝑥1, 𝑓 , 𝜏2 [𝑚,𝑑,𝑦])
)) (1)

Target attributes are populated based on their semantic counter-
parts in the source. In some instances, value-level transformations
are necessary, such as translating a drug’s generic name to its brand
name (𝜏1) and concatenating date-parts (𝜏2). However, we make a
distinction between value-level transformations and schema-level
transformations. This work focuses on the latter, though, in the
long-term, we foresee it being useful, especially for complex value-
level transformations, to tackle the former problem as a separate
step from that of schema-level transformations.

Referential Dependencies. Often, rules contain referential depen-
dencies which condition the existence of rows in one relation upon
the existence of join-able rows in another. In the case of rule 1, we
specify referential dependencies over both the source and target.
Over the source, the shared variable 𝑖 in𝑚𝑒𝑑𝑠 and 𝑡𝑟𝑖𝑎𝑙 forces tuples

Towards Scalable Schema Mapping using Large Language Models

from these relations to fall within the same equi join on m_id. Over
the target, the shared variable 𝑥1 implies the creation of a surrogate
key for each answer within the source, ensuring that rows in 𝐷𝑟𝑢𝑔𝑠
are connected to their corresponding rows in 𝐶𝑙𝑖𝑛𝑖𝑐𝑎𝑙_𝑇𝑟𝑖𝑎𝑙𝑠 . Im-
portantly, referential dependencies are expressed via the presence
of the same variable (𝑖 and 𝑥1) within multiple relational predicates
on the left-hand side (𝑚𝑒𝑑𝑠 and 𝑡𝑟𝑖𝑎𝑙𝑠) and right-hand side (𝐷𝑟𝑢𝑔𝑠
and 𝐶𝑙𝑖𝑛𝑖𝑐𝑎𝑙_𝑇𝑟𝑖𝑎𝑙𝑠) of the same rule.

2.2 Rule Expressiveness
Rules are commonly divided into three classes, each of which is
defined by the number of relational predicates allowed over the
source and target. Formally, these classes are called Global-as-View
(GaV), Local-as-View (LaV), and Global-Local-as-View (GLaV). We
refer interested readers to [19] for a more detailed comparison of
these three classes. For the sake of our exposition, we simply make
the distinction between those classes that limit either side of a rule
to one-and-only-one relational predicate (i.e., GaV and LaV) and the
class that does not (i.e., GLaV). Henceforth refer to the former class
as limited referential dependencies (LRD) and the latter class as full
referential dependencies (FRD). The rule written in Equation 1 falls
strictly within the FRD class as more than one relational predicate
appears on both sides.

Example 3. To demonstrate the limitations of LRD, we translate
rule 1 (written as one FRD rule) into a mapping containing only
LRD rules,

∀𝑖, 𝑔 (meds(𝑖, 𝑔) → ∃𝑥1, 𝑥2, 𝑥3, 𝑥4 Drugs(𝑥1, 𝜏1 [𝑔], 𝑥2, 𝑥3, 𝑥4))

∀𝑖, 𝑓 ,𝑚,𝑑,𝑦
(
trial(𝑖, 𝑓 ,𝑚,𝑑,𝑦), 𝑦 > 1990

→ ∃𝑥5 Clinical_Trials(𝑥5, 𝑓 , 𝜏2 [𝑚,𝑑,𝑦])
)

Note that the translation from FRD to LRD requires two rules,
isolating the source and target relations. This is problematic since
the variables 𝑖 and 𝑥1 do not share the same scope across rules.
In other words, the LRD mapping will result in a target instance
which does not specify which clinical trials concern which drugs.
Further, the instance will contain all drugs in𝑚𝑒𝑑𝑠 regardless of
their most recent clinical trial.

Schema Alignments. Rather than generating schema mappings
directly, manyworks focus on the simpler task of generating schema
alignments, which can eliminate many undesired mappings from
consideration. A schema alignment is a set of pairs, {(𝑠𝑙 , 𝑔𝑘) | 𝑠𝑙 ∈
𝑎𝑡𝑡𝑟 (𝑆𝑖), 𝑔𝑘 ∈ 𝑎𝑡𝑡𝑟 (𝐺 𝑗)} where a pair asserts that source attribute
𝑠𝑙 semantically corresponds to target attribute 𝑔𝑘 . In limited cases,
algorithms can produce the exact correct mapping rules given the
alignments as input [28]. Figure 1 includes schema alignments for
our running example.

2.3 Problem Definition
Given a source schema S, a global schema G, and a set of hints, a
Schema Mapping Assistant must produce a candidate set of map-
pings𝐶 of some class as described in Section 2.2. From the schemata
itself, we are guaranteed to have certain information, including re-
lation names, attribute names, and any constraints stated within
the schema (e.g., primary keys, foreign keys, data types, etc,.).

2.3.1 Hints. In addition to the information given by the schemata,
we may also have additional contextual information, which we call
hints, that can be leveraged for determining 𝐶 . In current work,
we consider natural language descriptions of tables 𝑡𝑑𝑒𝑠𝑐 (·) and
attributes 𝑎𝑑𝑒𝑠𝑐 (·), as well as sample data values 𝑣𝑎𝑙 (·).

Example 4. For example, the Drugs in Figure 1 might have the
following hints,

𝑛𝑎𝑚𝑒 (𝑇) = ”𝐷𝑟𝑢𝑔𝑠”
𝑡𝑑𝑒𝑠𝑐 (𝑇) = ”𝐼𝑛𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝑐𝑙𝑎𝑠𝑠, 𝑢𝑠𝑒𝑠, 𝑎𝑛𝑑 𝑠𝑖𝑑𝑒 𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑠”

𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒 (𝑇) = {𝑖𝑛𝑡, 𝑆𝑡𝑟𝑖𝑛𝑔, 𝑆𝑡𝑟𝑖𝑛𝑔..., }
𝑎𝑑𝑒𝑠𝑐 (𝑇) = {”𝑈𝑛𝑖𝑞𝑢𝑒 𝐼𝐷 𝑓 𝑜𝑟 𝐷𝑟𝑢𝑔.”,

”𝐵𝑟𝑎𝑛𝑑 𝑛𝑎𝑚𝑒 𝑜 𝑓 𝑑𝑟𝑢𝑔.”, ..., }
Not pictured are other hints that are given by the schema definition.

The availability of additional hints depends on the sources them-
selves. Data values may not be available, either because the relations
are empty or the data itself is restricted due to privacy concerns.
In practice, natural language descriptions may be derived from
documentation, but even this is not guaranteed to exist.

2.3.2 Candidate Set Quality. The goal is to provide users with a
high-quality candidate set. Ultimately, what makes a candidate set
"high-quality" depends on many factors, including user preference.
However, we often prioritize recall over precision: maximize the
number of true mappings while simultaneously minimizing the
number of false mappings. This is because it often takes less effort
for a human to confirm that a candidate mapping is wrong than it
does for them to determine the correct mapping on their own.

3 Challenge: Inconsistent Outputs
The output of LLMs depend heavily on how their input is phrased.
The space of possible outputs is often diverse and varies signif-
icantly in terms of quality. Further, it is difficult to predict the
relative impact that different phrasings will have on the output. For
example, minor adjustments in the ordering of content—such as
rearranging rows or columns in a table—can impact accuracy, as
LLMs are sensitive to the structure of the input data [32].

However, most existing schema matching approaches overlook
these sensitivities. They typically rely on a single, static prompt
and do not account for structural variations in the input. For ex-
ample, Parciak et al [27] repeat the same prompt multiple times
and aggregate the outputs using majority voting to approximate
a high-confidence result, rather than varying the prompt itself. In
contrast, we treat prompt variation as a key mechanism for ex-
ploring the model’s output space more effectively and improving
overall quality of the final candidate set.

3.1 Sampling Outputs
Instead of relying on a single prompt, we treat this as a sampling
problem. More specifically, we view the model as a black-box from
which we can sample mappings by providing different prompt
phrasings. More formally, we start with a reasonably effective
prompt template 𝑃 (·), and then apply a set of transformations
that exploit symmetric properties of our problem. We prompt the
LLM 𝑛 times to produce candidate sets 𝑐1, 𝑐2, ...𝑐𝑛 . We then combine

Buss et al.

these sets using a function 𝐴(·) to produce the final candidate set
𝐶′ = 𝐴(𝑐1, 𝑐2, ...𝑐𝑛).

Sampling multiple outputs for the same input can benefit us
in two key ways. First, it expands our coverage of the hypothesis
space, increasing the chance of discovering high-quality alignments
that might otherwise be missed with a single static prompt. Second,
it provides insight into the relative likelihood of different mappings:
if a particular output appears consistently across multiple samples,
it may serve as a proxy for confidence in its quality.

3.1.1 Symmetric Transformations. Starting from a well-performing
base prompt, we apply transformations that alter the input for-
mat without changing the underlying task. Specifically, we intro-
duce variation by randomly permuting the order of columns in the
prompt, sampling different data instances, and swapping the source
and target tables. These transformations preserve the semantic
equivalence of the task while encouraging the model to explore
different parts of the output space.

3.1.2 Sample Merging. Chen et al. [9] propose a consistency sam-
pling method where the LLM selects the most coherent response
from multiple outputs generated using a single prompt. While ef-
fective for free-form tasks, this approach requires an additional
LLM call over a long, concatenated prompt, which is problem-
atic in schema matching due to the size and complexity of input
schemas. In contrast, we generate outputs from multiple trans-
formed prompts, applying symmetric variations to explore different
parts of the alignment space. Rather than selecting a single response,
we collect multiple candidate mappings per attribute for further
analysis. To merge the results, we apply logical operations over
structured JSON outputs, offering a scalable and inference-efficient
alternative. The choice of operation depends on the desired trade-off
between recall and precision: union includes all possible matches
to maximize recall, majority vote selects the most frequent align-
ments, and intersection keeps only those consistently predicted
across prompts.

3.2 Bidirectional Schema Matching
To account for alignments from both the original and swapped table
perspectives, simple aggregation functions like majority vote or
union are not ideal. These methods fail to consider the differing
confidence levels that the LLM may have for matches from each
perspective. Instead, we propose estimating a confidence score for
each candidate match in both directions before merging the results,
leading to a more reliable combination.

MatchMaker estimates the LLM’s confidence in alignments by
prompting it to score candidate matches for each attribute. However,
these scores may not accurately reflect true probabilities. Inspired
by [37], we approximate the LLM’s confidence by first asking it to
select the best match among the candidates, then using its output
logits to compute confidence scores.

Combining results from the original and swapped table perspec-
tives presents a challenge, as its not clear which merging method
is most effective. We explore different techniques for this task. As
a starting point, we test two simple approaches: averaging and
multiplying confidence scores. Averaging reduces the confidence if

an alignment appears in only one direction, while multiplication
removes alignments that are missing from either direction.

In addition, we apply the stable matching algorithm [2] to the
ranked matches from both directions. This approach conceptually
aligns with the table-swapping process, as it reflects the bidirec-
tional nature of preferences and ensures a stable and consistent
matching between attributes. We define Stable Schema Matching
as follows:

Definition 3.1 (Stable Schema Matching). Given two schemas
𝐴 and 𝐵, the input consists of two sets of attributes, 𝐴[attr] =

{𝑎1, 𝑎2, . . . , 𝑎𝑛} and 𝐵 [attr] = {𝑏1, 𝑏2, . . . , 𝑏𝑚}, along with ranked
preference lists for each attribute in 𝐴[attr] over the attributes in
𝐵 [attr], and vice versa. The goal is to compute a stable matching
between attributes in 𝐴 and 𝐵 such that no unmatched pair of at-
tributes would prefer each other over their current matches. The
output is a set 𝑀 = {(𝑎𝑖 , 𝑏 𝑗) | 𝑎𝑖 ∈ 𝐴[attr], 𝑏 𝑗 ∈ 𝐵 [attr]} contain-
ing the stable matches between attributes in 𝐴 and 𝐵, ensuring that
the matching is mutually acceptable and stable. The number of
matches can be constrained by a parameter 𝐾 , which specifies the
top 𝐾 stable matches for each attribute.

An overview of our bidirectional matching design is shown in
Figure 2. For more details on our prompts, how we compute the
confidence score, and the stable matching algorithm, see Appen-
dix B.

Figure 2: Bidirectional schema matching by swapping source
and target tables. Results fromboth directions are aggregated,
ranked, and merged.

3.3 Preliminary Results
In this section, we evaluate the impact of our proposed prompting
strategies and bidirectional approach with symmetric transforma-
tions, demonstrating how thesemethods help an open-sourcemodel
achieve competitive performance compared to proprietary models.
Problem Definition.We focus on the simplest form of mapping,
which is nonetheless a difficult task. Specifically, given relations
𝑆𝑖 and 𝐺 𝑗 , we want to to produce a set of pairs, each representing
an alignment between a source attribute and a global attribute.
Formally, 𝐶 = {(𝑠𝑙 , 𝑔𝑘) | 𝑠𝑙 ∈ 𝑎𝑡𝑡𝑟 (𝑆𝑖), 𝑔𝑘 ∈ 𝑎𝑡𝑡𝑟 (𝐺 𝑗)} indicating
that the attribute 𝑠𝑙 semantically corresponds to the attribute 𝑔𝑘 .
Prompt Template and Techniques. We use reasoning-based
prompting strategies to improve LLM performance in zero-shot

Towards Scalable Schema Mapping using Large Language Models

settings [16]. Specifically, we prompt the LLM three times with
transformed inputs using a fixed seed. To ensure consistent output
formatting and enable efficient processing, we constrain the model
to produce structured JSON output [34]. Each prompt follows an
𝑁 -1 format, where 𝑁 source attributes and one target attribute are
serialized in JSON to improve structural understanding [31, 32].
This 𝑁 -1 strategy has been shown to outperform other settings in
terms of matching effectiveness [27]. We conducted experiments to
evaluate the impact of different types of metadata. Our results show
that natural language descriptions of attributes consistently provide
the largest boost to schema matching performance. Even with basic
schema details such as table names, attribute names, and data types,
the LLM-based method outperforms traditional approaches such
as COMA in the single-prompt setting. We included data values
based on the idea that example values could help the model better
understand attribute meaning. Interestingly, data values caused a
slight drop in performance in single-prompt setups but provedmore
helpful when aggregating results across multiple prompts—each
varying in column order and sampled values. For more details
and results, please refer to Appendix E. To improve the semantic
reasoning of the LLM, we include all available schema metadata in
the prompt, including attribute names, data types, descriptions, ten
randomly sampled unique data values, and relation descriptions.
Datasets. We evaluate our method on two widely used schema
matching benchmarks: MIMIC-OMOP and Synthea-OMOP. MIMIC-
OMOP aligns real-world clinical databases, MIMIC-III and the
OMOP Common Data Model, across 26 schema pairs. It includes
268 source attributes, 203 target attributes, and 155 ground truth
matches. To populate OMOP with sample values, we use data from
MIMIC-IV, which avoids overlap with MIMIC-III while remaining
conceptually aligned. However, some aligned columns lack suffi-
cient sample data due to privacy restrictions or missing data. Many
columns also lack descriptions, which adds complexity to schema
matching. Synthea-OMOP is derived from synthetic healthcare
records generated by Synthea and aligned to OMOP. It consists of
12 schema pairs, 101 source attributes, 134 target attributes, and
105 matches. Although synthetic, the dataset captures realistic vari-
ability and schema ambiguity, making it a strong benchmark for
evaluating schema matching methods.
Baselines. We compare our methods with three baselines that
require no training data. The first is COMA [10], a widely used
schema-matching method known for its efficiency and flexibility,
which has been refined through several iterations [5, 23]. COMA
is a rule-based approach that lacks semantic understanding, with
the schema-based version considering only schematic information,
and the instance-based version incorporating both schematic in-
formation and data values. As a result, COMA can miss important
semantic nuances and struggle with the complexities of real-world
schemas like those in MIMIC-OMOP and Synthea-OMOP, which
affects its overall matching performance. We evaluate both versions
using Valentine’s Python wrapper for COMA 3.01 [17].

For language model baselines, we use the N-1 prompting method
from Parciak et al. [27]. This method is simple and effective. It works
by aggregating multiple prompts, similar to our own aggregation

1https://github.com/delftdata/valentine

approach. However, It does not provide ranked match suggestions,
which are often useful in practice. It also restricts mappings to one-
to-one correspondences, overlooking scenarios where an attribute
may align with multiple counterparts. We also evaluate Match-
Maker [29], which refines alignments with pre- and post-filtering
steps. Although MatchMaker improves performance by filtering,
its multi-step prompting pipeline introduces inefficiencies and can
fail if intermediate language model outputs deviate from expected
patterns. Both methods are implemented based on their respective
papers, and for a fair comparison, we exclude the pre-filtering step
in MatchMaker, as our method does not include it.
Metrics. We report the average Precision@k, Recall@k, and F1@k
for both our approach and the LLM baselines, averaged across three
different random seeds. For methods that do not rank the align-
ments, we report metrics at 𝑘 = max. For the bidirectional methods
using stable matching and multiplication, the value of k is limited
based on the pipeline, as the final alignments must be present in the
aggregated candidates from both directions. Therefore, we report a
limited k for these methods. For the method using averaging, we
report the maximum k obtained from the MatchMaker method. In
real-world data integration scenarios, automated matching candi-
dates require manual validation. Therefore, we aim to achieve high
precision and recall simultaneously to reduce manual effort while
ensuring high-quality matches.

Many studies across various tasks, including schema matching,
demonstrate that larger language models perform better [16, 27,
33, 38]. However, the most advanced models are typically available
only via APIs, which raises significant privacy concerns. In these
experiments, we use the Meta-Llama-3.1-70B-Instruct-GPTQ-INT4 2

, the largest model we could run on the server. More details on the
evaluation setup can be found in Appendix E.

Method Experiment k P@k R@k F1@k

Aggregation Original tables max 0.35 0.79 0.47
Swapped tables max 0.47 0.67 0.54

Bidirectional

Stable Matching 1 0.68 0.62 0.64
2 0.66 0.63 0.64

Average
1 0.37 0.78 0.49
2 0.31 0.82 0.44
3 0.30 0.83 0.43

Multiply 1 0.67 0.62 0.64
2 0.66 0.63 0.64

Baseline

MatchMaker
1 0.25 0.24 0.23
2 0.15 0.30 0.19
3 0.11 0.31 0.15

COMA Sch. max 0.14 0.11 0.10
COMA Inst. max 0.21 0.14 0.16
Parciak et al max 0.30 0.15 0.18

Table 1: Precision@k (P@k), Recall@k (R@k), and F1@k for
different methods on the MIMIC dataset.

2The "70B" refers to the model’s size, with 70 billion parameters. "Instruct" indicates
that the model is fine-tuned for instruction-following tasks. "GPTQ" is a quantization
method that optimizes memory efficiency and improves inference speed. "INT4" refers
to 4-bit integer quantization, a specific technique used within GPTQ to further reduce
memory usage while maintaining performance.

https://github.com/delftdata/valentine

Buss et al.

3.3.1 Evaluation Results. The results in this paper use the major-
ity vote aggregation method, as it offers the best balance between
recall and precision. Results for other aggregation methods are
available in Appendix E. As shown in Tables 1 and 2, our aggrega-
tion method outperforms all baselines. In addition to our symmetric
transformations, the key difference from Parciak et al. lies in the
output format and schema serialization used in the prompt. Their
method struggles with incomplete responses, where the model of-
ten skips the final decision3. MatchMaker also fails when the LLM
does not follow the required format in intermediate steps. While
both MatchMaker and Parciak et al. used GPT-4 in their studies, we
employed a significantly smaller model in our experiments. As a
result, our prompt is more effective for smaller models, which we
attribute to its clear output format and structured JSON schema
serialization.

On the MIMIC dataset, LLM-based methods outperform COMA,
highlighting that LLMs excel in domains where domain knowl-
edge is crucial, thanks to their ability to process natural language
descriptions. In contrast, on the Synthea dataset—where vocabu-
lary and attribute names require less domain knowledge—Parciak
et al.’s method does not outperform COMA. This suggests that
when domain knowledge is less critical, the choice of pipeline and
prompting method, especially for smaller models, becomes more
important.

We also observe that the bidirectional method using multiplica-
tion outperforms the others, achieving the best F1@1 score. The
bidirectional method using stable matching closely follows. The
difference lies in our use of confidence score ranking in stable
matching, while multiplication computes final alignment confi-
dence based on the actual values of scores from each direction.
These methods are effective for tasks where both precision and
recall are important. The bidirectional method using averaging,
though lower in precision, excels in recall and is preferred when
high recall is prioritized.

3Example: The first attribute to consider is {𝑠𝑜𝑢𝑟𝑐𝑒_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 }. Does
{𝑠𝑜𝑢𝑟𝑐𝑒_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 } semantically match {𝑡𝑎𝑟𝑔𝑒𝑡_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 }?

Method Experiment k P@K R@K F1@K

Aggregation Original tables max 0.57 0.95 0.70
Swapped tables max 0.52 0.56 0.51

Bidirectional

Stable Matching 1 0.78 0.52 0.60
2 0.77 0.55 0.62

Average
1 0.58 0.95 0.71
2 0.50 0.95 0.65
3 0.48 0.96 0.63

Multiply 1 0.77 0.55 0.62
2 0.77 0.55 0.62

Baseline

MatchMaker
1 0.45 0.21 0.27
2 0.23 0.21 0.21
3 0.15 0.21 0.17

COMA Sch. max 0.30 0.15 0.19
COMA Inst. max 0.30 0.16 0.20
Parciak et al max 0.53 0.11 0.17

Table 2: Precision@k (P@k), Recall@k (R@k), and F1@k for
different methods on the Synthea dataset.

We compared our methods against LLM baselines originally de-
signed for GPT-4. MatchMaker is directly comparable, as it also eval-
uates on the MIMIC and Synthea datasets. We assess performance
by comparing our bidirectional method, based on an open-source
model, with the full MatchMaker pipeline using their reported ac-
curacy@1. As shown in Table 3, our bidirectional method using
stable matching and multiplication achieves accuracy compara-
ble to MatchMaker on the Synthea dataset. It also outperforms
MatchMaker on the MIMIC dataset.

Dataset Method Accuracy@1

MIMIC

MatchMaker 62.20 ± 2.40
Bidirectional (Stable Matching) 0.78 ± 0.00
Bidirectional (Average) 0.49 ± 0.01
Bidirectional (Multiply) 0.77 ± 0.01

Synthea

MatchMaker 70.20 ± 1.70
Bidirectional (Stable Matching) 0.69 ± 0.01
Bidirectional (Average) 0.64 ± 0.01
Bidirectional (Multiply) 0.70 ± 0.01

Table 3: Comparison of our proposed method using Llama-3.1-70B-
Instruct-GPTQ-INT4 against MatchMaker’s using GPT-4.

Our bidirectional approach, combined with symmetric transfor-
mations, delivers strong results on clinical datasets like Synthea
and MIMIC, achieving accuracy comparable to or exceeding GPT-
4-based models such as MatchMaker. While their results were ob-
tained using a significantly larger model, our approach, built on a
smaller open-source model, performs competitively. This highlights
that strong performance can be achieved not just through model
scale or domain knowledge, but through careful pipeline design.
In addition to improved prompting strategies, such as more effec-
tive schema serialization, our method introduces order variations
at the table, column, and data value levels to encourage broader
exploration of the alignment space. These design choices highlight
the impact of pipeline structure in maximizing the effectiveness
of LLMs for schema matching, even without access to proprietary
models.

3.3.2 Sampling Techniques for FRD Mappings. Our evaluation indi-
cates that, with the correct sampling techniques, open source LLMs
are highly competitive with at least one major, proprietary model
(GPT-4). However, these techniques depend on decomposing the
LLM’s responses into a fairly limited number of atomic elements.
For example, the final answer in the LLM’s response for schema
alignment is pairs of source columns and target columns. It is easy
to break the output into sets of these pairs, making the ordering
irrelevant, Further, each pair is reflexive in the sense that (A, B) is
identical to (B, A), allowing us to leverage bidirectional techniques.
In essence, sampling techniques require outputs that are simple
enough such that they can be broken down into atomic elements
and overlap between responses can be calculated.

Extending these techniques to schema mappings is not as easy
do to the increased complexity in the output language. A mapping
is essentially a collection of queries, and it is not immediately clear
how one might effectively partition such an output to test for over-
lap. One way to partition the output is on a per-query basis, testing
for the repetition of queries within outputs. However, using exact

Towards Scalable Schema Mapping using Large Language Models

string comparison would be much too restrictive, likely leading to
very little overlap, even if there are logically-equivalent queries.
Simultaneously, the logical-equivalency of queries is not guaran-
teed to be decidable [1]. Further, if a given rule is not invertible,
then the bidirectional technique cannot be used. This makes such
techniques incorrect in a theoretical sense, but empirically, such
techniques may still be useful if employed correctly. Clearly, this is
an important subject for future research.

4 Challenge: Representation and Large Input
As discussed in Section 2.2, existing research does not consider FRD
rules making the associated techniques insufficient for many com-
mon mapping scenarios. In this section, we consider two immediate
challenges associated with Zero-Shot generation of FRD mappings
using LLMs. First, we discuss the difficulties with representing FRD
rules. Second, we discuss the overall complexity of generating a
full FRD mapping. We close this section with an empirical study
meant to help us better understand these challenges and establish
future research.

4.1 Output Representation
LLMs have show great success at generating SQL [20], making it
a promising candidate for representing rules. However, an SQL
query can only represent a single GaV rule because it’s output is
always only a single table. In fact, most popular query languages
can only produce individual GaV rules. That being said, multiple
SQL statements can be used in tandem to represent a GLaV rule.
Whether an LLM will produce such scripts is another issue. That
being said, it is possible to translate SQL into other classes. For
example, in the context of importing tabular data into a relational
target, one work prompts an LLM to generate a query over the
target and then inverts it to produce a LaV rule [15]. However, this
approach only works if the GaV counterpart is invertible itself, a
theoretically needless limitation.

4.2 Input
Given some unknown rule, the LLM can only generate it if it is
provided, at minimum, the schema fragments appearing in the rule.
On the other head, existing works have shown that filtering input to
that which is relevant often improves performance. It is reasonable
to believe that we would also benefit from filtering out irrelevant
schema. However, such a task is not straightforward.

A mapping could be quite large, with rules covering the entirety
of the source and target schemas. In such an instance, it perhaps
makes more sense to break the full mapping down into parts. A
sensible approach would be to segment the full mapping at the rule
level. However, since we do not know the underlying rules, we
would need to predict their contents related to source and target
relations.

Relations within Rule k. As the same relationmay appearmultiple
times within a conjunction, we define S𝑘 and T𝑘 to be the unique
relations appearing in 𝜙 (®𝑥) (i.e., source relations appearing in left-
hand side of the rule) and𝜓 (®𝑥, ®𝑦) (i.e., target relations appearing in
right-hand side of the rule), respectively, for the kth rule.

We do not know either S𝑘 or T𝑘 for any given rule (much less
the rule itself). And finding S𝑘 and T𝑘 is, itself, a form of schema
filtering. However, knowing neither set of relations makes filtering
a potentially multi-step process where we must predict subgraphs
of the target and the source and then pair those subgraphs across
the source and target correctly. This may be quite hard, perhaps
motivating solutions that are very relaxed in how they filter schema.

When developing a schema filter, wemust consider its restrictive-
ness: we want a filter that maintains as many relevant schema parts
as possible while also reducing the size of the context. This presents
an optimization problem where we must decide how aggressively
to filter such that the LLM’s performance does not significantly
degrade either due to a lack of context (information) or an overly
noisy context (too much irrelevant information).

4.3 Preliminary Results
In this section, we present experiments meant to provide some
preliminary insight into the two questions raised in this section: 1)
in what ways is SQL sufficient (insufficient) for generating GLaV
rules? and 2) How does the input size affect the final set of map-
pings? For the later question, we assume that we have already found
S𝑘 and T𝑘 for each kth rule. The question is, how do we chunk
these specifications into prompts.

Prompt Template and Techniques. Similar to our prompt discussed
in Section 3.3, we assume a zero-shot setting and encourage the
model to reason about its mapping prior to producing its final script.
Each prompt can contain multiple source relations and target rela-
tions, each of which is serialized as JSON. We include all available
and relevant metadata. For each relation, we include its name, pri-
mary key, and any foreign key relationships. For each attribute,
we include its name, type, whether it is NULLable, and up to 10
instance data values, uniformly sampled without replacement. Each
sampled data value is truncated to 100 characters.

Dataset. We use a subset of Amalgam [24], a commonly-cited
schema mapping benchmark. Of Amalgam’s four bibliography
databases, we take S1 as our source and S2 as our target. The gold
mapping contains 7 rules. Generally speaking, it involves decompos-
ing publication-type relations (S1) into attribute-specific relations
(S2). During our research, we have noticed a surprising lack of
schema mapping benchmarks despite the prevalence of the prob-
lem. Unfortunately, many benchmarks have broken links. We have
pieced Amalgam together from a few places: we use the schema
definitions from the original source [24], the data provided by [18],
and the ground truth as provided by the iBench scenario Github
page4. Notably, the ground truth mappings are specified using a
proprietary format. We translate these to SQL for our purposes.
We hope that the inaccessibility of the original dataset helps cir-
cumvent any data leakage issues. Amalgam does not contain any
natural language descriptions of attributes or relations. However,
given its common domain, we hypothesize that an LLM should
have a general understanding of the domain.

Metrics. We borrow a metric commonly used in Text-to-SQL
called execution accuracy which measures the overlap between the

4https://github.com/RJMillerLab/ibenchScenarioCollection

https://github.com/RJMillerLab/ibenchScenarioCollection

Buss et al.

results obtained from predicted queries and ground-truth queries.
However, instead of only reporting either 1 (full overlap) or 0 (any-
thing less than full overlap), we report the percentage of overlap.
As discussed in Section 2, most data integration systems follow
a human-in-the-loop approach, where a user can validate and fix
predicted mappings. Thus, it is useful to report the proximity of a
predicted mapping to that of the ground truth.

To test overlap, we need to compare the effect of both map-
pings given the same input target-instance. For evaluation data,
we generate 100 rows for each table in the target database. When
schematically valid, we insert NULLs into attributes for some rows
and remove some foreign key references, resulting in some parent
rows with no children (i.e., some authors with no publications and
some publications with no authors). We apply both the gold and
predicted mapping to produce a gold target instance 𝐼 ′ and a pre-
dicted target instance 𝐼 . We then apply an exhaustive set of test
queries to both instances. For each test query 𝑞𝑖 , we calculate false
positive rows (FP), false negative rows (FN), and true positive rows
(TP) as follows,

𝐹𝑃𝑖 = 𝑞𝑖 [𝐼]−𝑞𝑖 [𝐼 ′] 𝐹𝑁𝑖 = 𝑞𝑖 [𝐼 ′]−𝑞𝑖 [𝐼] 𝑇𝑃𝑖 = 𝑞𝑖 [𝐼 ′]∩𝑞𝑖 [𝐼]

We then calculate recall (R), precision (P) as,

𝑅𝑖 = |𝑇𝑃𝑖 | / (|𝑇𝑃𝑖 | + |𝐹𝑁𝑖 |) 𝑃𝑖 = |𝑇𝑃𝑖 | / (|𝑇𝑃𝑖 | + |𝐹𝑃𝑖 |)

Finally, F1-score is calculated as 𝐹1𝑖 = (2.0 ∗ 𝑅𝑖 ∗ 𝑃𝑖) / (𝑅𝑖 + 𝑃𝑖).
We test for two kinds of overlap: Table Overlap and Join Over-

lap. In both cases, we project over all columns except for arbitrary
primary keys and foreign key references. For our dataset, these keys
have no semantic meaning. Thus, correctness depends on upon
establishing the correct references between rows and not on the
particular values used to do so. our only expectation is that, no
matter the values assigned to these keys, the correct references are
established between rows.
Table Overlap. Let𝑇1 (𝑥1, 𝑥1),𝑇2 (𝑥2, 𝑥2), ...,𝑇𝑛 (𝑥𝑛, 𝑥𝑛) be relations
in the target schema, where 𝑥1, 𝑥2, ..., 𝑥𝑛 is each relation’s respective
set of attributes (columns), and 𝑥1, 𝑥2, ..., 𝑥𝑛 are the primary key
columns and foreign key references for their respective relation.
For each 𝑇𝑖 , we test for overlap using 𝑞𝑖 (𝑥𝑖) : −𝑇𝑖 (𝑥𝑖 ∩ 𝑥𝑖) if both
𝑞𝑖 [𝐼 ′] and 𝑞𝑖 [𝐼] return no results, then we do not consider 𝑞𝑖 in our
final calculation. This prevents the overlap from being inflated by
target tables that are not touched by any mapping.
Join Overlap. We indicate the target relations appearing in the
kth gold mapping with T𝑘 = 𝑇1 (𝑥1, 𝑥1),𝑇2 (𝑥2, 𝑥2), ...,𝑇𝑙 (𝑥𝑙 , 𝑥𝑙). For
each T𝑘 , we test for overlap using 𝑞𝑘 (

⋃𝑙
𝑗=1 𝑥 𝑗) : −𝑇1 (𝑥1 ∪ 𝑥1) ⊲⊳

𝑇2 (𝑥2 ∪𝑥2) ⊲⊳ ... ⊲⊳ 𝑇𝑙 (𝑥𝑙 ∪𝑥𝑙). In instances where |T𝑘 | = 1, we drop
query 𝑞𝑘 as it devolves to a query with no joins, which is already
covered by Table Overlap. In instances where we have multiple,
identical queries due to target-relation overlap in our gold mapping,
we remove all but one of the queries. After calculating individual
metrics, we take the average of all queries.

It is worth noting that perfect Join Overlap (i.e., F1 = 1.0) also
implies perfect Table Overlap, but perfect Table Overlap does not
imply perfect Join Overlap. In fact, low Table Overlap is likely
connected with very low table overlap scores given the nature of
the metrics. Producing high Join Overlap requires that the model

effectively generate the correct references between rows, sometimes
requiring the model to invent new keys.

4.3.1 Evaluation Results. We conduct an empirical evaluation to
answer two questions. First, we want to know how does chunking
affect performance; namely, are there benefits of producing more
chunks at a time. What are the drawbacks of having the LLM do
more work with fewer prompts? Second, we want to better un-
derstand the limitations of a baseline approach, which will help
establish promising research directions.

Rules / Prompt Input Tokens Output Tokens
1 3910 1104
2 5024 1484
3 6425 1838
4 7596 2053
5 8839 2489
6 9983 2849
7 11259 2639

Table 4: The average number of input and output tokens according
to the number of rules a prompt is given specification for (i.e., the
underlying source and target relations). Each average is calculated
over 20 random prompt/response pairs.

To understand the effect of input size on mapping quality, we
vary the input size of prompts with respect to how many (S𝑘 ,T𝑘)
pairs we supply in the prompt. As more pairs are added, the model
will not only need to parse more information, but will also need to
generate more code. We treat the Max. Rules per Prompt (MRPP) as
a hyperparameter and vary it from 1 to 7. For example, if MRPP
is 5, we will prompt the model twice: once with a specification
for 5 rules and again with a specification for 2 rules (one prompt
will have fewer rules if the number of mappings is not divisible by
MRPP). Rules are uniformly sampled without replacement, and as
we add rules, we remove overlapping relations.

We use the same LLM here (Meta-Llama-3.1-70B-Instruct-GPTQ-
INT4). For eachMRPP, we prompt themodel 20 times using different
seeds, controlling the order in which relations and attributes within
those relations are presented and which data values are sampled.
Unlike the previous section, we do not combine the outputs of
these different models, but rather use this as a way to get a more
robust measurement of performance that is not dependent on a
single representation of the input. As discussed, combining these
outputs is a viable technique for producing better programs, but it
is saved for future works. We report 95% confidence intervals for
our metrics.

Figure 3 shows the performance averaged over seeds for each
setting for MRPP. Though we see a decrease in performance overall,
it is most drastic for recall, implying that the model omits parts
the rules whenever more than one rule is included in the prompt.
Table 4 gives us an idea of how the complexity of the input and
output grows as more rules are added.

5 Challenge: Reducing Poor-Quality Mappings
In Section 3, we proposed methods for filtering the candidate set
based on sampling multiple outputs from an LLM. Furthermore, we

Towards Scalable Schema Mapping using Large Language Models

1 2 3 4 5 6 7
Max. Rules per Prompt

0.4

0.5

0.6

0.7

0.8

0.9

Sc
or

e

Precision
Recall
F1 Score

Figure 3: Average precision, recall, and F1-Score plotted against the maximum rules per prompt (MRPP). Error bars represent a
95% confidence interval

empirically showed how such methods can improve the candidate
set of mappings. However, sample-based filtering will not eliminate
false positives if they consistently appear in the output. Thus, it is
worth considering other filtering strategies that can complement
these sample-based methods. We propose additional methods for
filtering the candidate set based on markers of mapping quality.

5.1 Constraint-Based Filtering
Mappings must be consistent with both the explicit and implicit
(semantic) constraints of the global schema. Explicit constraints
include those stored in the schema and are often enforced by data-
base management systems. For example, mappings must popu-
late required attributes and respect attribute data types. Moreover,
mappings must respect semantic constraints, which are often not
enforced by the database, but are still generally followed by its
users. Some semantic constraints are commonsense regardless of
the domain. For example, each row within a relation must have
some information content. This constraint can be violated when a
relation has an arbitrary primary key, which is a common database
design practice. This can create situations where the primary key is
populated but all of the attributes of the row are NULL, functionally
producing a row with no real information content.

Another source of semantic constraints are business rules, which
are often documented (likely as an entity-relationship diagram) as
part of the global schema’s design. Some semantic constraints are
commonsense given the domain (e.g., each child must have exactly
two biological parents) while others may be esoteric and purely
process-driven. Regardless, many such constraints are often not
stored in the schema. Instead, they are very likely enforced by
the end-user when they inspect the final mapping set. In fact, the
existence of latent constraints is one important reason for why
humans must validate candidate rules.

Specifying such constraints could be valuable in eliminating
unfavorable mappings from the candidate set. Further, since such
constraints specify how data should be organized within the target
schema, theoretically, they could be specified once and then be used
to produce higher-quality candidate sets for all sources, the very
definition of a scalable technique. Of course, it is likely that even
these constraints will need to be edited as the target itself evolves.

Using semantic constraints is a promising technique for enabling
scalable data integration systems, but there are important questions:
how would one explicitly define these constraints and how could
they be used in practice? It would tedious and difficult to write out
and manage all of these underlying constraints, so a more practical
approach would be to derive them from other sources. For example,
if we already have data in our target, we can use techniques to
derive constraints from that data. Further, some such constraints
could be learned through user preferences over candidate mappings.

5.2 Model-Based Filtering
Users may not want to semantic constraints into logical statements
as it, admittedly, may require significant overhead. Alternatively,
one can leverage models of what consistent data "looks like". When
adding new sources or maintaining existing ones, we can material-
ize the data (i.e., run the candidate mapping) and check the quality
of the instance.

Assuming that the current instance data in the global up to this
point is a good representation of "high-quality data." We can derive
characteristics of that data that end up being indicators of quality.
In some way, building a model that, through unsupervised learning,
constructs its own non-logical black-box constraints of data quality
based on the current instance. Reward models could essentially
measure the similarity of of existing data and new data (proposed
data from candidate mapping)–how well do they "mix".

Buss et al.

Max. Rules/Prmpt Input Output Total Reduction
1 27577 8135 35712 –
2 19204 5282 24486 1.46
3 16635 4633 21268 1.68
4 14087 3777 17864 2.00
5 14083 4068 18151 1.97
6 13884 4006 17890 2.00
7 11259 2639 13898 2.57

Table 5: How chunking affects the number of tokens processed.
"Reduction" specifies efficiency relative the first row (i.e., using a
separate prompt for each rule)

Of course, this raises questions of how we might prevent the
model from becoming biased towards our current instance. For
example, if our current instance only contains publications from
VLDB, the model might associate publication[title]="VLDB" as an
important indicator of quality, and conversely, would assume that
instances where, for some publications, publication[title]!="VLDB"
indicates a poor mapping.

6 Challenge: Efficient Prompting
Amajor challenge in LLM-based schemamapping is its high compu-
tational cost: for large datasets, many tokens need to be processed.
Though computation is generally cheaper than human attention,
it is necessary to consider the trade-off between performance and
computational costs. imprecisely speaking, techniques should pro-
duced the desired results without excessive computation. This is
especially important for those who must pay a third party for
computational resources. We discuss three strategies for reducing
computational costs (i.e., tokens processed).

Reducing Unnecessary Comparisons (Don’t ask LLM trivial things).
One way to reduce unnecessary comparisons is through data type
prefiltering. By categorizing attributes into broad types—such as
Numeric, Text, Date/Time, and Boolean—we can reduce the number
of source attributes that need to be compared to a target attribute.
In an N-1 matching setup, where each prompt compares one target
attribute to multiple source attributes, prefiltering ensures that only
source attributes with the same data type as the target attribute
are included in the comparison. This reduces the pool of source at-
tributes from N to a smaller subset, k, improving both the efficiency
and accuracy of the model by eliminating irrelevant comparisons.
Another approach is to use the results from the first round of pre-
dictions to assess confidence. If the top match has a much higher
score than the others, there may be no need for additional rounds
of comparison, further reducing the number of calls. By refining
the selection process based on confidence and narrowing down the
pool of candidate pairs, we can make the schema matching process
more efficient and scalable.

Efficient Chunking. As discussed, one tunable parameter is the
amount of work induced (i.e., code written) by each prompt. We
observed in section 4 that the performance of our baseline approach
does worsen as we ask it to generate more rules. However, as
shown in Table 5, we also observe that the total number of tokens
processed (input/output) is drastically reduced when we have the

LLM produce two rules instead of one. Further, the total tokens
processed is reduced by more than 50% when we ask the model to
generate the full mapping within one prompt.

The non-linear nature of this reduction implies that we can be
more efficient with our techniques while also maintaining good
performance–basically, the problem is more nuanced than simply
reducing the number of prompts. One reason for this non-linear
relationship is that there is a constant overhead that must be paid
with each prompt; namely, the static text which sets up our specific
task for the LLM. The other major reason has to do with high
rule overlap, where underlying rules share many source and target
relations. Chunking two high-overlap rules together in one prompt
has the affect of completing more work while adding relatively
little to the input (i.e., the very few relations that do not appear in
both rules). In other words, some rules can be chunked together
without adding significant complexity (i.e., number of tokens) to
either the input or the output rule. A simple technique, then, would
be to chunk as many rules together under different prompts such
that their overlap is high.

References
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of databases.

Vol. 8. Addison-Wesley Reading.
[2] Menatalla Abououf, Shakti Singh, Hadi Otrok, Rabeb Mizouni, and Anis Ouali.

2019. Gale-Shapley Matching Game Selection—A Framework for User Satisfac-
tion. IEEE Access 7 (2019), 3694–3703. doi:10.1109/ACCESS.2018.2888696

[3] Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Hojel,
Immanuel Trummer, and Christopher Ré. 2023. Language models enable simple
systems for generating structured views of heterogeneous data lakes. arXiv
preprint arXiv:2304.09433 (2023).

[4] Ted T. Ashburn and Karl B. Thor. 2004. Drug repositioning: identifying and
developing new uses for existing drugs. Nature Reviews Drug Discovery 3, 8
(2004), 673–683.

[5] David Aumueller, Hong-Hai Do, Sabine Massmann, and Erhard Rahm. 2005.
Schema and ontology matching with COMA++. In Proceedings of the 2005 ACM
SIGMOD International Conference on Management of Data (Baltimore, Mary-
land) (SIGMOD ’05). Association for Computing Machinery, New York, NY, USA,
906–908. doi:10.1145/1066157.1066283

[6] Angela Bonifati, GiansalvatoreMecca, Alessandro Pappalardo, Salvatore Raunich,
and Gianvito Summa. 2008. Schema mapping verification: the spicy way. In
Proceedings of the 11th international conference on Extending database technology:
Advances in database technology. 85–96.

[7] Christopher Buss, Jasmin Mosavi, Mikhail Tokarev, Arash Termehchy, David
Maier, and Stefan Lee. 2023. Generating Data Augmentation Queries Using Large
Language Models.. In VLDB Workshops.

[8] Christopher Buss, Jasmin Mousavi, Mikhail Tokarev, Arash Termehchy, David
Maier, and Stefan Lee. 2023. Effective Entity Augmentation By Querying External
Data Sources. Proceedings of the VLDB Endowment 16, 11 (2023), 3404–3417.

[9] Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan Xiao, Pengcheng Yin,
Sushant Prakash, Charles Sutton, XuezhiWang, and Denny Zhou. 2023. Universal
Self-Consistency for Large LanguageModel Generation. arXiv:2311.17311 [cs.CL]
https://arxiv.org/abs/2311.17311

[10] Hong-Hai Do and Erhard Rahm. 2002. Chapter 53 - COMA — A system for
flexible combination of schema matching approaches. In VLDB ’02: Proceedings
of the 28th International Conference on Very Large Databases, Philip A. Bernstein,
Yannis E. Ioannidis, Raghu Ramakrishnan, and Dimitris Papadias (Eds.). Morgan
Kaufmann, San Francisco, 610–621. doi:10.1016/B978-155860869-6/50060-3

[11] AnHai Doan, Alon Halevy, and Zachary Ives. 2012. Principles of Data Integration
(1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[12] Ronald Fagin, Phokion G Kolaitis, Renée J Miller, and Lucian Popa. 2005. Data
exchange: semantics and query answering. Theoretical Computer Science 336, 1
(2005), 89–124.

[13] National Science Foundation and National Institutes of Health. 2021. Smart
Health and Biomedical Research in the Era of Artificial Intelligence and Advanced
Data Science (SCH). https://www.nsf.gov/pubs/2021/nsf21530/nsf21530.htm

[14] Behzad Golshan, Alon Y. Halevy, George A. Mihaila, and Wang-Chiew Tan. 2017.
Data Integration: After the Teenage Years. In PODS.

[15] Zezhou Huang, Jia Guo, and Eugene Wu. 2024. Transform Table to Database
Using Large Language Models. Proceedings of the VLDB Endowment. ISSN 2150
(2024), 8097.

https://doi.org/10.1109/ACCESS.2018.2888696
https://doi.org/10.1145/1066157.1066283
https://arxiv.org/abs/2311.17311
https://arxiv.org/abs/2311.17311
https://doi.org/10.1016/B978-155860869-6/50060-3
https://www.nsf.gov/pubs/2021/nsf21530/nsf21530.htm

Towards Scalable Schema Mapping using Large Language Models

[16] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and
Yusuke Iwasawa. 2023. Large Language Models are Zero-Shot Reasoners.
arXiv:2205.11916 [cs.CL] https://arxiv.org/abs/2205.11916

[17] Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Jerry
Brons, Marios Fragkoulis, Christoph Lofi, Angela Bonifati, and Asterios Katsi-
fodimos. 2021. Valentine: Evaluating Matching Techniques for Dataset Discovery.
In 2021 IEEE 37th International Conference on Data Engineering (ICDE). 468–479.
doi:10.1109/ICDE51399.2021.00047

[18] Sebastian Kruse, Paolo Papotti, and Felix Naumann. 2015. Estimating Data
Integration and Cleaning Effort.. In EDBT. 61–72.

[19] Maurizio Lenzerini. 2002. Data integration: A theoretical perspective. In Proceed-
ings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems. 233–246.

[20] Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi Jiang, Yuxin Zhang, Ju
Fan, Guoliang Li, Nan Tang, and Yuyu Luo. 2024. A Survey of NL2SQL with
Large Language Models: Where are we, and where are we going? arXiv preprint
arXiv:2408.05109 (2024).

[21] Xuanqing Liu, Runhui Wang, Yang Song, and Luyang Kong. 2024. GRAM: Gen-
erative Retrieval Augmented Matching of Data Schemas in the Context of Data
Security. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining (Barcelona, Spain) (KDD ’24). Association for Computing
Machinery, New York, NY, USA, 5476–5486. doi:10.1145/3637528.3671602

[22] Yurong Liu, Aecio Santos, Eduardo HM Pena, Roque Lopez, EdenWu, and Juliana
Freire. [n. d.]. Enhancing Biomedical SchemaMatching with LLM-based Training
Data Generation. In NeurIPS 2024 Third Table Representation Learning Workshop.

[23] Sabine Massmann, Salvatore Raunich, David Aumüller, Patrick Arnold, Erhard
Rahm, et al. 2011. Evolution of the COMA match system. Ontology Matching 49
(2011), 49–60.

[24] Renée J. Miller, Daniel Fisla, Mary Huang, David Kymlicka, Fei Ku, and Vi-
vian Lee. 2001. The Amalgam Schema and Data Integration Test Suite. (2001).
www.cs.toronto.edu/ miller/amalgam.

[25] Avanika Narayan, Ines Chami, Laurel Orr, and Christopher Ré. [n. d.]. Can
Foundation Models Wrangle Your Data? ([n. d.]).

[26] Marcel Parciak, Brecht Vandevoort, Frank Neven, Liesbet M Peeters, and Stijn
Vansummeren. [n. d.]. Schema Matching with Large Language Models: an Ex-
perimental Study. Proceedings of the VLDB Endowment. ISSN 2150 ([n. d.]), 8097.

[27] Marcel Parciak, Brecht Vandevoort, Frank Neven, Liesbet M. Peeters, and Stijn
Vansummeren. 2024. Schema Matching with Large Language Models: an Experi-
mental Study. arXiv:2407.11852 [cs.DB] https://arxiv.org/abs/2407.11852

[28] Lucian Popa, Yannis Velegrakis, Renee J Miller, Mauricio A Hernandez, and
Ronald Fagin. 2002. Translating web data. In VLDB’02: Proceedings of the 28th
International Conference on Very Large Databases. Elsevier, 598–609.

[29] Nabeel Seedat and Mihaela van der Schaar. 2024. Matchmaker: Self-Improving
Compositional LLM Programs for Table Schema Matching. In NeurIPS 2024 Third
Table Representation Learning Workshop. https://openreview.net/forum?id=
KCklcYUlLb

[30] Eitam Sheetrit, Menachem Brief, Moshik Mishaeli, and Oren Elisha.
2024. ReMatch: Retrieval Enhanced Schema Matching with LLMs.
arXiv:2403.01567 [cs.DB] https://arxiv.org/abs/2403.01567

[31] Ananya Singha, José Cambronero, Sumit Gulwani, Vu Le, and Chris Parnin.
2023. Tabular Representation, Noisy Operators, and Impacts on Table Structure
Understanding Tasks in LLMs. arXiv:2310.10358 [cs.CL] https://arxiv.org/abs/
2310.10358

[32] Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and Dongmei Zhang. 2024.
Table Meets LLM: Can Large Language Models Understand Structured Table
Data? A Benchmark and Empirical Study. In Proceedings of the 17th ACM Interna-
tional Conference on Web Search and Data Mining (Merida, Mexico) (WSDM
’24). Association for Computing Machinery, New York, NY, USA, 645–654.
doi:10.1145/3616855.3635752

[33] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou. 2023. Self-Consistency Improves
Chain of Thought Reasoning in Language Models. arXiv:2203.11171 [cs.CL]
https://arxiv.org/abs/2203.11171

[34] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry
Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt. 2023.
A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT.
arXiv:2302.11382 [cs.SE] https://arxiv.org/abs/2302.11382

[35] E. C. Wood, Amy K. Glen, Lindsey G. Kvarfordt, Finn Womack, Liliana Acevedo,
Timothy S. Yoon, Chunyu Ma, Veronica Flores, Meghamala Sinha, Yodsawalai
Chodpathumwan, Arash Termehchy, Jared C. Roach, Luis Mendoza, Andrew S.
Hoffman, Eric W. Deutsch, David Koslicki, and Stephen A. Ramsey. 2021. RTX-
KG2: a system for building a semantically standardized knowledge graph for
translational biomedicine. bioRxiv (2021). https://www.biorxiv.org/content/
early/2021/11/01/2021.10.17.464747

[36] Yongqin Xu, Huan Li, Ke Chen, and Lidan Shou. 2024. KcMF: A Knowledge-
compliant Framework for Schema and Entity Matching with Fine-tuning-free
LLMs. arXiv:2410.12480 [cs.CL] https://arxiv.org/abs/2410.12480

[37] Yifan Zeng, Ojas Tendolkar, Raymond Baartmans, Qingyun Wu, Lizhong Chen,
and Huazheng Wang. 2024. LLM-RankFusion: Mitigating Intrinsic Inconsistency
in LLM-based Ranking. arXiv:2406.00231 [cs.IR] https://arxiv.org/abs/2406.00231

[38] Haochen Zhang, Yuyang Dong, Chuan Xiao, and Masafumi Oyamada. 2024.
Large Language Models as Data Preprocessors. arXiv:2308.16361 [cs.AI] https:
//arxiv.org/abs/2308.16361

[39] Jing Zhang, Bonggun Shin, Jinho D Choi, and Joyce C Ho. 2021. SMAT: An
attention-based deep learning solution to the automation of schema matching.
In Advances in Databases and Information Systems: 25th European Conference,
ADBIS 2021, Tartu, Estonia, August 24–26, 2021, Proceedings 25. Springer, 260–274.

https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://doi.org/10.1109/ICDE51399.2021.00047
https://doi.org/10.1145/3637528.3671602
https://arxiv.org/abs/2407.11852
https://arxiv.org/abs/2407.11852
https://openreview.net/forum?id=KCklcYUlLb
https://openreview.net/forum?id=KCklcYUlLb
https://arxiv.org/abs/2403.01567
https://arxiv.org/abs/2403.01567
https://arxiv.org/abs/2310.10358
https://arxiv.org/abs/2310.10358
https://arxiv.org/abs/2310.10358
https://doi.org/10.1145/3616855.3635752
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2302.11382
https://arxiv.org/abs/2302.11382
https://www.biorxiv.org/content/early/2021/11/01/2021.10.17.464747
https://www.biorxiv.org/content/early/2021/11/01/2021.10.17.464747
https://arxiv.org/abs/2410.12480
https://arxiv.org/abs/2410.12480
https://arxiv.org/abs/2406.00231
https://arxiv.org/abs/2406.00231
https://arxiv.org/abs/2308.16361
https://arxiv.org/abs/2308.16361
https://arxiv.org/abs/2308.16361

Buss et al.

A Related Work in Schema Alignment
Recent studies have explored improving schema matching with
large language models (LLMs) by incorporating schema metadata,
natural language descriptions, and various techniques to optimize
candidate matches and reduce false positives. One common strat-
egy involves pre-prompt filtering of matching candidates based on
semantic similarity measures [21, 29, 30, 36?], which simplifies the
LLM’s task by narrowing down the set of candidates. Another strat-
egy is post-prompt filtering, where candidate alignments are refined
through techniques such as ensembling multiple prompts [27, 36]
or prompting LLMs to assign confidence scores to candidates [29].
In the following, we summarize key methods from recent papers
in this domain, with Tables 6 and 7 providing an overview of the
techniques they employ and the metadata incorporated into their
prompts.

Parciak et al. [27] present an experimental approach to schema
matching that does not rely on pre-prompt filtering. They explore
several prompting configurations, including 1-to-15, 1-to-M6, N-
to-1, and N-to-M setups. Each attribute is provided along with
their name, description, and relational context (relation name and
description). The authors ask the model to reason over this infor-
mation before classifying each alignment pair into one of three
different JSON-formated lists: "yes," "no," or "unknown." To reduce
hallucinations, the authors employ a majority voting technique by
prompting the LLM three times and selecting the most frequent
alignments. They find 1-to-M and N-to-1 prompts to be most effec-
tive, and they recommend applying the union to the output matches
of both configurations to improve recall. However, their evalua-
tion reveals a notable gap between recall and precision, suggesting
that further refinement of the approach is necessary to enhance
matching accuracy.

ReMatch [30] introduces an efficient approach to LLM-based
schema alignment by employing semantic similarity to significantly
reduce the search space before prompting the LLM. Instead of eval-
uating all possible candidate alignments, this method uses embed-
dings generated from schema information and textual descriptions
to pre-filter target tables, narrowing the candidates to only the most
promising options. These embeddings identify the top 𝐽 candidate
target tables for each source attribute, which are then sent to the
LLM for further refinement. The LLM subsequently selects the top
𝐾 most relevant target attributes for alignment with each source
attribute. This strategy, while effective in improving efficiency and
alignment quality, relies on careful calibration of the parameters 𝐽
and 𝐾 to maintain robust performance across various domains.

Liu et al. [?] apply an initial filtering over all alignment pairs
before prompting the LLM for a decision. However, their approach
relies on an embedding model that is trained on data synthesized
by the LLM itself. They introduce a contrastive learning framework
to generate column embeddings that capture important semantic
differences. The schema matching process is performed in two
stages: first, they narrow down the pool of potential matches by
identifying those most similar to the queried attribute. Then, they
pass the top candidates along with the source attribute to the LLM

5In 1-to-1 prompts, the LLM evaluates candidate alignments one-at-a-time
6In 1-to-M prompts, the LLM produces alignment pairs for one source attribute and
all target attributes at once

to perform the final alignment. This filtering approach introduces
additional complexity and may lead to biases, as it depends on the
quality and domain-specific capabilities of the LLM used for data
augmentation.

GRAM [21] is a schema matching method that incorporates a
filtering step inspired by named entity recognition (NER). They
categorize attributes into predefined object types (e.g., "zip codes"
vs. "cities") and train a BERT-base model using synthesized data to
classify attributes accordingly. After clustering attributes by these
categories, they limit the candidate matches passed to the LLM
based on these clusters and their respective data types. To further
enhance performance, the authors utilize in-context learning, dy-
namically generating examples based on the similarity of the source
attribute and the object category of the examples. Although this
approach shows promise, there are concerns about the quality of
the training data. The method’s heavy reliance on predefined object
types requires deep domain knowledge to define these categories ac-
curately, which may be difficult when applying the method to new
domains. Moreover, the data synthesis process depends on random
generation, publicly available datasets, and LLM-generated exam-
ples, which may not always provide high-quality, domain-specific
training data.

MatchMaker [29] is a schema matching framework that nar-
rows candidates into two groups: semantically similar candidates,
generated using column-wise similarities from a pre-trained embed-
ding model, and reasoning-based candidates, derived by prompting
an LLM to suggest matches based on schema descriptions. These
matches are further refined using an LLM with chain-of-thought
reasoning to identify the most relevant alignments. For validation,
the framework employs confidence scoring, where the LLM assigns
confidence levels to alignments and includes a "None of the above"
option to avoid forced matches. To enhance its performance, the
framework self-optimizes by creating synthetic in-context exam-
ples from its outputs. These examples are generated by running the
model on unlabeled data. The authors then prompt an LLM using
chain-of-thought reasoning to rate input-output relevance for each
example, keeping the highest-scored examples as in-context ex-
amples. The authors observe that reasoning-based candidates often
outperform those from semantic similarity alone. We argue that
relying on synthetic in-context examples could introduce risks of
bias and error propagation, especially if comprehensive validation
across domains is not conducted.

KcMF [36] is a schemamatching framework that combines struc-
tured reasoning with knowledge retrieval techniques. The frame-
work begins by using if-then-else pseudo-code rules to guide the
alignment process, which requires manual configuration. Knowl-
edge is represented in two forms: Dataset as Knowledge (DaK) and
Examples as Knowledge (EaK). DaK employs metadata to describe
database objects such as tables, while EaK utilizes language mod-
els to extract domain-specific keywords from metadata pairs and
provides examples from external knowledge sources, including
Snomed-CT, Wikidata, and Wikipedia. To improve alignment ac-
curacy, KcMF incorporates summaries of schema descriptions and
relevant knowledge entries into the prompts. The framework en-
hances reasoning through a k-shot in-context learning approach
that follows the pseudo-code to generate reasoning steps and an-
swers. For managing complexity, KcMF generates separate prompts

Towards Scalable Schema Mapping using Large Language Models

Table 6: Summary of the methods from recent papers. "# Target Table" specifies the number of target tables supported. "Match"
describes the matching strategies, where 1:m means a single attribute from one schema can align with m attributes in another
schema. The table also highlights the use of synthetic data (Synth.), chain of thought (CoT), incontext learning (ICL), and the
prompting method, where N-M denotes that each prompt introduces N source attributes and M target attributes. Finally, the
"Pre-filtering" and "Post-filtering" columns indicate whether candidate alignments are filtered before or after prompting the
LLM.

Paper # Target Table Match Synth. Prompt CoT ICL Pre-filtering Post-filtering

Parciak et al.[27] 1 1:1 ✗ N-1,1-M ✓ ✗ ✗ ✓

ReMatch[30] >1 1:m ✗ 1-M ✗ ✗ ✓ ✗

liu et al.[?] 1 1:m ✓ 1-M ✗ ✗ ✓ ✗

GRAM[21] 1 1:1 ✓ 1-M ✗ ✓ ✓ ✗

MatchMaker[29] >1 1:m ✓ 1-M ✓ ✓ ✓ ✓

KcMF[36] 1 1:m ✓ 1-1 ✓ ✓ ✓ ✓

Table 7: Summary of the metadata used by each method in addition to attribute names. The table highlights the types of
additional schema information utilized, including primary key/foreign key relationships, attribute and table descriptions, data
types, data values, and the model used.

Paper Primary key/Foreign key Attribute description Data type Table description Data value Model

Parciak et al. [27] ✗ ✓ ✗ ✓ ✗ GPT-4
ReMatch [27] ✓ ✓ ✓ ✓ ✗ GPT-4
Liu et al. [21] ✗ ✗ ✗ ✗ ✓ GPT-4
GRAM [29] ✗ ✗ ✓ ✗ ✓ FLAN-T5
MatchMaker [30] ✗ ✓ ✓ ✓ ✗ GPT-4
KcMF [36] ✗ ✓ ✗ ✓ ✓ GPT-4

for each knowledge source and combines results through majority
voting. However, the framework’s reliance on manual selection of
domain knowledge bases complicates implementation, and its focus
on pairwise attribute matching makes it computationally expensive,
limiting its scalability for larger database mappings.

B Prompt Templates
Similar to [27], we use an 𝑁 -1 prompt template consisting of four
sections: Introduction, Source Schema Information, Target Schema In-
formation, and Task Description. Each prompt contains 𝑁 attributes
from the source schema and a single attribute from the target
schema, where the source and target schema details are serial-
ized in JSON format to improve LLM performance in structural
table understanding tasks [31, 32]. For both the Source Schema In-
formation and Target Schema Information sections, we use all the
hints available given the dataset. The target attribute information is
serialized in JSON format following the template shown in Figure 4.
For the source information, we include the details for all attributes
in the key "columns".

In the Introduction section, we use the Persona Pattern [34] to
encourage the LLM to act as a schema matcher. In the Task De-
scription section, we include the phrase "Let’s think step by step" to
help the LLM produce clear, step-by-step reasoning [16]. We also
use the Output Automater pattern shown in Equation 2 to guide
the model towards generating its output in JSON format, allowing
easier processing [34].

{"matches": ["<source attribute>, target_attribute", . . .]} (2)

{
"relation name": "relation_name",
"relation description": "relation_description",
"column": {

"name": "attribute_name",
"type": "data_type",
"description": "attribute_description",
"sample data instances": "random_unique_samples"

}
}

Figure 4: JSON Serialization of the target attribute, with all
hints available.

Where target_attribute is the queried target attribute in the
prompt. We also instruct the LLM not to mention the the source
attributes for which there is not enough information to conclude
whether they align with the target attribute. Additionally, if there
is no source attribute matching the target attribute, we ask the LLM
to report "None, target_attribute" instead. For an overview of
our 𝑁 -1 prompt see Figure 5.

C Confidence Scores computed using LLM
Logits

In this approach, we prompt the LLM to identify the best match
among the candidates for each attribute as shown in Figure 6. Then,
we use the LLM logits to calculate the confidence score for each
candidate. The process is broken down into several steps:

Buss et al.

Act as a schema matcher for relational schemas. Your task is to create semantic matches that specify how the elements of the source schema and the target
schema semantically correspond to one another. I will first provide the information of a single relation from the source schema, including the relation name
and description, as well as the name, type, description and sample data instances of all its attributes. Next, I will provide the same information for a single
relation and a single attribute from the target schema.
The information about the relation from the source schema is as follows:
source_schema_serialization
The information about the relation from the target schema is as follows:
target_attribute_serialization
Explain which of the target attributes semantically match to target_attribute from target_relation. Let’s work this out step by step to make sure we get it
correct. After your explanation, give a final decision formatted like this: ‘{"matches": ["<source attribute>, target_attribute", ...]}‘. Do not mention an attribute if
there is not enough information to decide. If there is no source attribute matching the target attribute, return "None, target_attribute".

Figure 5: N-1 Prompt

Act as a schema matching expert. Given the attribute from the source schema, which of the following target attributes is the best match? Provide only the
attribute name of the best match.
Both the input query and the schema options are formatted as ‘attribute name (data type) : description‘.
Question:
Target attributes:
1. target_attribute1(data type1): description1
2. target_attribute2(data type2): description2
3. target_attribute3(data type3): description3
Input query: source_attribute_name (data type): description
Answer:

Figure 6: Best Match Prompt

The model generates raw scores (logits) for each word option.
Let the logits be represented as:

logits ∈ R(batch size×sequence length×vocab size)

We apply the Softmax function to transform these logits into to-
ken probabilities. The Softmax function converts the logits into
probabilities that sum to 1 across all tokens:

𝑃 (𝑡𝑖) =
𝑒 logit(𝑡𝑖)∑
𝑗 𝑒

logit(𝑡 𝑗)

where 𝑃 (𝑡𝑖) is the probability of token 𝑡𝑖 , and the summation is
over all tokens in the vocabulary.

Next, we break each candidate into tokens. The total confidence
score for a candidate is the product of the probabilities of all its
tokens:

𝑃 (candidate) = 𝑃 (𝑡1) × 𝑃 (𝑡2) × · · · × 𝑃 (𝑡𝑛)

where 𝑡1, 𝑡2, . . . , 𝑡𝑛 are the tokens of the candidate. However, multi-
plying small values (probabilities) can lead to numerical instability
due to underflow. To stabilize this, we use the log-sum approach.

Instead of multiplying probabilities, we sum the log-probabilities
of each token:

log-sum =

𝑛∑︁
𝑖=1

log 𝑃 (𝑡𝑖)

Then, we exponentiate the result to obtain the final probability:

𝑃 (candidate) = 𝑒 log-sum

Finally, we normalize the confidence scores across all candidates.
Let 𝑃 (𝑐) be the unnormalized confidence score for candidate 𝑐 . The

normalized confidence score for candidate 𝑐 is:

𝑃normalized (𝑐) =
𝑃 (𝑐)∑
𝑗 𝑃 (𝑐 𝑗)

where the denominator is the sum of the unnormalized scores for
all candidates.

This approach gives us the LLM’s confidence in each candidate’s
match with the input query.

D Many-to-Many Stable Matching Algorithm
Stable matching is a fundamental problem in computer science. It
involves two sets of entities, 𝐴 and 𝐵, where each element in 𝐴
ranks the elements in 𝐵 based on preference 7 , and vice versa. The
goal is to pair elements from 𝐴 and 𝐵 such that no unmatched pair
would prefer each other over their current matches [?].

The Stable Marriage Problem addresses one-to-one matching,
where each participant from one set is matched to a single par-
ticipant from the other set [?]. The Hospitals-Residents Problem
extends this to one-to-many matching, allowing entities in one set
(e.g., hospitals) to match with multiple entities from the other set
(e.g., residents) up to a capacity [?]. A many-to-many matching ex-
ample is allocating multiple workers to multiple tasks, where each
worker has preferences for various tasks, and each task can be as-
signed to multiple workers [2]. For the schema matching problem,
where attributes in two schemas can have overlapping relation-
ships, we adopt a many-to-many stable matching approach. This
ensures that the matches are consistent in both directions while
maintaining stability.

7If attribute 𝑏 prefers 𝑎 over 𝑎′ , it means 𝑎 is a better match for 𝑏 than 𝑎′ .

Towards Scalable Schema Mapping using Large Language Models

The steps of the many-to-many stable matching algorithm, pre-
sented in Algorithm 1, are described below:

• Step 1 - Lines 1 to 15: The input consists of two sets of
attributes, one from Schema 𝐴 and one from Schema 𝐵,
along with ranked preferences for each attribute in 𝐴 over
certain attributes in 𝐵, and vice versa. Initially, the matching
set𝑀 is empty, and 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒_𝑚𝑎𝑡𝑐ℎ is initialized to store
the acceptable matches for each attribute. We set 𝑘 = ∞ to
obtain all possible stable matches.

• Step 2 - Lines 16 to 31: In the Initial Matching Phase, each
attribute in schema𝐴 proposes 8 to its most preferredmatch
in schema 𝐵. Some attributes may not be proposed to at
all, while others may receive multiple proposals. Attributes
that do not receive any proposals will remain unmatched.
If an attribute receives a single proposal, it will be paired
with the proposing attribute, as long as the proposer is in
its 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒_𝑚𝑎𝑡𝑐ℎ. If an attribute proposes to a match
already paired with another attribute, the match will eval-
uate whether it prefers the new proposal over its current
pair. If the new proposal is preferred, the current match
is replaced, and the previous pair is left unmatched. This
process continues until all attributes in 𝐴 have proposed to
the matches they prefer, either resulting in a stable match
or leaving certain attributes unpaired.

• Step 3 - Lines 32 to 37: To extend the algorithm for many-
to-many matching, the selection process is performed over
several rounds. Step 2 outlines the procedure for a single
round. In subsequent rounds, the preference lists and ac-
ceptable matches are updated, and paired attributes are
removed from each other’s set of acceptable matches.

• Termination Condition: The process continues until no
free attributes can make a proposal, or a maximum number
of rounds is reached. If the algorithm terminates at 𝑟 = 𝑘 ,
𝑀 includes up to 𝑘 stable matches for each attribute. The
final set𝑀 contains the stable pairs of attributes matched
between 𝐴 and 𝐵, ensuring a stable many-to-many schema
match.

E Evaluation
For our experiment, we configure the model with a temperature of
0.4, a top-p value of 0.95, and an output limit of 800 tokens. The
temperature is set to 0.4 to encourage deterministic behavior while
still maintaining some diversity in the output. The top-p value
of 0.95 ensures that the model considers only the most probable
tokens until their cumulative probability reaches 95%, which helps
avoid the inclusion of less likely or irrelevant words, making the
generated responses more reliable.

E.1 Dataset
MIMIC. The MIMIC dataset contains alignments between two real-
world electronic healthcare record databases: MIMIC-III and OMOP.
The ground truth alignments, natural language descriptions, and
schemas were taken from the ReMatch paper [30]. MIMIC-III9 is a

8If attribute 𝑏 proposes to attribute 𝑎, it means that 𝑎 is on 𝑏’s preference list and that
𝑏 would like to match with 𝑎.
9https://mimic.mit.edu

Algorithm 1 Many-to-Many Stable Matching Algorithm for
Schema Matching
1: Input: Sets of attributes from schema𝐴 and schema 𝐵, with preference

lists 𝐴_𝑝𝑟𝑒 𝑓 and 𝐵_𝑝𝑟𝑒 𝑓 .
2: Output:𝑀 , the set of stable matches between attributes in 𝐴 and 𝐵.
3: Initialize𝑀 = ∅, 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒_𝑚𝑎𝑡𝑐ℎ = {}, 𝑘 = ∞
4: for each attribute 𝑎 ∈ 𝐴 do
5: Set 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒_𝑚𝑎𝑡𝑐ℎ (𝑎) = []
6: for each 𝑏 in 𝐴_𝑝𝑟𝑒 𝑓 (𝑎) do
7: Add 𝑏 to 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒_𝑚𝑎𝑡𝑐ℎ (𝑎)
8: end for
9: end for
10: for each attribute 𝑏 ∈ 𝐵 do
11: Set 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒_𝑚𝑎𝑡𝑐ℎ (𝑏) = []
12: for each 𝑎 in 𝐵_𝑝𝑟𝑒 𝑓 (𝑏) do
13: Add 𝑎 to 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒_𝑚𝑎𝑡𝑐ℎ (𝑏)
14: end for
15: end for
16: 𝑟 = 1
17: while 𝑟 ≤ 𝑘 do
18: Initialize all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 as free
19: Set match_made = false
20: while ∃𝑎 ∈ 𝐴 free with a remaining preference in 𝐴_𝑝𝑟𝑒 𝑓 (𝑎) do
21: 𝑎 proposes to 𝑏, its most preferred attribute
22: if 𝑎 ∈ 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒_𝑚𝑎𝑡𝑐ℎ (𝑏) then
23: if 𝑏 is free then
24: Add (𝑎,𝑏) to𝑀
25: match_made = true
26: else if 𝑏 prefers 𝑎 over its current match then
27: Replace 𝑏’s current match in𝑀 with (𝑎,𝑏)
28: match_made = true
29: end if
30: end if
31: end while
32: Update preference lists and acceptable matches for all 𝑎 ∈ 𝐴 and

𝑏 ∈ 𝐵

33: if not match_made then
34: break
35: end if
36: 𝑟 = 𝑟 + 1
37: end while
38: return 𝑀

publicly accessible10 database containing deidentified health data
from critical care patients, while OMOP11 is a Common Data Model
(CDM) meant to provide a standard structure for MIMIC data. Since
it is a CDM, OMOP functions like a global schema meant to house
data from other sources and, as such, does not contain its own data.

To populate OMOP with data values, we used sample data from
MIMIC-IV formatted under the OMOP model12. The MIMIC-IV sam-
ple data is different enough from that of MIMIC-III that it avoids
overlap in records. At the same time, it is similar enough that it
ensures conceptual overlap between the two databases. Though
somewhat rare, we were able to repair most discrepancies between
schemas due to using different versions of MIMIC sample data.

10Though technically "freely accessible", MIMIC-III requires authorization to obtain
its full dataset. At the time of evaluation, we did not have access, so we used a more
"freely accessible" sample that required no authorization.
11https://ohdsi.github.io/CommonDataModel/
12https://physionet.org/content/mimic-iv-demo-omop/0.9/

https://mimic.mit.edu
https://ohdsi.github.io/CommonDataModel/
https://physionet.org/content/mimic-iv-demo-omop/0.9/

Buss et al.

Even when alignments are defined in the ground truth, correspond-
ing columns may lack sufficient sample data values due to privacy
restrictions or omissions in the MIMIC datasets. For instance, the
NOTE_EVENTS table, which contains sensitive information, is ex-
cluded from these samples. Additionally, while nearly all alignments
are 1:1 at the table-to-table level, not all columns have accompany-
ing descriptions, which introduces further complexities in schema
alignment tasks.

Synthea [?] Synthea is an open-source dataset that generates
realistic synthetic healthcare records. It has been used in the OMOP
benchmark, where parts of its schema are mapped to the OMOP
CDM. Synthea has been widely used in past schema matching
studies [29, 30, 36] as a realistic and challenging benchmark.

Dataset #Pairs #Source attr #Target attr #Matches
MIMIC 26 268 203 155
Synthea 12 101 134 105

Table 8: Dataset statistics for MIMIC, Synthea and BIRD. #Pairs is
the number of table pairs for matching, #Source attr and #Target
attr are the number of attributes in the source and target schemas,
respectively, and #Matches is the number of matching attributes.

E.2 Baseline
To evaluate the effectiveness of our schema-matching methods, we
compare them against two baselines that, like our approach, require
no training data.

Classic SchemaMatching Baseline. For our classic schemamatch-
ing baseline, we use COMA [10], which is recognized as one of the
most efficient schema-matching methods according to the Valentine
paper [17]. COMA has been refined through multiple iterations,
including COMA++ [5] and COMA 3.0 [23]. COMA is notable for
its flexibility in combining multiple matching algorithms, offering
both schema-based and instance-based matching capabilities. The
schema-based version considers only schematic information when
determining matches, whereas the instance-based version consid-
ers both schematic information and data values. We evaluate both
versions of COMA where COMA (Sch.) is the schema-based version
and COMA (Inst.) is the instance-based version. We use Valentine’s
implementation of COMA, available as a Python wrapper around
COMA 3.0 Community Edition.13

Language Model Baselines. We adopt the N-1 prompting method
proposed by Parciak et al. [27] due to its simplicity and effectiveness,
as it does not require synthetic data or additional model training.We
also adopt MatchMaker [29], which includes synthetic in-context
examples in the prompt. For a fair comparison, we skip the pre-
filtering step from MatchMaker’s pipeline since our approach does
not include such a step. We implement both methods following the
detailed instructions and prompts provided in their papers.

E.3 Hint Comparison Tables
The availability of specific hints depends on the source and target
tables. Following our assumption that both 𝑆 and 𝑇 are relations,
we are guaranteed to have table names, as well as attribute names
13https://github.com/delftdata/valentine

Dataset Experiment Precision Recall F1
EHR LLM() 0.28 ± 0.012 0.81 ± 0.01 0.41 ± 0.01

LLM(A) 0.35 ± 0.01 0.78 ± 0.03 0.47 ± 0.01
LLM(T) 0.31 ± 0.01 0.77 ± 0.01 0.43 ± 0.01
LLM(A, T) 0.37 ± 0.00 0.78 ± 0.01 0.49 ± 0.00
COMA Sch. 0.14 0.11 0.10
COMA Inst. 0.21 0.14 0.16

Synthea LLM() 0.47 ± 0.02 0.91 ± 0.03 0.60 ± 0.01
LLM(A) 0.58 ± 0.02 0.92 ± 0.01 0.69 ± 0.01
LLM(T) 0.49 ± 0.02 0.87 ± 0.02 0.62 ± 0.02
LLM(A, T) 0.62 ± 0.02 0.91 ± 0.01 0.72 ± 0.01
COMA Sch. 0.3 0.15 0.19
COMA Ins. 0.3 0.16 0.2

Table 9: Evaluation of N-1 prompts with varying natural lan-
guage descriptions. Each experiment includes at least table
names, attribute names, and data types. "A" and "T" represent
descriptions of attributes and tables, respectively.

and data types. For all other hints, we evaluate both their inclusion
and exclusion within the prompt, comparing them against our
classic schema matching baseline. The complete results are shown
in Tables 11 and 12, and we discuss the impact of each hint in the
following paragraphs.

Names and Attribute Type. Even with such basic schema in-
formation, the LLM-based method outperforms the Instance-based
COMA on MIMIC and Synthea. This implies that the LLM has some
semantic understanding of the concepts used within the domain.
On BIRD, the LLM-based method achieves a much higher recall
than Schema-based COMA with a relatively modest drop in pre-
cision. Compared with MIMIC and Synthea, BIRD contains more
overlap in attribute names. The relative gaps in performance be-
tween the LLM-based method and COMA indicates that the former
is much more apt at comparing attributes at a semantic level, but
cannot quite compete with string matching functions when inputs
are syntactically similar.

Natural Language Descriptions. For the MIMIC and Synthea
datasets, table descriptions slightly enhance precision, potentially
influencing precision more than recall. Across all datasets, includ-
ing attribute descriptions consistently improves performance. This
suggests that even in common domains with less specific attribute
names, providing descriptions can be very helpful.

Data Values. for MIMIC and Synthea, the inclusion of data
values can cause a minor drop in performance. However, for both
datasets, the sampling method and the number of data values seem
to have little impact on performance, meaning that even seeing
just a few values, regardless of how they are sampled, is enough
to affect the model. This effect may have to do with the overlap in
data values in the dataset.

Given these experiments, there is good evidence that natural
language descriptions of attributes are the most helpful of the hints
considered. For both data and table descriptions, the effect is a little
less clear.

https://github.com/delftdata/valentine

Towards Scalable Schema Mapping using Large Language Models

Dataset Experiment Precision Recall F1
EHR LLM() 0.37 ± 0.00 0.78 ± 0.01 0.49 ± 0.00

LLM(10 freq.) 0.37 ± 0.01 0.71 ± 0.01 0.47 ± 0.01
LLM(10 rand.) 0.39 ± 0.01 0.75 ± 0.04 0.49 ± 0.03
COMA Sch. 0.14 0.11 0.10
COMA Inst. 0.21 0.14 0.16

Synthea LLM() 0.62 ± 0.02 0.91 ± 0.01 0.72 ± 0.01
LLM(10 freq.) 0.61 ± 0.04 0.89 ± 0.02 0.71 ± 0.03
LLM(10 rand.) 0.64 ± 0.05 0.89 ± 0.01 0.73 ± 0.04
COMA Sch. 0.3 0.15 0.19
COMA Ins. 0.3 0.16 0.2

Table 10: Evaluation of N-1 prompts with varying data values.
Each experiment includes table names, attribute types, and
natural language descriptions. The sampling method "freq."
is most frequent; "rand." is random without duplicates.

In Tables 11 and 12 we evaluate both the inclusion and exclusion
of various hints within the prompt. At a minimum, each experiment
includes table names along with attribute names and types. "N"
indicates the number of data values sampled, and "Smp" indicates
the sampling method ("freq." is most frequent; "rand." is random
w/o duplicates). "Dsc" indicates natural language descriptions of
attributes (A) and tables (T).

Experiment Metrics
N Smp Dsc Precision Recall F1
– – – 0.28 ± 0.012 0.81 ± 0.01 0.41 ± 0.01
– – A 0.35 ± 0.01 0.78 ± 0.03 0.47 ± 0.01
– – A+T 0.37 ± 0.00 0.78 ± 0.01 0.49 ± 0.00
– – T 0.31 ± 0.01 0.77 ± 0.01 0.43 ± 0.01
5 freq. – 0.29 ± 0.03 0.69 ± 0.06 0.40 ± 0.03
5 freq. A 0.36 ± 0.03 0.71 ± 0.02 0.46 ± 0.03
5 freq. A+T 0.38 ± 0.03 0.72 ± 0.03 0.48 ± 0.03
5 freq. T 0.35 ± 0.02 0.68 ± 0.04 0.45 ± 0.02
5 rand. – 0.31 ± 0.02 0.74 ± 0.04 0.42 ± 0.03
5 rand. A 0.37 ± 0.02 0.72 ± 0.01 0.47 ± 0.01
5 rand. A+T 0.39 ± 0.01 0.75 ± 0.02 0.50 ± 0.01
5 rand. T 0.33 ± 0.02 0.68 ± 0.02 0.43 ± 0.02
10 freq. – 0.28 ± 0.03 0.64 ± 0.03 0.37 ± 0.03
10 freq. A 0.36 ± 0.01 0.73 ± 0.01 0.47 ± 0.01
10 freq. A+T 0.37 ± 0.01 0.71 ± 0.01 0.47 ± 0.01
10 freq. T 0.33 ± 0.02 0.68 ± 0.05 0.42 ± 0.03
10 rand. – 0.31 ± 0.02 0.73 ± 0.01 0.42 ± 0.02
10 rand. A 0.37 ± 0.03 0.62 ± 0.52 0.51 ± 0.38
10 rand. A+T 0.39 ± 0.01 0.75 ± 0.04 0.49 ± 0.03
10 rand. T 0.33 ± 0.01 0.73 ± 0.01 0.42 ± 0.02
15 freq. – 0.30 ± 0.01 0.70 ± 0.03 0.41 ± 0.01
15 freq. A 0.37 ± 0.01 0.71 ± 0.02 0.47 ± 0.02
15 freq. A+T 0.37 ± 0.01 0.71 ± 0.03 0.48 ± 0.01
15 freq. T 0.34 ± 0.01 0.70 ± 0.01 0.44 ± 0.01
15 rand. – 0.30 ± 0.02 0.71 ± 0.04 0.41 ± 0.03
15 rand. A 0.37 ± 0.01 0.76 ± 0.02 0.49 ± 0.02
15 rand. A+T 0.37 ± 0.02 0.74 ± 0.01 0.48 ± 0.02
15 rand. T 0.31 ± 0.01 0.66 ± 0.05 0.41 ± 0.02
COMA Sch. 0.14 0.11 0.10
COMA (Inst.) 0.21 0.14 0.16

Table 11: Evaluation over EHRwith varying amount of hints.

Buss et al.

Experiment Metrics
N Smp Dsc Precision Recall F1
– – – 0.47 ± 0.02 0.91 ± 0.03 0.60 ± 0.01
– – A 0.58 ± 0.02 0.92 ± 0.01 0.69 ± 0.01
– – A+T 0.62 ± 0.02 0.91 ± 0.01 0.72 ± 0.01
– – T 0.49 ± 0.02 0.87 ± 0.02 0.62 ± 0.02
5 freq. – 0.51 ± 0.02 0.87 ± 0.02 0.63 ± 0.02
5 freq. A 0.60 ± 0.03 0.89 ± 0.02 0.70 ± 0.02
5 freq. A+T 0.65 ± 0.03 0.87 ± 0.03 0.73 ± 0.03
5 freq. T 0.58 ± 0.04 0.89 ± 0.02 0.69 ± 0.03
5 rand. – 0.52 ± 0.01 0.88 ± 0.00 0.64 ± 0.01
5 rand. A 0.62 ± 0.02 0.90 ± 0.01 0.71 ± 0.02
5 rand. A+T 0.31 ± 0.02 0.71 ± 0.02 0.42 ± 0.02
5 rand. T 0.57 ± 0.03 0.89 ± 0.02 0.68 ± 0.03
10 freq. – 0.53 ± 0.01 0.90 ± 0.03 0.65 ± 0.02
10 freq. A 0.61 ± 0.00 0.90 ± 0.02 0.70 ± 0.01
10 freq. A+T 0.61 ± 0.04 0.89 ± 0.02 0.71 ± 0.03
10 freq. T 0.55 ± 0.03 0.85 ± 0.05 0.65 ± 0.03
10 rand. – 0.51 ± 0.01 0.89 ± 0.04 0.64 ± 0.02
10 rand. A 0.51 ± 0.19 0.62 ± 0.52 0.51 ± 0.38
10 rand. A+T 0.64 ± 0.05 0.89 ± 0.01 0.73 ± 0.04
10 rand. T 0.58 ± 0.02 0.86 ± 0.02 0.68 ± 0.02
15 freq. – 0.53 ± 0.03 0.88 ± 0.01 0.64 ± 0.02
15 freq. A 0.61 ± 0.04 0.90 ± 0.05 0.71 ± 0.04
15 freq. A+T 0.62 ± 0.04 0.90 ± 0.02 0.72 ± 0.02
15 freq. T 0.57 ± 0.04 0.85 ± 0.04 0.66 ± 0.02
15 rand. – 0.54 ± 0.01 0.87 ± 0.01 0.65 ± 0.01
15 rand. A 0.60 ± 0.01 0.89 ± 0.01 0.70 ± 0.01
15 rand. A+T 0.62 ± 0.02 0.89 ± 0.02 0.71 ± 0.02
15 rand. T 0.59 ± 0.01 0.88 ± 0.01 0.69 ± 0.01
COMA (Sch.) 0.14 0.11 0.10
COMA (Inst.) 0.21 0.14 0.16

Table 12: Evaluation over Synthea with varying amount of
hints.

Towards Scalable Schema Mapping using Large Language Models

E.4 Aggregation Method Evaluation
We evaluate our aggregation method with and without data values.
To identify the optimal number of data values, we tested configu-
rations with 5, 10, and 15 data values for each attribute. As shown
in Tables 11 and 12, the configuration with 10 randomly sampled
data values achieved the best results. Therefore, we focus on this
configuration in our reported findings.

In our experiments using the MIMIC and Synthea dataset, the
prompts for both of our methods and the approach by Parciak et al.
include the attribute name, type, and description, along with the
relation name and description. For the BIRD dataset, however, the
relation description was unavailable and therefore is excluded from
the prompts in both our method and that of Parciak et al.

As shown in Tables 14 and 13, our aggregation method outper-
forms all baselines. Among the different aggregation strategies,
Intersection achieves the highest precision and F1 scores. Union
leads to high recall but substantially lower precision, whereas the
majority vote offers a better balance between precision and recall. In
addition, we observe including data values in the prompt improves
precision across all datasets.

Method Experiment Precision Recall F1

Aggregation
W/O data values 0.37 ± 0.02 0.78 ± 0.03 0.49 ± 0.02
— Intersection 0.49 ± 0.02 0.71 ± 0.01 0.56 ± 0.02
— Union 0.30 ± 0.00 0.84 ± 0.02 0.43 ± 0.00
— Majority 0.34 ± 0.01 0.81 ± 0.02 0.47 ± 0.01
W/ data values 0.39 ± 0.01 0.75 ± 0.03 0.50 ± 0.02
— Intersection 0.52 ± 0.03 0.66 ± 0.01 0.56 ± 0.02
— Union 0.31 ± 0.01 0.83 ± 0.02 0.44 ± 0.01
— Majority 0.35 ± 0.01 0.79 ± 0.02 0.47 ± 0.01

Baseline
COMA (Inst.) 0.144 0.114 0.103
COMA (Sch.) 0.205 0.135 0.159
Par. et al. [27] 0.333 0.195 0.216

Table 13: Evaluation of the Aggregation Method Compared to the
Baseline on the MIMIC dataset.

Method Experiment Precision Recall F1

Aggregation
W/O data values 0.61 ± 0.04 0.90 ± 0.02 0.71 ± 0.03
— Intersection 0.74 ± 0.02 0.83 ± 0.01 0.77 ± 0.01
— Union 0.31 ± 0.01 0.83 ± 0.02 0.44 ± 0.01
— Majority 0.55 ± 0.01 0.95 ± 0.01 0.68 ± 0.01
W/ data values 0.64 ± 0.03 0.89 ± 0.02 0.73 ± 0.03
— Intersection 0.75 ± 0.00 0.80 ± 0.03 0.76 ± 0.02
— Union 0.30 ± 0.00 0.84 ± 0.02 0.43 ± 0.00
— Majority 0.57 ± 0.01 0.95 ± 0.01 0.70 ± 0.01

Baseline
COMA (Inst.) 0.30 0.15 0.19
COMA (Sch.) 0.30 0.16 0.20
Par. et al. [27] 0.53 ± 0.01 0.11 ± 0.03 0.17 ± 0.03

Table 14: Evaluation of the Aggregation Method Compared to the
Baseline on the Synthea dataset.

The difference between our aggregation method with majority
vote and that of Parciak et al. lies in the output format and schema
serialization in the prompt. Most of the shortcomings in their results
can be attributed to the model not generating a final decision. In-
stead, it often stopped with incomplete responses, such as: The first
attribute to consider is {𝑠𝑜𝑢𝑟𝑐𝑒_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒}. Does {𝑠𝑜𝑢𝑟𝑐𝑒_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒}
semantically match to {𝑡𝑎𝑟𝑔𝑒𝑡_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒}?

Even our N-1 prompt with no data values and aggregation out-
performs the baseline. It is important to note that Parciak et al.

used the GPT-4 model in their paper, while our model for these
experiments is significantly smaller. This means our prompt is a
better choice for smaller models. We attribute this improvement to
the clear and straightforward output format, as well as our JSON
schema serialization.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

	Abstract
	1 Introduction
	2 Schema Mapping Assistant
	2.1 Preliminaries
	2.2 Rule Expressiveness
	2.3 Problem Definition

	3 Challenge: Inconsistent Outputs
	3.1 Sampling Outputs
	3.2 Bidirectional Schema Matching
	3.3 Preliminary Results

	4 Challenge: Representation and Large Input
	4.1 Output Representation
	4.2 Input
	4.3 Preliminary Results

	5 Challenge: Reducing Poor-Quality Mappings
	5.1 Constraint-Based Filtering
	5.2 Model-Based Filtering

	6 Challenge: Efficient Prompting
	References
	A Related Work in Schema Alignment
	B Prompt Templates
	C Confidence Scores computed using LLM Logits
	D Many-to-Many Stable Matching Algorithm
	E Evaluation
	E.1 Dataset
	E.2 Baseline
	E.3 Hint Comparison Tables
	E.4 Aggregation Method Evaluation

