
Schema Independent Relational Learning

Jose Picado Arash Termehchy Alan Fern Parisa Ataei
School of EECS, Oregon State University

{picadolj,termehca,alan.fern,ataeip}@oregonstate.edu

ABSTRACT
Learning novel relations from relational databases is an important
problem with many applications. Relational learning algorithms
learn the definition of a new relation in terms of existing relations in
the database. Nevertheless, the same database may be represented
under different schemas for various reasons, such as data quality,
efficiency and usability. The output of current relational learn-
ing algorithms tends to vary quite substantially over the choice of
schema. This variation complicates their off-the-shelf application.
We introduce and formalize the property of schema independence
of relational learning algorithms, and study both the theoretical and
empirical dependence of existing algorithms on the common class
of (de) composition schema transformations. We show that current
algorithms are not schema independent. We propose Castor, a re-
lational learning algorithm that achieves schema independence by
leveraging data dependencies.

1. INTRODUCTION
Over the last decade, users’ information needs over relational

databases have expanded from answering precise queries to using
machine learning in order to discover interesting and novel rela-
tions and concepts [3, 12, 5]. For instance, consider the UW-CSE
database [22], which contains information about an academic de-
partment. Given this database, we may want to predict the ad-
visedBy(stud,prof) relation, which indicates that student stud is ad-
vised by professor prof. Machine learning algorithms often assume
that data is represented in a single table. The contents of the table
are the features that capture the essential information required to
predict the target relation, i.e., advisedBy. In a typical scenario, we
would be required to hand-engineer this fixed set of features [3].
Each feature would be the result of a query to the database. We
would then compute the features for each example in the training
data, and store the resulting feature vectors in the table. Finally, we
would run a learning algorithm.

Three challenges arise with the described approach. First, hand-
engineering features is not an easy task. It is a slow and tedious
process and requires significant expertise [3]. It also restricts the
algorithm from identifying patterns that are not reflected in the fea-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, Illinois, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3035923

tures or combinations of features. Second, by condensing informa-
tion into a vector of features, we may lose the relational structure,
which translates into loss of information. Third, the result of the
algorithm may be hard to interpret by users.

In contrast to “table-based approaches”, relational machine learn-
ing (also called relational learning) attempts to learn concepts di-
rectly from a relational database. Given a database and training
instances of a new target relation, relational learning algorithms at-
tempt to induce (approximate) relational definitions of the target in
terms of existing relations [17, 21, 27]. For example, given an in-
stance of the Original schema for the UW-CSE database in Table 1,
the goal may be to induce a definition of the missing relation ad-
visedBy(stud,prof) based on a training set of known student-advisor
pairs. Learned definitions are usually first-order formulas, some-
times restricted to Datalog programs. Importantly, such relational
learning algorithms do not require the intermediate step of feature
engineering. This fact, arguably, allows for the easier deployment
of machine learning in the context of relational databases [21, 27].

Since the space of possible definitions (e.g. all Datalog rules)
is enormous, relational learning algorithms must employ heuris-
tics, or biases, to search for effective definitions. Unfortunately,
such heuristics typically depend on the precise choice of schema
of the underlying database, which means that the learning output is
schema dependent. This is true even if the schemas represent es-
sentially the same information. As an example, Table 1 shows two
schemas for the UW-CSE database, which is used as a common
relational learning benchmark. The Original schema was designed
by relational learning experts. This design is generally discouraged
in the database community, as it delivers poor usability and per-
formance in query processing without providing any advantages in
terms of data quality in return [1]. A database designer may use a
schema closer to the 4NF schema in Table 1. Because each student
stud has only one phase and years, a database designer may com-
pose relations student, inPhase, and yearsInProgram. She may also
combine relations professor and hasPosition. This would result in
a more understandable schema with shorter query execution time,
without introducing any redundancy.

EXAMPLE 1.1. We use the classic relational learning algorithm
FOIL [21] to induce a definition for the relation advisedBy(stud,prof)
over the Original and 4NF schemas of the UW-CSE database, shown
in Table 1. FOIL learns a Datalog rule by starting from an empty
rule and iteratively adding atoms to the rule such that the result-
ing rule at each step has the best score: it covers the most positive
and the fewest negative examples. FOIL learns the following Dat-
alog rule over the UW-CSE database with the Original schema:
advisedBy(x, y)← yearsInProgram(x, 7), publication(z, x),

publication(z, y), which covers 5 positive examples and 0 negative
examples. Because yearsInProgram(x, 7) covers the most posi-

Original Schema 4NF Schema
student(stud) student(stud,phase,years)
inPhase(stud,phase) professor(prof,position)
yearsInProgram(stud,years) publication(title,person)
professor(prof) courseLevel(crs,level)
hasPosition(prof,position) taughtBy(crs,prof,term)
publication(title,person) ta(crs,stud,term)
courseLevel(crs,level)
taughtBy(crs,prof,term)
ta(crs,stud,term)

Table 1: Schemas for the UW-CSE dataset.

tive and the fewest negative examples in this database, FOIL picks
it as the first atom and proceeds by adding the rest of atoms to
the rule. On the other hand, FOIL learns the following rule over
the 4NF schema: advisedBy(x, y) ← student(x, post_generals, 5),
professor(y, faculty), publication(z, y), taughtBy(v, y, w), which
covers 12 positive examples and 10 negative examples. In this case,
FOIL first selects student(x, post_generals, 5). Because FOIL
does not backtrack, then the definitions over both schemas are dif-
ferent, even if the rest of the atoms added to the rules are the same.
Intuitively, the definition learned over the Original schema better
expresses the relationship between an advisor and advisee.

Generally, there is no canonical schema for a particular set of
content in practice and people often represent the same informa-
tion in different schemas for several reasons [1, 9]. For example, it
is generally easier to enforce integrity constraints over highly nor-
malized schemas [1]. On the other hand, because more normalized
schemas usually contain many relations, they are hard to under-
stand and maintain. It also takes a relatively long time to answer
queries over database instances with such schemas [1]. Thus, a
database designer may sacrifice data quality and choose a more de-
normalized schema for its data to achieve better usability and/or
performance. She may also hit a middle ground by choosing a style
of design for some relations and another style for other relations in
the schema. Further, as the relative priorities of these objectives
change over time, the schema will also evolve.

Users generally have to restructure their databases, in order to
effectively use relational learning algorithms, i.e., deliver defini-
tions for the target concepts that a domain expert would judge as
correct and relevant. To make matters worse, these algorithms do
not normally offer any clear description of their desired schema
and database users have to rely on their own expertise and/or do
trial and error to find such schemas. Nevertheless, we ideally want
our database analytics algorithms to be used by ordinary users,
not just experts who know the internals of these algorithms. Fur-
ther, the structure of large-scale databases constantly evolves, and
we want to move away from the need for constant expert atten-
tion to keep learning algorithms effective. Researchers often use
(statistical) relational learning algorithms to solve various impor-
tant core database problems, such as query processing [2], schema
mapping [5], and entity resolution [11]. Thus, the issue of schema
dependence appears in other areas of database management.

One approach to solving the problem of schema dependence is
to run a learning algorithm over all possible schemas for a valida-
tion subset of the data and select the schema with the most accurate
answers. Nonetheless, computing all possible schemas of a DB is
generally undecidable [9]. One may limit the search space to a par-
ticular family of schemas to make their computation decidable. For
instance, she may choose to check only schemas that can be trans-
formed via join and project operations, i.e. composition and de-
composition [1]. However, the number of possible schemas within
a particular family of a data set are extremely large. For example, a
relational table may have exponential number of distinct decompo-

sitions. As many learning algorithms need some time for parameter
tuning under a new schema [14], it may take a prohibitively long
time to find the best schema. Further, one has to transform the
underlying data to the desired schema, which may not be practi-
cal for a large and/or constantly evolving database. Another possi-
ble approach is to define a universal schema to which all possible
schemas can be transformed and use or develop algorithms that are
effective over this schema. The experience gained from the idea
of universal relation indicates such schemas may not always exist
[1]. Users also have to transform their databases to the universal
schema, which may be quite complex and time-consuming, espe-
cially for large and/or constantly evolving databases.

In this paper, we introduce the novel property of schema inde-
pendence for relational learning algorithms, i.e., the ability to de-
liver the same answers regardless of the choices of schema for the
same data. We propose a formal framework to evaluate the prop-
erty of schema independence of a relational learning algorithm for
a given family of schema changes. Since none of the current re-
lational learning algorithms are schema independent, we leverage
concepts from database literature to design a schema independent
algorithm. The main contributions of this paper are:
• We introduce and formally define the property of schema inde-

pendence (Section 3), which formalizes the notion of a learning
algorithm returning equivalent answers over schema transfor-
mations that preserve information content.
• We analyze the property of schema independence for the fam-

ilies of top-down [17, 21] and bottom-up [18, 19] relational
learning algorithms. We show that top-down algorithms are not
schema independent under (de) composition transformations
(Section 5). We formally analyze ProGolem [19], a bottom-
up algorithm, and show that it is not schema dependent under
(de) composition (Section 6).
• We introduce Castor, a bottom-up algorithm that is schema in-

dependent under vertical (de) composition (Section 7). Cas-
tor achieves schema independence by integrating database con-
straints into the learning algorithm. Castor uses various tech-
niques to learn efficiently over large databases.
• We empirically compare the schema independence, effective-

ness, and efficiency of Castor to some popular relational learn-
ing algorithms under (de) composition using a widely used bench-
mark and two real-world databases (Section 8). Our empirical
results generally confirm our theoretical results.

Further details on our work and proofs for our theoretical results
can be found in [20].

2. BACKGROUND

2.1 Related Work
There has been a growing interest in developing relational learn-

ing algorithms that scale to large databases [27, 26, 10]. Quick-
FOIL [27] provides an in-RDBMS implementation of a modified
version of FOIL. AMIE+ [10] learns rules from RDF-style knowl-
edge bases, which contain binary relations. These systems focus
on scaling learning algorithms for large databases. We develop a
schema independent relational learning algorithm and, as opposed
to them, do not modify the internals of the RDBMS. The system
in [15] learns linear models over multiple relations efficiently. Our
aim, however, is to achieve schema independence. Also, their sys-
tem assumes that all relations can be joined into one universal rela-
tion, which is not generally true in relational databases. Moreover,
it learns linear models and not Datalog definitions. Researchers

have noticed that using likelihood functions to measure joint prob-
ability distributions of attributes in a relational database may lead to
different results over certain variations of the database design [23].
They have proposed using pseudolikelihood functions to approxi-
mate the joint probability distributions, which is robust over some
schema variations. Nevertheless, the authors in [23] do not pro-
vide any general and formal framework to explore the sensitivity of
learning algorithms to the database design.

We build upon the body of work on transforming databases with-
out modifying their content by exploring the sensitivity of rela-
tional learning algorithms to such transformations [13, 9]. An-
other notable group of database transformations is schema mapping
for data exchange [8]. These transformations may lose informa-
tion and introduce incomplete information to a database. However,
for the property of schema independence, a transformation should
preserve the information content of databases. Fagin explores in-
vertible schema mappings that preserve the information content of
database instances [7]. Nevertheless, these mappings may intro-
duce labeled nulls to the database instance. To the best of our
knowledge, relational learning over database instances with labeled
nulls has not been precisely defined and explored. It takes more
space than a single paper to include investigations of relational
learning over databases with labeled null and define schema inde-
pendence property for transformations that introduce labeled nulls
and we leave them as interesting future work. Researchers have de-
fined the property of design independence for keyword query pro-
cessing over XML [25]. We extend this line of work by formally
exploring the property of schema independence for relational learn-
ing algorithms.

In this paper, we extend the principle of logical data indepen-
dence [1] for relational learning algorithms. The property of schema
independence differs with the idea of logical data independence in
an important issue. One may achieve logical data independence by
an affordable amount of experts’ intervention, e.g., defining views
over the database. However, it takes deeper expertise to find the
proper schema for a learning algorithm, particularly for database
applications that contain more than a single learning algorithm.
Hence, it is less likely to achieve schema independence via expert’s
intervention.

2.2 Basic Definitions
We fix two disjoint (countably) infinite sets of relation and at-

tribute symbols. Each relation symbol R is associated with a set
of attribute symbols denoted as sort(R). Let D be a countably
infinite domain of values, i.e., constants. An instance IR of re-
lation symbol R with n = |sort(R)| is a (finite) relation over
Dn. Schema R is a pair (R,Σ), where R and Σ are finite sets
of relations symbols and constraints, respectively. A constraint re-
stricts the properties of data stored in a database. Examples of con-
straints are functional dependencies (FD) and inclusion dependen-
cies (IND), i.e., referential integrity. Let πX(IR), X ⊆ sort(R),
denote the projection of relation IR on attribute setX . Relation IR
satisfies FD X → Y , where X,Y ⊂ sort(R), if for each pair s, t
of tuples in IR, πX(s) = πX(t) implies πY (s) = πY (t). Given
relation symbols R and S and sets of attributes X ∈ sort(R) and
Y ∈ sort(S), relations IR and IS satisfy IND R[X] ⊆ S[Y] if
πX(IR) ⊆ πY (IS). If both INDs R[X] ⊆ S[X] and S[X] ⊆
R[X] hold in a schema, we denote them as R[X] = S[X] and call
it an IND with equality. An instance of schema R is a mapping I
over R that associates each relation R ∈ R to an instance IR that
satisfies all constraints in Σ. The set Σ may logically imply other
constraints, e.g., FD X → Y and Y → Z imply X → Z [1]. The

set of all constraints implied by Σ is shown as Σ+. To simplify our
notations, we use Σ and Σ+ interchangeably.

An atom is a formula in the form ofR(u1, . . . , un) whereR is a
relation symbol, n = |sort(R)|, and each ui, 1 ≤ i ≤ n, is a vari-
able or constant. If all uis are constants, the atom is a ground atom.
A literal is an atom, or the negation of an atom. A ground literal
is a literal whose atom is a ground atom. A definite Horn clause
(Horn clause for short) is a finite set of literals that contains exactly
one positive literal. The positive literal is called the head of the
clause, and the set of negative literals is called the body. A clause
has the form: T (u) ← L1(u1), · · · , Ln(un). Horn clauses are
also called conjunctive queries [1]. A Horn definition, i.e., union
of conjunctive queries, is a set of Horn clauses with the same head
literal. A Horn definition is defined over a schema if the body of
all clauses in the definition contain only literals whose relations are
in the schema. In this paper, we use Horn definitions to define new
target relations that are not in the schema. Thus, the heads of all
clauses in these definitions are the target relation.

3. FRAMEWORK

3.1 Relational Learning
Relational learning can be viewed as a search problem for a hy-

pothesis that deduces the training data, following either a top-down
or bottom-up approach. Top-down algorithms [21, 17] start from
the most general hypothesis and employ specialization operators to
get more specific hypotheses. A common specialization operator is
the addition of a new literal to the body of a clause. On the other
hand, bottom-up algorithms [18, 19] start from specific hypotheses
that are constructed based on ground training examples, and use
generalization operators to search the hypothesis space. General-
ization operators include inverse resolution, relative least general
generalization, asymmetric relative minimal generalization, among
others. Thus, a relational learning algorithm is a sequence of steps,
where in each step an operator is applied to the current hypothesis.

Inductive Logic Programming (ILP) is the subfield of machine
learning that performs relational learning by learning first-order
definitions from examples and an input relational database. In this
paper we use the names ILP algorithm and relational learning al-
gorithm interchangeably. Training examples E are usually tuples
of a single target relation T , which express positive (E+) or neg-
ative (E−) examples. The learned definitions are called the hy-
pothesis H , which is usually restricted to Horn definitions for effi-
ciency reasons. Given a database instance I , positive examplesE+,
negative examples E−, and a target relation T , the task of a rela-
tional learning algorithm is to find a definition H for T such that
∀p ∈ E+, H ∧ I |= p (completeness) and ∀p ∈ E−, H ∧ I 6|= p
(consistency). The input database instance I is also called back-
ground knowledge. In the following sections we provide concrete
definitions of several relational learning algorithms.

EXAMPLE 3.1. Consider using a relational learning algorithm
and the UW-CSE database with the Original schema shown in Ta-
ble 1 to learn a definition for the target relation collaborated(x, y),
which indicates that person x has collaborated with person y. The
algorithm may return definition collaborated(x, y)← publication(p, x),

publication(p, y). This is a complete and consistent definition with
respect to the training data, and indicates that two persons have
collaborated if they are co-authors.

In this paper, we study relational learning algorithms for Horn
definitions. We denote the set of all Horn definitions over schema
R by HDR. This set can be very large, which means that algo-

rithms would need a lot of resources (e.g. time and space) to ex-
plore all definitions. Because, resources are limited in practice, al-
gorithms accept parameters that either restrict the hypothesis space
or the search strategy. For instance, an algorithm may consider only
clauses whose number of literals are fewer than a given number, or
may follow a greedy approach where only one clause is considered
at a time. Let the parameters for a learning algorithm be a tuple
of variables θ = 〈θ1, ..., θr〉, where each θi is a parameter for the
algorithm. We denote the parameter space by Θ, and it contains
all possible parameters for an algorithm. We denote the hypothesis
space (or language) of algorithmA over schemaRwith parameters
θ as LAR,θ . Note that not all parameters affect the hypothesis space.
For instance, a parameter setting the search strategy to greedy im-
pacts how the hypothesis space is explored, but does not restrict the
hypothesis space. The hypothesis space LAR,θ is a subset of HDR
[17, 21], and each member of LAR,θ is a hypothesis.

There is a trade-off between computational resources used by
an algorithm and the size of its hypothesis space. The hypothesis
space is restricted so that the algorithm can be used in practice, with
the hope that it finds a consistent and complete hypothesis.

EXAMPLE 3.2. Continuing Example 3.1, consider restricting
the hypothesis space to clauses whose number of literals are fewer
than a given number, which we call clause-length. Assume that
we are now interested in learning a definition for the target re-
lation collaboratedProf(x,y), which indicates that professor x has
collaborated with professor y, under the Original schema. If we
set clause-length = 5, the learning algorithm is able to learn the
complete and consistent definition collaboratedProf(x, y)←
professor(x), professor(y), publication(p, x), publication(p, y).
However, if we set clause-length = 3, the previous definitions is
not in the hypothesis space of the algorithm. Thus, the algorithm
cannot learn this or any other complete and consistent definition.

3.2 Schema Independence

3.2.1 Mapping Database Instances
One may view a schema as a way of representing background

knowledge used by relational learning algorithms to learn the def-
initions of target relations. Intuitively, in order to learn essentially
the same definitions over schemas R and S, we should make sure
that R and S represent basically the same information. Let us de-
note the set of database instances of schema R as I(R). In order
to compare the ability of R and S to represent the same informa-
tion, we would like to check whether for each database instance
I ∈ I(R) there is a database instance J ∈ I(S) that contains
basically the same information as I . We adapt the notion of equiv-
alency between schemas to precisely state this idea [13, 9].

Given schemas R and S, a transformation is a (computable)
function τ : I(R)→ I(S). For brevity, we write transformation τ
as τ : R→ S. Transformation τ is invertible iff it is total and there
exists a transformation τ−1 : S → R such that the composition of
τ and τ−1 is the identity mapping on I(R), that is τ−1(τ(I)) = I
for I ∈ I(R). The transformation τ−1 may or may not be total.
We call τ−1 the inverse of τ and say that τ is invertible. If transfor-
mation τ is invertible, one can convert every instance I ∈ I(R) to
an instance J ∈ I(S) and reconstruct I from the available informa-
tion in J . If τ : R→ S is bijective, schemasR and S are informa-
tion equivalent via τ . Informally, if two schemas are information
equivalent, one can convert the databases represented using one of
them to the other without losing any information. Hence, one can
reasonably argue that equivalent schemas essentially represent the
same information. Our definition of information equivalence be-
tween two schemas is more restricted that the ones proposed in [13,

9]. We assume that in order for schemasR and S to be information
equivalent via τ , τ−1 has to be total. Although more restricted, this
definition is sufficient to cover the transformations discussed in this
paper.

EXAMPLE 3.3. In addition to the functional dependencies shown
in Table 1, let the following inclusion dependencies hold over the
relations of Original schema in this table: student[stud] =
inPhase[stud], student[stud] = yearsInProgram[stud],
professor[prof] = hasPosition[prof], One may join relations
student, inPhase, and yearsInPrograms and join relations
professor and hasPosition to map each instance of the Origi-
nal schema to an instance of the 4NF schema. Also, each instance
of the 4NF schema can be mapped to an instance of the Origi-
nal schema by projecting relation student to relations student,
inPhase, and yearsInProgram and projecting relation professor
to relations hasPosition and professor. Hence, these schemas
are information equivalent.

3.2.2 Mapping Definitions
Let HDR be the set of all Horn definitions over schema R. In

order to learn semantically equivalent definitions over schemas R
and S, we should make sure that the setsHDR andHDS are equiv-
alent. That is, for every definition hR ∈ HDR, there is a seman-
tically equivalent Horn definition in HDS , and vice versa. If the
set of Horn definitions over R is a superset or subset of the set of
Horn definitions over S, it is not reasonable to expect a learning
algorithm to learn semantically equivalent definitions inR and S.

Let LR be a set of Horn definitions over schema R such that
LR ⊆ HDR. Let hR ∈ LR be a Horn definition over schema
R and I ∈ I(R) be a database instance. The result of applying a
Horn definition hR to database instance I is the set containing the
head of all instantiations of hR for which the body of the instanti-
ation belongs to I(R). hR(I) shows the result of hR on I .

DEFINITION 3.4. Transformation τ : R → S is definition pre-
serving w.r.t. LR andLS iff there exists a total function δτ : LR →
LS such that for every definition hR ∈ LR and I ∈ I(R), hR(I)
= δτ (hR)(τ(I)).

Intuitively, Horn definitions hR and δτ (hR) deliver the same re-
sults over all corresponding database instances in R and S. We
call function δτ a definition mapping for τ . Transformation τ is
definition bijective w.r.t. LR and LS iff τ and τ−1 are definition
preserving w.r.t. LR and LS .

If τ is definition bijective w.r.t. equivalent sets of Horn defi-
nitions, one can rewrite each Horn definition over R as a Horn
definition over S such that they return the same results over all cor-
responding database instances ofR and S, and vice versa. We call
these definitions equivalent. We use the operator ≡ to show that
two definitions are equivalent.

3.2.3 Relationship Between Bijective and Definition
Bijective Transformations

In order for a learning algorithm to learn equivalent definitions
over schemas R and S, where τ : R → S, τ should be both
bijective and definition bijective w.r.t. HDR and HDS . If τ is bi-
jective, the learning algorithm takes as input the same background
knowledge. Also, a definition bijective transformation ensures that
the learning algorithm can output equivalent Horn definitions over
both schemas. Nevertheless, it may be hard to check both con-
ditions for given schemas. Next, we extend the results in [9] to
find the relationship between the properties of bijective and def-
inition bijective transformations. In this paper, we consider only

transformations that can be written as sets of Horn definitions. We
call these Horn transformations. Composition/ decomposition are
well-known examples of Horn transformations [1].

EXAMPLE 3.5. Let R be the Original schema and S be the
4NF schema in Example 3.3. The transformation from the Orig-
inal schema to the 4NF schema can be written as the following set
of Horn definitions:

student(x, y, z)← student(x), inPhase(x, y),

yearsInProgram(x, z).

professor(x, y)← professor(x), hasPosition(x, y).

publication(x, y)← publication(x, y).

The inverse of this transformation from the 4NF to Original schema
is a set of projection operators, which can also be written as a set
of Horn definitions.

Let transformation τ : R → S and its inverse τ−1 : S → R
be Horn transformations. Clearly, the head of each Horn definition
in τ−1 will be a relation in R. Let hR be a Horn definition in
HDR. The composition of hR and τ−1, denoted by hR ◦ τ−1, is a
Horn definition that belongs toHDS , created by applying hR to the
heads of clauses in τ−1 [1]. That is, hR ◦τ−1(J) = hR(τ−1(J)),
for all J ∈ I(S).

PROPOSITION 3.6. Given schemasR and S, if transformation
τ : R → S is bijective and both τ and τ−1 are Horn transforma-
tions, then τ is definition bijective w.r.tHDR andHDS .

Intuitively, if τ : R → S is bijective and both τ and τ−1 are Horn
transformation, every Horn definition in HDR can be rewritten as
a Horn definition in HDS such that they return the same results
over equivalent database instances. Hence, in the rest of this paper,
we consider only the bijective Horn transformations whose inverses
are Horn transformations.

EXAMPLE 3.7. Let R be the Original schema and S be the
4NF schema in Example 3.3 and τ : R → S τ−1 : S → R
are the Horn transformation explained in Example 3.5. According
to Proposition 3.6, τ is definition bijective w.r.t. HDR andHDS .

3.2.4 Schema Independence Property
The hypothesis space determines the set of possible Horn def-

initions that the algorithm can explore. Therefore, the output of a
learning algorithm depends on its hypothesis space. In Example
3.2, we showed that an algorithm is able to learn a definition for a
target relation with some hypothesis space but not in another more
restricted space. In order for an algorithm to learn semantically
equivalent definitions for a target relation over schemas R and S,
it should have equivalent hypothesis spaces overR and S. We call
this property hypothesis invariance. Let Θ be the parameter space
for algorithm A.

DEFINITION 3.8. AlgorithmA is hypothesis invariant under trans-
formation τ : R → S iff τ is definition bijective w.r.t. LAR,θ and
LAS,θ , for all θ ∈ Θ.

Algorithm A is hypothesis invariant under a set of transformations
iff A is hypothesis invariant under every transformation in the set.
We now define the notion of schema independence for relational
learning algorithms over a bijective transformation. We define a re-
lational learning algorithm as a function A(I, E, θ) to LAR,θ . That
is, taking as input a database instance I , training examples E, and
parameters θ ∈ Θ, the algorithm outputs a hypothesis in LAR,θ .

DEFINITION 3.9. Algorithm A is schema independent under
bijective transformation τ : R → S iff A is hypothesis invari-
ant under τ and for every I ∈ I(R) and all θ ∈ Θ, we have:
A(τ(I), E, θ) ≡ δτ (A(I, E, θ)), where δτ is the definition map-
ping for τ .

Algorithm A is schema independent under the set of transforma-
tions iff it is schema independent under each transformation in the
set. Note that if an algorithm is schema independent under transfor-
mation τ , it is hypothesis invariant under τ . However, it is possible
for an algorithm not to be schema independent, but be hypothe-
sis invariant. In such cases, the cause of schema dependence must
necessarily be related to the search process of the algorithm, rather
than hypothesis representation capacity.

EXAMPLE 3.10. Consider the Original schema and the 4NF
schema in in Example 3.3. The Original schema is the result of
a decomposition of the 4NF schema. Consider the learning algo-
rithm FOIL. If the target relation is collaboratedProf(x,y), as in
Example 3.2, FOIL is able to learn equivalent definitions under the
Original schema and the 4NF schema. But, if the target relation is
advisedBy(x,y), FOIL learns non-equivalent definitions under these
schemas, as seen in Example 1.1, and is not schema independent.

4. DECOMPOSITION AND COMPOSITION
There are many bijective Horn transformations between rela-

tional schemas [13, 1]. It takes more space than a single paper
to explore the behavior of relational learning algorithms over all
such transformations. In this paper, we explore the schema inde-
pendence of relational learning algorithms under two widely used
Horn transformations called decomposition, where the transforma-
tion is projection, and composition, where the transformation is
natural join [1]. Our reasons for selecting these transformations
are two fold. First, they are used in most normalizations and de-
normalizations, e.g., 3rd normal form. which are arguably one
of the most frequent schema modifications and their importances
have been recognized from the early days of relational model [1].
Database designers often normalize schemas to remove redundancy
and insertion/ deletion anomalies and denormalize them to improve
query processing time and schema readability [1]. We also ob-
serve several cases of them in relational learning benchmarks, one
of which is presented in Section 1.

We define decomposition as follows [1]. Let Si ./ Sj and ISi ./
ISj denote the natural join between Si and Sj and their instances,
respectively. We restrict the definition of natural join for the cases
where Si and Sj have at least one attribute symbol in common
to avoid Cartesian product. Let ./ni=1 Si show the natural join
between S1, . . ., Sn. Recall that if both INDs S1[A] ⊆ S2[B] and
S2[B] ⊆ S1[A] hold in a schema, we denote them as S1[A] =
S2[B] and call it an IND with equality.

DEFINITION 4.1. A decomposition of schema R = (R,ΣR)
with single relation symbolR is schema S = (S,ΣS) with relation
symbols S1 . . . Sn such that sort(R) = ∪1≤i≤nsort(Si) and

• For each relation IR there is one and only one instance (IS1 . . . ISn)
of S such that πsort(Si)(IR) = ISi , 1 ≤ i ≤ n, and ./ni=1 ISi

= IR.

• For all Si, Sj , 1 ≤ i, j ≤ n, such that X = sort(Si) ∩
sort(Sj) 6= ∅, ΣS contains IND with equality Si[X] = Sj [X].

• We have ΣS = ΣR ∪ λ.

The first and third conditions in Definition 4.1 are generally known
as lossless join and dependency preservation properties, respec-

tively. The second condition in Definition 4.1 ensures that the nat-
ural join of relations in every instance IS of S does not lose any tu-
ples in IS . Table 1 depicts an example of a decomposition. Relation
symbol student in the 4NF schema is decomposed into student,
inPhase, and yearsInProgram in the original schema. The
conditions of Definition 4.1, e.g., lossless join property, hold in
this example due to the FDs in original and 4NF schemas [1].
These conditions may also be satisfied because of other types of
constraints in the schema, such as multi-valued dependencies. A
composition is the inverse of a decomposition, which is expressed
by natural join.

Consider again schema S in Definition 4.1. The join ./ni=1 ISi

is globally consistent if for each j, 1 ≤ j ≤ n, πsort(Sj) ./
n
i=1 ISi

= ISj [1]. Intuitively speaking, a join is globally consistent if
none of its relation has a dangling tuple regarding the join. For
example, the join between the relations of S in the first condition of
Definition 4.1 is globally consistent. The join ./ni=1 ISi is pairwise
consistent if for each 1 ≤ i, j ≤ n, πsort(Si)(ISi ./ ISj) = ISi . In
other words, ISi does not lose any tuple after joining with ISj . The
join ./ni=1 Si is acyclic if each instance ./ni=1 ISi that is pairwise
consistent is globally consistent [1]. For example, the join S1 ./
S2 in schema S1 :{S1(A,B), S2(A,C)} is acyclic. But, the join
S3 ./ S4 ./ S5 in schema S2 : {S3(A,B), S4(B,C), S5(B,A), }
is cyclic. In this paper, we consider only the decompositions where
the join in the first condition of Definition 4.1 is acyclic [1]. Acyclic
joins cover most decompositions in real-world [1]. For examples,
most normal forms, e.g., 3NF, BCNF, 4NF, have acyclic joins.

For simplicity, we consider leaving a relation unchanged as a
special case of decomposition. We define the decomposition (com-
position) of a schema with more than one relation as the set of
decompositions (compositions) of all its relations. We define a de-
composition/ composition of a schema as a finite set of applications
of composition and/or decomposition to the schema. Every decom-
position is bijective [1]. Because each decomposition is bijective,
every composition is also bijective. Because both projection and
natural join can be written as Horn definitions, each decomposi-
tion/ composition and its inverse are Horn transformations. Hence,
they are definition bijective. We explore the property of schema
independence only for decomposition/ composition in this paper.

5. TOP-DOWN ALGORITHMS
Most relational learning algorithms follow a covering approach

[21, 17]. The covering approach consists in constructing one clause
at a time. After building a clause, the algorithm adds the clause
to the hypothesis, discards the positive examples covered by the
clause, and moves on to learn a new clause. Algorithm 1 sketches
a generic relational learning algorithm that follows a covering ap-
proach. The strategy followed by the LearnClause procedure de-
pends on the nature of the algorithm. In top-down algorithms, the
LearnClause procedure in Algorithm 1 searches the hypothesis
space from general to specific, by using a refinement (specializa-
tion) operator that is generally adding a new literal to the clause.

The hypothesis space in top-down algorithms is a refinement
graph, that is a rooted directed acyclic graph in which nodes rep-
resent clauses and each arc is the application of a basic refinement
operator. The basic strategy of top-down algorithms consists of
starting from the most general clause, which corresponds to the
root of the refinement graph, and repeatedly refining it until it does
not cover any negative example.

The strategy of constructing and searching the refinement graph
varies between different top-down algorithms. For instance, FOIL [21,
27] is an efficient and popular top-down algorithm that follows a
greedy best-first search strategy. In this section, we analyze the

Algorithm 1: Generic relational learning algorithm following
a covering approach.

Input : Database instance I , positive examples E+, negative
examples E−

Output: A Horn definition H
H ← {} ; U ← E+

while U is not empty do
C ← LearnClause(I, U,E−)
if C satisfies minimum condition then

H ← H ∪ C
U ← U − {c ∈ U |I ∪H |= c}

return H

schema independence properties of FOIL. However, the results that
we show in this section hold for all top-down algorithms no matter
which search strategy they follow.

The refinement graph for most schemas, even the ones with a
relatively small number of relations and attributes, may grow sig-
nificantly [21, 17]. Hence, the construction and search over the
refinement graph may become too inefficient to be practical. To
be used in practice, FOIL restricts its search space, i.e. hypothe-
sis space. We call the number of literals in a clause its length. A
common method is to restrict the maximum length of each clause
in the refinement graph [21, 17]. Intuitively, because composi-
tion/decompositions modify the number of relations in a schema,
equivalent clauses over the original and transformed schemas may
have different lengths. Hence, this type of restrictions may result
in different hypothesis spaces. One may like to fix this problem by
choosing different values for the maximum lengths over the origi-
nal and transformed schemas. The following theorem proves that it
is not possible to achieve equivalent hypothesis spaces by restrict-
ing the maximum length of clauses no matter what values are used
over the original and transformed schemas.

THEOREM 5.1. FOIL is not hypothesis invariant.

Progol is another popular top-down algorithm that follows the
same approach as FOIL but considers a larger number of candidate
clauses at each step over a more restricted hypothesis space [17].
Theorem 5.1 also applies to Progol. It is confirmed by our experi-
ments in Section 8.

6. BOTTOM-UP ALGORITHMS
Bottom-up algorithms also follow the covering approach shown

in Algorithm 1. However, their LearnClause procedure searches
the hypothesis space from specific to general hypotheses. Given
a positive example, bottom-up algorithms attempt to find the most
specific clause in the hypothesis space, called bottom-clause, that
covers the example, relative to the database instance [18, 19]. They
generalize these bottom-clauses to find definitions that cover as
most positive and as fewest negative examples as possible.

6.1 Bottom-clause Construction
Let IR be a database instance over schema R. The bottom-

clause associated with positive example e, relative to IR, denoted
by ⊥e,IR , is the most specific clause over R that covers e, rela-
tive to IR. A typical algorithm for computing bottom-clauses us-
ing inverse entailment is given in [17]. The algorithm starts with
an empty clause, and iteratively adds literals to the clause. Given
positive example T (a1, . . . , an), it assigns a fresh variable ui to
each distinct constant and adds literal T (u1, . . . , un) to the head of

the bottom-clause. The algorithm maintains the mapping between
constants and variables. It then finds all tuples in the database that
contain constants a1, . . . , an. For each tuple, the algorithm adds
a new literal to the bottom-clause, where the predicate symbol is
the tuple relation symbol and the terms are variables obtained by
replacing a1, . . . , an in the tuple to their corresponding variables
and assigning new variables to newly encountered constants in the
tuples. . In the following iterations, the algorithm searches the
database for tuples that contain new constants and adds new liter-
als to the bottom-clause. This algorithm may generate very long
clauses after multiple iterations over a large database. A common
method to restrict the number of iterations is to limit the maximum
depth of the bottom-clause [17]. The depth of a variable x, denoted
by d(x), is 0 if it appears in the head of the clause, otherwise it is
minv∈Ux(d(v)) + 1, where Ux are the variables of literals in the
body of the clause containing x. The depth of a literal is the maxi-
mum depth of the variables appearing in the literal. The depth of a
clause is the maximum depth of the literals appearing in the clause.
The algorithm creates literals of depth at most i in iteration i.

EXAMPLE 6.1. This clause over the Original UW-CSE schema
in Table 1 has depth 1: taLevel(x, y)← ta(c, x, t), courseLevel(c, y).
The following clause for target relation commonLevel(x, y), which
says that students x and y assist with courses at the same level has
depth 2: commonLevel(x, y)← ta(c1, x, t1), ta(c2, y, t2),

courseLevel(c1, l), courseLevel(c2, l).

Bottom-clauses determine the hypothesis space of a bottom-up al-
gorithm: longer bottom-clauses allow the algorithm to explore larger
number of definitions. To be schema independent, bottom-up algo-
rithms must get equivalent bottom-clauses associated with the same
example, relative to equivalent instances of the original and trans-
formed schemas. Otherwise, these algorithms will not be hypoth-
esis invariant. Using the depth parameter does not result in such
equivalent bottom-clauses, because the original and transformed
schemas need different depths to create equivalent bottom-clauses.

EXAMPLE 6.2. Let us compose and replace relations courseLevel
(crs, level) and ta(crs, stud, term) in the Original UW-CSE schema
with courseLevelTa(crs, level, stud, term). commonLevel from
Example 6.1 has the following definition over this schema, which
has depth 1: commonLevel(x, y) ← courseLevelTa(c1, l, x, t1),

courseLevelTa(c2, l, y, t2). If we set the maximum depth to 1, in the
Original schema, the clause in Example 6.1 is not in the hypothesis
language. But, under the new schema, the clause presented above
is in the hypothesis language.

Using a similar idea to the proof of Theorem 5.1, the following
lemma proves that the bottom-clause construction algorithm is schema
dependent even if different depth values are used across schemas.

LEMMA 6.3. Bottom-clause construction is schema dependent.

6.2 Generalization
There are multiple bottom-up algorithms whose differences lie

mainly in their generalization operator [18, 19, 4]. Most bottom-up
algorithms cannot learn efficiently over small or medium databases
without making assumptions that do not hold over most real-world
databases [19]. ProGolem is a bottom-up algorithm that can run
efficiently over small or medium databases without making gener-
ally unrealistic assumption [19]. To explore the hypothesis space
and generalize clauses efficiently, ProGolem assumes that clauses
are ordered. An ordered clause is a clause where the order and
duplication of literals matter. If clause C is considered an ordered
clause, then it is denoted as

−→
C . For instance, clauses

−→
C = T (x)←

P (x), Q(x),
−→
D = T (x) ← Q(x), P (x), and

−→
E = T (x) ←

P (x), P (x), Q(x) are all different.
ProGolem’s LearnClause procedure first generates the bottom-

clause associated with some positive example. Then, it performs
a beam search to select the best clause generated after multiple
applications of the armg operator. More formally, given clause
−→
C , ProGolem randomly picks a subset E+

S of positive examples
to generalize

−→
C . ProGolem uses the asymmetric relative minimal

generalization (armg) operator to generalize clauses. For each ex-
ample e′ in E+

S , ProGolem uses the armg operator to generate a

candidate clause
−→
C′, which is more general than

−→
C and covers e′.

It then selects the highest scoring candidate clauses to keep in the
beam and iterates until the clauses cannot be improved. The beam
search requires an evaluation function to score clauses. One may
select an evaluation function that is agnostic of the schema used,
such as coverage, which is the number of positive examples minus
the number of negative examples covered by the clause.

We now explain the armg operator in detail. Let ⊥e,IR be
the bottom-clause associated with example e, relative to IR. Let
−→
C = T ← L1, · · · , Ln be the ordered version of ⊥e,IR . Let
e′ be another example. Li is a blocking atom iff i is the least
value such that for all substitutions θ where e′ = Tθ, the clause−→
C′θ = (T ← L1, · · · , Li)θ does not cover e′, relative to IR [19].
Algorithm 3 in Appendix A shows the ARMG algorithm, which
implements the armg operator. Given the bottom-clause ⊥e,IR
and a positive example e′, armg drops all blocking atoms from the
body of⊥e,IR until e′ is covered. After removing a blocking atom,
some literals in the body may not have any variable in common
with the other literals in the body and head of the clause, i.e., they
are not head-connected. Armg also drops those literals. For Pro-
Golem to be schema independent, the armg operator must return
equivalent clauses given equivalent input clauses over original and
transformed databases.

EXAMPLE 6.4. Consider the following equivalent definitions
for target relation hardWorking over the Original and 4NF UW-
CSE schema in Table 1, respectively: hardWorking(x)← student(x),

inPhase(x , prelim), yearsInProgram(x , 3),
hardWorking(x)← student(x , prelim, 3).

Assume that armg wants to generalize these clauses to cover ex-
ample e′. Let e′ satisfy literal student(x) but does not satisfy
inPhase(x , prelim). The armg operator keeps literal student(x)
in the first clause, but it eliminates student(x , prelim, 3) from the
second clause. Hence, it delivers non-equivalent generalizations.

Thus, neither bottom-clause construction nor generalization phases
in ProGolem are schema independent.

THEOREM 6.5. ProGolem is not schema independent.

Due to schema dependence of the bottom-clause construction algo-
rithm, other bottom-up algorithms are also schema dependent [18].

7. CASTOR
This section presents Castor, a bottom-up relational learning al-

gorithm. Castor uses the covering approach presented in Algo-
rithm 1. It follows the same search strategy as ProGolem, but in-
tegrates INDs into the bottom-clause construction and generaliza-
tion algorithms to achieve schema independence. If we apply the
INDs in schemaR to Horn clause hR overR, we get an equivalent
Horn clause that has a similar syntactic structure to its equivalent
Horn clauses in decomposition/ compositions of R [1]. For exam-
ple, consider schema R2 :{R1(A,B), R2(A,C)} with the IND
R1[A] = R2[A] and the clause hR2 : T (x)← R1(x, y). Because

each value in R1[A] also appears in R2[A], we can rewrite hR2 as
gR2 : T (x) ← R1(x, y), R2(x, z). Now, consider a composition
of R, S2 :{S1(A,B,C)}. The clause hS2 : T (x) ← S1(x, y, z)
over S2 is equivalent to both hR2 and gR2 . gR2 and hS2 have also
similar syntactic structures: there is a bijection between the distinct
variables in gR2 and hS2 . However, such bijection does not exist
between hR2 and hS2 . As learning algorithms modify the syntac-
tic structure of clauses to learn a target definition and hR2 and hS2
have different syntactic structures, these algorithms may modify
them differently and generate non-equivalent clauses. For instance,
assume that an algorithm renames variable z to x in hS2 to gener-
ate clause h

′
S2 : T (x)← S1(x, y, x). This algorithm cannot apply

a similar change to hR2 as hR2 does not have any corresponding
variable to z. But, the algorithm can apply the same modification to
gR2 and generate an equivalent Horn clause to h

′
S2 . Moreover, as

INDs generally reflect important relationships, it may improve the
effectiveness of the algorithm to use them for learning definitions.

Castor’s LearnClause procedure is shown in Algorithm 2. It
first generates the bottom-clause associated with some positive ex-
ample using the modified bottom-clause construction algorithm pre-
sented in Section 7.1. It minimizes the bottom-clause using the pro-
cedure explained in Section 7.4. Then, it performs a beam search to
select the best candidate after multiple applications of the modified
ARMG algorithm, explained in Section 7.2.1. Finally, it reduces
the best candidate using the algorithm explained in Section 7.2.2.

Algorithm 2: Castor’s LearnClause algorithm.

Input : Database instance I , positive examples E+, negative
examples E−, parameters K and N .

Output: A new clause C.
−→
C ← Castor_BottomClause(first example in E+)
−→
C ← Minimize(

−→
C) ; BC ← {

−→
C }

repeat
BestScore ← score of highest scoring candidate in BC

E+
S ← K randomly selected positive examples from E+

NC = {}
foreach clause C ∈ BC do

foreach e′ ∈ E+
S do

C′ ← Castor_ARMG(C, e′)
if Score(C′) > BestScore then

NC ← NC ∪ C′
BC ← highest scoring N candidates from NC

until NC = {}
C′ ← highest scoring candidate in BC

Return Castor_Reduce(C′, I, E−)

7.1 Castor Bottom-Clause Construction
Castor selects a positive example and constructs its bottom-clause

by following the normal procedure of bottom-clause construction:
at each iteration, it selects a relation and adds one or more liter-
als of that relation to the bottom-clause. Let relation symbol R
in the schema R be decomposed to relation symbols S1 . . . Sn in
the transformed schema S. If the bottom-clause construction al-
gorithm considers tuple r in an instance of R, IR, it must also
examine tuples s1, . . . , sn in instances IS1 , . . . , ISn , respectively,
such that ./ni=1 [si] = r, to ensure the produced bottom-clauses
over both schemas are equivalent. After the bottom-clause con-
struction algorithm replaces the constants with variables in these
bottom-clauses, it generates equivalent bottom-clauses overR and
S. Hence, if Castor examines tuple sj ∈ ISj , it should find tuples
si ∈ ISi whose natural join with sj creates tuple r. One approach

is to find all relations Si that have some common attributes with
Sj as they have some tuples that join with si and produce r. How-
ever, designers may rename the attributes on which S1 . . . Sn join.
For instance, relations student, inPhase, and yearsInProgram in the
original schema join over attribute stud to create relation student in
the 4NF schema in Table 1. The database designer may rename
attribute stud to name in relation student. Hence, this approach is
not robust against attribute renaming. According to Definition 4.1,
there are INDs with equality between the join attributes of rela-
tion symbols S1 . . . Sn. We use IND with equality between the
attributes in schema S to find tuples si. To simplify our notations,
we assume that the join between relations in S is still natural join.
Our results extend for composition joins that are equi-join.

DEFINITION 7.1. The inclusion class N in schema S is the
maximal set of relation symbols in S such that for each Si, Sj ∈ N,
i 6= j, there is a sequence of INDs Sk[Xk] = S′k[Xk], i ≤ k ≤ j,
in S such that

• Xk = sort(Sk) ∩sort(S′k).

• Sk+1 = S′k for i ≤ k ≤ j − 1.

Castor first constructs the inclusion classes in the input schema S.
Assume that the algorithm generates a bottom-clause relative to an
instance of schema S. Also, assume that the algorithm has just se-
lected relation ISi and added literal Li to the bottom-clause based
on some tuple si of ISi . Let Si be a member of inclusion class N
in S. For each constraint Sj [X] = Si[X] between the members
of N, Castor selects all tuples sj of relation ISj , i 6= j such that
πX(sj) = πX(si). It applies the same process for sj until it ex-
hausts the INDs between the members of N. As the join between
S1 . . . Sn is pairwise consistent, this method efficiently finds the
tuples s1, . . . , sn that all participate in the join and none of them is
a dangling tuple with the regard to the full join. Otherwise, Castor
must check the join condition for each pair of tuples.

EXAMPLE 7.2. Consider an instance of the original UW-CSE
schema in Table 1 with tuples s1 : student(Abe), s2 : inPhase
(Abe, prelim) and s3 : year(Abe, 2). Given INDs student[stud]
= inPhase[stud] and student[stud] = yearsInProgram[stud]
hold in this schema, student, inPhase, and yearsInProgram con-
stitute an inclusion class. Let Castor select tuple s1 during the
bottom-clause construction. As πstud(s1) = πstud(s2) and πstud(s1)
= πstud(s3), Castor adds tuples s2 and s3 to the bottom-clause.

The INDs between relations in a inclusion class may form a cycle.

DEFINITION 7.3. A set of INDs with equality λ over schema S
is cyclic if there is a sequence Si[Xi] = S′i[Yi], 1 ≤ i ≤ n, in λ
such that

• Si+1 = S′i for 1 ≤ i ≤ n− 1 and S1 = S′n.

• There is an i where Yi 6= Xi+1.

If the INDs induced by the inclusion class N are cyclic, Castor
may have to examine a lot more tuples than the case where the
INDs of N are not cyclic. For example, consider schema S1 with
relations S1(A,B), S2(B,C), and S3(C,A). The set of INDs
S1[B] = S2[B], S2[C] = S3[A], and S3[A] = S1[A] is cyclic.
Consider tuples s1, s2, and s3 such that πB(s1) = πB(s2) and
πC(s2) = πC(s3). We may not have πA(s3) = πA(s1). Hence,
Castor has to scan many tuples in S3 to find a tuple s′3 that satisfies
both πC(s2) = πC(s′3) and πA(s′3) = πA(s1). The following
proposition shows that if the composition join in Definition 4.1 is
acyclic, the INDs with equality in the decomposed schema are not
cyclic. Thus, Castor does not face the aforementioned issue.

PROPOSITION 7.4. Give schemaR with a single relation sym-
bol R and its decomposition S with relation symbols S1, . . . , Sn,
if the join ./nj=1 [S1, . . . , Sn] is acyclic, the INDs with equality λ
in Definition 4.1 are not cyclic.

Given Si, Sj ∈ N, too many tuples from a relation ISj may join
with the current tuple si ∈ ISi , which may result in an extremely
large bottom-clause. One may limit the maximum number of tuples
that can join with the current tuple to a reasonably large value. We
use the value of 10 in our reported experiments. After finding the
joint tuples, for each tuple sj , Castor creates a ground literal Lj . If
a constant in Lj has been already seen, the algorithm replaces it in
Lj with the variable that was assigned to that constant. Otherwise,
it assigns a fresh new variable for that constant in Lj . Finally, the
algorithm adds Lj to the bottom-clause. Because inclusion classes
are maximal, each relation symbol belongs to at most one inclusion
class. After exhausting all INDs with equality between the mem-
bers of N, Castor returns to the typical procedure of bottom-clause
construction. Castor may scan more relations than other bottom-
clause construction algorithms to find tuples that satisfy the INDs
at the end of each iteration. But, a schema usually has a relatively
small number of INDs. We show in Sections 7.4 and 8 that using
an RDBMS implementation, Castor bottom-clause construction al-
gorithm runs faster than other algorithms.

As explained in Section 6.1, the bottom-clauses may get too
large. We propose a modification of the original bottom-clause
construction algorithm so that the stopping condition is based on
the maximum number of distinct variables in a bottom-clause. At
the end of each iteration, Castor checks how many distinct variables
are in the bottom-clause. If this number is less than an input param-
eter, Castor continues to the next iteration and stops otherwise. In-
tuitively, since the number of distinct variables in equivalent Horn
clauses over composition/ decomposition are equal, this condition
helps Castor to return equivalent bottom-clauses over composition/
decomposition. The following Lemma states that Castor bottom-
clause construction algorithm is schema independent.

LEMMA 7.5. Let τ : R→ S be a composition/ decomposition,
I be an instance of R, and ⊥e,I and ⊥e,τ(I) are bottom-clauses
generated by Castor for example e relative to I and τ(I), respec-
tively. We have ⊥e,I≡⊥e,τ(I).

7.2 Castor Generalization

7.2.1 ARMG Algorithm
Castor modifies Algorithm 3 in Appendix A to compute equiv-

alent armgs over composition/ decomposition. Before we explain
the Castor generalization algorithm, we define some concepts. Given
clause

−→
C and literal R(u) in

−→
C , we call u that may contain both

variables and constants a free tuple. We extend the definitions of
projection π and natural join ./ operators over free tuples in natural
manner. A canonical database instance of clause

−→
C , shown as I

−→
C ,

is the database instance whose tuples are the free tuples in
−→
C [1].

In other words, relation IR in I
−→
C has free tuple u if literal R(u)

is in
−→
C . In each iteration of the algorithm, Castor ensures that the

canonical database instance of clause
−→
C always satisfies the INDs

of the schema. Assume the algorithm is applied on instance IR of
schemaR = (R,Σ). Immediately after removing a blocking atom
Li from clause

−→
C in Algorithm 3, Castor examines all remaining

literals in
−→
C and finds the ones whose relation symbols participate

in an IND with equality in Σ. More precisely, let R1(u1) be a lit-
eral and λR1 ⊆ Σ be the set of INDs with equality in which R1

participates. For each IND R1[X] = R2[X] in λR1 , if there is

not a literal with relation symbol R2 in
−→
C , Castor eliminates lit-

eral R1(u1) from
−→
C . Otherwise, assume that

−→
C contains literal

R2(u2). If for all literals R2(u2), we have πX(u1) 6= πX(u2),
Castor removes literal R1(u1). Castor checks these conditions for
every literal in

−→
C and all its corresponding INDs. Castor increases

the time complexity of Algorithm 3 by a factor of O(|Cmax|2|λ|),
where the |Cmax| is the size of the largest candidate clause and |λ|
is the number of INDs with equality in the schema.

EXAMPLE 7.6. Consider again the definitions for target rela-
tion hardWorking from Example 6.4 over the Original and 4NF
UW-CSE schemas in Table 1. Let the INDs student[stud] =
inPhase[stud] and student[stud] = yearsInProgram[stud]
hold in the Original schema. Assume that Castor wants to gener-
alize these clauses to cover example e′, which satisfy student(x)
but does not satisfy inPhase(x , prelim). Castor removes inPhase
literal from the first clause and then removes literals with relation
symbols student and yearsInProgram due to the INDs in the orig-
inal schema. It also removes student(x , prelim, 3) from the sec-
ond clause. Hence, it returns equivalent generalizations.

LEMMA 7.7. The Castor ARMG is schema independent.

7.2.2 Negative Reduction
Castor further generalizes clauses produced by ARMG by re-

moving non-essential literals from clauses. A literal is non-essential
if after it is removed from a clause, the number of negative exam-
ples covered by the clause does not increase [18, 19]. This step
is called negative reduction and reduces the generalization error of
the produced definitions to the training data. Castor uses INDs with
equality to compute equivalent reductions of clauses over compo-
sition/ decomposition. Given a clause

−→
C and inclusion class N =

{Si | 1 ≤ i ≤ m} over schema S, an instance YN of N is a
set of literals S1(u1), · · · , Sm(um) in

−→
C such that for every IND

Si[X] = Sj [X], 1 ≤ i, j ≤ m, there are literals Si(ui) and
Sj(uj) in YN such that πX(ui) = πX(uj). An instance YN over a
clause

−→
C is non-essential if after removing all literals in YN from

−→
C , the number of negative examples covered by the clause does
not increase. First, for each literal Lj in the input clause

−→
C , Castor

computes the instances of inclusion classes in
−→
C that start with Lj .

It creates a list containing all found instances, in the order in which
they are found. Then, it iteratively removes non-essential instances
from this list. In each iteration, it finds the first inclusion instance
Yi such that the sub-clause of

−→
C that contains all literals in every

inclusion instance up to Yi has the same negative coverage as
−→
C . A

head-connecting inclusion instance for Yi contain literals that con-
nect a literal in Yi to the head of the clause by a chain of variables.
Castor moves Yi and its head-connecting inclusion instances to the
beginning of the list, and discards the inclusion instances after Yi.
These instances can be discarded because they are non-essential.
Note that some literals in the discarded instances may also belong
to other instances before or in Yi. The algorithm iterates until the
number of inclusion instances in the clause does not change after
one iteration. At the end, it creates a clause whose head literal is the
same as

−→
C and body contains all literals in the remaining instances

of inclusion classes. Because negative reduction only removes lit-
erals from the clause, it does not decrease the number of positive
examples covered by the clause. More details can be found in Al-
gorithm 4 in Appendix A.

LEMMA 7.8. Algorithm 4 is schema independent.

Based on Lemmas 7.5, 7.7, and 7.8, Castor is schema independent.

7.3 General Decomposition/ Composition
Castor is robust over schema variations caused by bijective de-

compositions and compositions as defined in Section 4. Bijec-
tive decompositions and compositions need at least one IND with
equality in the transformed and original schemas, respectively. We
have observed several examples of these transformations in real-
world databases, some of which we report in Section 8. However,
in addition to INDs with equality, schemas often have INDs in the
general form of subset or equality. One can use these INDs to de-
fine a more general decomposition. More precisely, a general de-
composition of schemaR with single relation symbol R is schema
S with relation symbols S1 . . . Sn that satisfies all conditions in
Definition 4.1, but at least one IND in S (in the second condition of
Definition 4.1) is an IND in form of subset or equality. A general
decomposition of a schema with multiple relations is the union of
general decompositions over each relation symbol in the schema.

A general decomposition is invertible but not bijective [1]. Con-
sider the general decomposition fromR1 :{R1(A,B,C)} to
S1 :{S1(A,B), S2(A,C)} with IND S2[A] ⊆ S1[A], and the in-
stance of S1 I1S1 : I1S1

= {(a1, b1), (a2, b2)}, I1S2
= {(a1, c1)}.

There is not any instance of R1 that represents the same informa-
tion as I1S1 . Hence, it is not clear how to define schema indepen-
dence for I1S1 . Also, the composition from S1 to R1 is not invert-
ible as I1S1

./ I1S2
loses tuple (a2, b2), which cannot be recovered.

As some original and transformed databases in this composition do
not have the same information, it is not reasonable to expect equiv-
alent learned definitions over these databases.

One may resolve these issues by considering databases with la-
beled nulls, e.g., by using weak universal relation assumption [1,
7]. For example, one can compose instance I1S1 in the last exam-
ple to I1R1

: {(a1, b1, c1), (a2, b2, x)} where x is a labeled null
that reflects the existence of an unknown value. However, it takes
more than a single paper to define the semantic of learning over
databases with labeled nulls and schema independence over trans-
formations that introduce labeled nulls, so we leave this direction
for future work. Instead, we define schema independence for gen-
eral decompositions by ignoring the instances in the transformed
schema that do not have any corresponding instance in the original
schema. Hence, the mapping between the instances in the original
and the remaining instances of the transformed schemas is bijec-
tive, thus, it is definition bijective. We define hypothesis invariance
and schema independence as defined in Section 3 for this mapping.
An algorithm is schema independent over a general decomposition
if it is schema independent over its mapping between the corre-
sponding instances of the original and decomposed schemas.

A general composition is the inverse of a general decomposi-
tion. As we have shown, general compositions lose information.
Thus, it is not reasonable to expect algorithms to be schema inde-
pendent over them. We limit the instances of its original schema
so that it becomes invertible. For simplicity, we define schema in-
dependence for a general composition whose transformed schema
has a single relation. Our definition extends for schemas with mul-
tiple relations. Let schemaR with a single relation symbol R be a
general composition of schema S with relation symbols S1 . . . Sn
such that for all Si, Sj , 1 ≤ i, j ≤ n, X = sort(Si) ∩ sort(Sj)
6= ∅, S has IND Si[X] ⊆ Sj [X]. Natural join between S1 . . . Sn
does not lose any tuple in an instance of S, IS , iff for each IND
Si[X] ⊆ Sj [X] in S we have πX(ISi) = πX(ISj), where ISi and
ISj are relations of Si and Sj in IS , respectively. Let J(S) denote
instances with the aforementioned property in S. The mapping
from J(S) to I(R) is bijective, therefore, it is definition bijective.
Thus, hypothesis invariance and schema independence properties

in Section 3 can be defined for this mapping. An algorithm over
the general composition from S to R is schema independent if it
is schema independent over the mapping between J(S) to I(R).
We call a finite application of general decompositions and com-
positions a general decomposition/ composition. An algorithm is
schema independent over a general decomposition/ composition if
it is schema independent over its general decompositions and gen-
eral compositions.

Consider again schema S with relation symbols S1 . . . Sn. To
achieve schema independence over general composition/ decompo-
sition, given instance IS , Castor finds each IND Si[X] ⊆ Sj [X] in
S where πX(ISi) = πX(ISj) and adds the IND to its list of IND
with equality in a preprocessing step. It then proceeds to its nor-
mal execution. The proofs of lemmas 7.5, 7.7, and 7.8 extend for
the corresponding instances of R and S that have the same infor-
mation in non-bijective decompositions. Using a similar argument,
these proofs also hold for the corresponding instances that have
the same information over general decomposition. Thus, Castor is
schema independent over general decompositions/ compositions.
Using this method, Castor also handles combinations of INDs in
general form and INDs with equality.

The pre-processing step of checking for each IND Si[X] ⊆
Sj [X] in schema S whether πX(ISi) = πX(ISj) holds may take
a long time and some users may not want to wait for this pre-
processing phase to finish. Another approach is to use INDs in
form of subset or equality in Castor directly as follows. We extend
Castor to use both INDs with equality and in general form. In the
rest of this section, we refer to both type of INDs simply as IND
and write them by ⊆ for brevity. We redefine an inclusion class N
in schema S as a set of relation symbols Si, Sj in S such that there
is a sequence of INDs Sk[Xk] ⊆ S′k[Xk] or S′k[Xk] ⊆ Sk[Xk]
i ≤ k ≤ j, in S where Xk = sort(Sk) ∩sort(S′k) and Sk+1 =
S′k for i ≤ k ≤ j − 1. Assume that Castor picks a tuple si from
relation Si in inclusion class N during the bottom-clause construc-
tion. For each Si[X] ⊆ Sj [X] in N, Castor selects all tuples sj
of relation ISj , i 6= j such that πX(sj) ⊆ πX(si). Castor repeats
this process for sj until it exhausts all INDs in N. After this step,
Castor follows the bottom-clause construction algorithm explained
in Section 7.1. Since the natural join between relations in S is
acyclic, the pairwise consistency implies the global consistency of
the joint tuples. For the same reason, the proof of Proposition 7.4
extends for INDs. Hence, the INDs in each inclusion class are not
cyclic and Castor efficiently finds the tuples that join according to
the INDs.

We also extend the Castor ARMG algorithm to ensure that the
free tuple of each literal S(u), u, satisfies all INDs in which S par-
ticipates after a blocking atom is removed. If u does not satisfy
any of its corresponding INDs, it is removed. Finally, we redefine
the instance of an inclusion class N, YN, in an ordered clause

−→
C

as a set of literals S1(u1), · · · , Sm(um) in
−→
C such that for each

IND Si[X] ⊆ Sj [X], 1 ≤ i, j ≤ m, there are literals Si(ui) and
Sj(uj) in YN where πX(ui) = πX(uj). We modify our nega-
tive reduction algorithm in Section 7.2.2 to use the new definition
of inclusion class instance. This extension of Castor may not be
schema independent as it may miss some tuples in bottom-up con-
struction or ignore some literals in ARMG algorithms. For exam-
ple, consider the general decomposition fromR1 :{R1(A,B,C)}
to S1 :{S1(A,B), S2(A,C)} with IND S2[A] ⊆ S1[A] and in-
stances J1

R1
: J1

R1
= {(a1, b1, c1)} and J1

S1 : J1
S1

= {(a1, b1)},
J1
S2

= {(a1, c1)}. Assume that the modified Castor bottom-clause
construction over J1

S1 starts with tuple (a1, b1). IND S2[A] ⊆
S1[A] does not force Castor to select (a1, c1) for the bottom-clause.

Hence, Castor delivers non-equivalent bottom-clauses over J1
S1 and

J1
R1

. Nonetheless, our empirical results in Section 8 show that this
extension of Castor is more schema independent than other algo-
rithms over general decomposition/ composition.

7.4 Castor Implementation
Current bottom-up algorithms do not run efficiently over medium

or large databases because they must process long clauses [19]. A
relational learning algorithm evaluates a clause by computing the
number of positive and negative examples covered by the clause.
These tests dominate the time for learning [?]. It is generally time-
consuming to evaluate clauses with many literals. Castor imple-
ments several optimizations to run efficiently over large databases.
In-memory RDBMS: Castor is implemented on top of the in-
memory RDBMS VoltDB (voltdb.com). Relational databases are
usually stored in RDBMS’s. Therefore, it is natural to implement
a learning algorithm on top of an RDBMS. Using an RDBMS also
provides access to the schema constraints, e.g., inclusion dependen-
cies, which we use to achieve schema independence. The bottom-
clause construction algorithm queries the database multiple times,
each of which selects all tuples in a table that match given constants
from the training data. We leverage RDBMS indexing to improve
the running time of these queries.
Stored procedures: We implement the bottom-clause construction
algorithm inside a stored procedure to reduce the number of API
calls made from Castor to the RDBMS. Castor makes only one
API call per each bottom-clause. The first time that Castor is run
on a schema, it creates the stored procedure that implements the
bottom-clause construction algorithm for the given schema. Castor
reuses the stored procedure when the algorithm is run again, with
either new training data or updated database instance.
Coverage tests: Castor optimizes the generalization process by re-
ducing the number of coverage tests. If clause C covers example
e, then clause C′′, which is more general than C, also covers e. If
Castor knows that C covers e, it does not check if C′′ covers e.
Efficiently evaluating clauses: One approach to computing the
number of positive (negative) examples covered by a clause is to
join the table containing the positive (negative) examples with the
tables corresponding to all literals in the body of the clause. If
two literals share a variable, then a natural join between the two
columns corresponding to the shared variable in the literals is used.
This strategy works well when clauses are short, as in top-down
algorithms [27]. However, our empirical studies show that the time
and space requirements for this approach are prohibitively large on
large clauses generated by bottom-up algorithms. Thus, we per-
form coverage tests by using a subsumption engine. Clause C θ-
subsumes C′ iff there is some substitution θ such that Cθ ⊆ C′.
A ground bottom-clause is a bottom-clause that only contains con-
stants. A candidate clause C covers example e iff C θ-subsumes
the ground bottom-clause ⊥e associated with e. Castor uses the
efficient subsumption engine Resumer2 [16]. Given clause C and
a set of examples E, Castor checks if C covers each e ∈ E sepa-
rately. Castor divides E in subsets and performs coverage testing
for each subset in parallel.
Minimizing clauses: Bottom-up algorithms such as Castor pro-
duce large clauses, which are expensive to evaluate. Castor min-
imizes bottom-clauses by removing syntactically redundant liter-
als. A literal L in clause C is redundant if C is equivalent to
C′ = C−{L}. Clause equivalence betweenC andC′ can be deter-
mined by checking whether C θ-subsumes C′ and C′ θ-subsumes
C. Castor minimizes clauses using theta-transformation [6]. It uses
a polynomial-time approximation of the clausal-subsumption test,
which is efficient and retains the property of correctness. Given

Name Schema #R #T #P #N

HIV-Large
Initial 80 14M

5.8K 36.8K4NF-1 77 7.8M
4NF-2 81 16M

UW-CSE

Original 9 1.8K

102 2044NF 6 1.4K
Denormalized-1 5 1.3K
Denormalized-2 4 1.3K

IMDb
JMDB 46 8.4M

1.85K 3.6KStanford 41 10.5M
Denormalized 33 7.2M

Table 2: Numbers of relations (#R), tuples (#T), positive examples (#P),
and negative examples (#N) for each dataset.

clause C, for each literal L in C, the algorithm checks if C ⊆
C′ = C − {L}. If this holds, then L is redundant and will be re-
moved. Minimizing bottom-clauses reduces the hypothesis space
considered by Castor. It also makes coverage testing faster.

8. EXPERIMENTS

8.1 Experimental Settings
We use three datasets whose statistics are shown in Table 2.

The HIV-Large dataset contains information about 42,000 chemi-
cal compounds. We learn the target relation hivActive(compound),
which indicates that compound has anti-HIV activity. The original
HIV dataset is stored in flat files and does not have any information
about its constraints. We explored the database for possible depen-
dencies. Using these dependencies, we created two new schemas
in 4NF, named 4NF-1 and 4NF-2. The Initial, 4NF-1 and 4NF-2
schemas are shown in Table 6 in Appendix B.2. In the HIV-2K4K
dataset, we keep the same background knowledge, but reduce the
number of examples to 2K positive and 4K negative examples.

The UW-CSE dataset contains information about an academic
department and has been used as a benchmark in the relational
learning literature [22]. We learn the target relation advisedBy(stud,prof),
as explained in Section 1. The dataset comes with a set of con-
straints in form of first-order logic clauses that should hold over
the dataset domain. Using these constraints, we iteratively com-
pose the original schema to four different schemas, two of which
are shown in Table 1.

The IMDb dataset contains information about movies. We learn
the target relation dramaDirector(director), which indicates that di-
rector has directed a drama movie. The original schema, called
JMDB, is in 4NF. We transform the database to two new schemas
called Denormalized and Stanford. The Stanford schema follows a
structure similar to the one used in the Stanford Movie DB (info-
lab.stanford. edu/pub/movies). The three schemas are shown in Ta-
bles 9 and 10 in Appendix B.2. In the UW-CSE and IMDb datasets,
we generate negative examples by using the closed-world assump-
tion, and then sample to obtain twice as many negative examples as
positive examples. More details about the datasets and transforma-
tions can be found in Appendix B.2.

We compare Castor to three relational learning systems: FOIL [21],
Aleph [24], and GILPS [19]. FOIL system implements FOIL algo-
rithm but does not scale to medium and large datasets. Therefore,
we also emulate FOIL using Aleph by forcing Aleph to follow a
greedy strategy and call it Aleph-FOIL. Aleph is a well known ILP
system that implements Progol by its default setting [17]. To differ-
entiate the two variations of Aleph used in our experiment, we call
the default implementation of Aleph Aleph-Progol. GILPS imple-

HIV-Large
Algorithm Metric Initial 4NF-1 4NF-2

Precision 0.58 0.72 0
Aleph-FOIL Recall 0.42 0.91 0

Time (hours) 3 0.9 6

Castor
Precision 0.81 0.81 0.81

Recall 0.85 0.85 0.85
Time (hours) 3.5 1.9 56

HIV-2K4K
Precision 0.72 0.78 0

Aleph-FOIL Recall 0.69 0.81 0
Time (min) 6.2 7.9 20.6
Precision 0.70 0.79 -

Aleph-Progol Recall 0.85 0.90 -
Time (min) 58.5 72.2 > 75 h

Castor
Precision 0.80 0.80 0.80

Recall 0.87 0.87 0.87
Time (min) 15.1 6.5 335.5

Table 3: Results of learning relations over HIV-Large and HIV-2K4K data.

ments ProGolem, which is a bottom-up algorithm. Details of the
parameter configuration are in Appendix B.1.

We compare the quality of the leaned definitions using precision
and recall. Let the set of true positives for a definition be the set
of positive examples in the testing data that are covered by the def-
inition. The precision of a definition is the proportion of its true
positives over all examples covered by the definition. The recall of
a definition is the number of its true positives divided by the total
number of positive examples in the testing data. We perform 5-
fold cross validation for UW-CSE and 10-fold cross validation for
HIV and IMDb datasets. We evaluate precision, recall, and running
times, showing the average over the cross validation. All experi-
ments were run on a server with 32 2.6GHz Intel Xeon E5-2640
processors, running CentOS Linux with 50GB of main memory.

8.2 Experimental Results
Castor is schema independent over all datasets and delivers equal

precision and recall across all schemas of each dataset in our exper-
iments. However, other algorithms are schema dependent.
HIV datasets. Aleph-FOIL, Aleph-Progol and Castor are the only
algorithms that scale to the HIV-2K4K dataset. Aleph-FOIL and
Castor also scale to the HIV-Large dataset. The definitions learned
by Aleph-FOIL and Aleph-Progol over different schemas are not
equivalent as shown by their precision and recall values across
schemas in Table 3. Different schemas cause Aleph-FOIL and
Aleph-Progol to explore different regions of the hypothesis space.
Aleph-FOIL cannot find any definition over the 4NF-2 schema of
HIV-Large and HIV-2K4K datasets. Aleph-Progol does not termi-
nate after 75 hours over the 4NF-2 schema of HIV-2K4K. FOIL
crashes on both HIV datasets. ProGolem does not learn anything
after 5 days running, even on smaller subsets of the HIV dataset.
UW-CSE dataset. As shown in Table 4, all algorithms except
for Castor are schema dependent and learn non-equivalent defini-
tions over different schemas of UW-CSE. As this dataset is smaller
than HIV and IMDb datasets, it has a relatively smaller hypothesis
space. Hence, the degree of schema dependence for these algo-
rithms over this dataset is generally lower than other datasets. This
is reflected in their precision and recall, which are not significantly
different across schemas. Castor’s effectiveness is comparable to
Aleph-Progol and ProGolem over the Original and 4NF schemas.
Nevertheless, Aleph-Progol and ProGolem perform worse on other
schemas. On the other hand, Castor is effective over all schemas.
IMDb dataset. The target relation for the IMDb dataset has an ex-
act Datalog definition given the background knowledge and train-

Algorithm Metric Original 4NF Denorm-1 Denorm-2

FOIL
Precision 0.84 0.79 0.77 0.85

Recall 0.35 0.36 0.42 0.47
Time (s) 18.7 20.84 30.72 30.64

Aleph-FOIL
Precision 0.78 0.50 0.36 0.19

Recall 0.17 0.18 0.13 0.11
Time (s) 3.5 4.3 14.8 398.1

Aleph-Progol
Precision 0.95 0.97 0.98 0.55

Recall 0.54 0.45 0.36 0.29
Time (s) 9.7 13.2 27.9 334.8

ProGolem
Precision 0.95 0.95 0.80 0.82

Recall 0.54 0.54 0.48 0.48
Time (s) 24.4 28.8 26.7 54.1

Castor
Precision 0.93 0.93 0.93 0.93

Recall 0.54 0.54 0.54 0.54
Time (s) 7.2 7.4 7.9 12.4

Table 4: Results of learning relations over UW-CSE data.

Algorithm Metric JMDB Stanford Denormalized

Aleph-FOIL
Precision 0.66 0.92 0.67

Recall 0.44 1 0.45
Time (min) 6.4 1,229 476.4

Aleph-Progol
Precision 0.66 1 0.69

Recall 0.47 1 0.52
Time (min) 312.9 1,248 937.4

Castor
Precision 1 1 1

Recall 1 1 1
Time (min) 15.14 108.15 32.4

Table 5: Results of learning relations over IMDb data.

ing examples. Castor finds this definition over all schemas and
obtains precision and recall of 1, as shown in Table 5. Aleph-
FOIL fails to find this definition over all schemas. Aleph-Progol
finds this definition only over the Stanford schema. The definitions
learned by Aleph-FOIL and Aleph-Progol over different schemas
are largely different.
Relationship between style of design and effectiveness. Our re-
sults show that there is not any single style of design, e.g., 4NF,
on which all algorithms, except for Castor, are effective over all
datasets. Generally, it is hard to find a straightforward relationship
between the style of design and effectiveness for these algorithms.
For instance, Aleph-Progol delivers its highest precision over a
denormalized schema, Denormalized-1, and its lowest precision
for another denormalized schema, Denormalized-2, over UW-CSE.
This relationship also varies based on the dataset. Aleph-FOIL de-
livers its highest precision over a normalized schema, original, over
UW-CSE but its highest precision over IMDb is on a denormalized
schema, i.e., Stanford. We observe a similar trend for recall.
Efficiency. Besides being schema independent, Castor offers the
best trade-off between effectiveness and efficiency. Generally, Aleph-
FOIL is more efficient than Castor, but less effective. Aleph-Progol
is usually effective, but becomes very inefficient as the size of data
grows. FOIL and ProGolem only scale to small datasets. Note
that the running time of all algorithms increases significantly over
the 4NF-2 schema of the HIV-Large and HIV-2K4K datasets. As
the bond relation is decomposed into bondSource and bondTarget
in this schema, the number of tuples to represent bonds is doubled
compared to the Initial schema. Therefore, algorithms must explore
clauses with a large number of literals, hundreds, whose coverage
testings take a very long time. We plan to optimize the coverage
testing engine of Castor to efficiently process such datasets.
General decomposition/ composition. To explore non-bijective
decomposition/ compositions, we restore the INDs with equality
that we have enforced on their schemas to their original forms. We
run the extended version of Castor from Section 7.3 using the afore-
mentioned INDs and all other regular INDs in each schema. The
results are shown in Appendix B.3.

9. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases: The Logical Level. Addison-Wesley, 1994.
[2] A. Abouzied, D. Angluin, C. Papadimitriou, J. Hellerstein,

and A. Silberschatz. Learning and verifying quantified
boolean queries by example. In PODS, 2013.

[3] M. Anderson, D. Antenucci, V. Bittorf, M. Burgess,
M. Cafarella, A. Kumar, F. Niu, Y. Park, C. Re, and
C. Zhang. Brainwash: A Data System for Feature
Engineering. In CIDR, 2013.

[4] M. Arias, R. Khardon, and J. Maloberti. Learning Horn
expressions with LOGAN-H. J. Mach. Learn. Res.,
8:549–587, 2007.

[5] B. T. Cate, V. Dalmau, and P. G. Kolaitis. Learning schema
mappings. TODS, 38(4):28:1–28:31, 2013.

[6] V. S. Costa, A. Srinivasan, R. Camacho, H. Blockeel,
B. Demoen, G. Janssens, J. Struyf, H. Vandecasteele, and
W. V. Laer. Query transformations for improving the
efficiency of ILP systems. J. Mach. Learn. Res., 4:465–491,
2003.

[7] R. Fagin. Inverting schema mappings. TODS, 32(4), 2007.
[8] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data

exchange: Semantics and query answering. In ICDT, pages
207–224, 2003.

[9] W. Fan and P. Bohannon. Information Preserving XML
Schema Embedding. TODS, 33(1), 2008.

[10] L. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek. Fast
Rule Mining in Ontological Knowledge Bases with AMIE+.
In VLDB Journal, 2015.

[11] L. Getoor and A. Machanavajjhala. Entity resolution in big
data. In KDD, 2013.

[12] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang,
E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li,
and A. Kumar. The MADlib Analytics Library: Or MAD
Skills, the SQL. PVLDB, 5(12), 2012.

[13] R. Hull. Relative Information Capacity of Simple Relational
Database Schemata. In PODS, 1984.

[14] T. Kraska et al. MLbase: A Distributed Machine-learning
System. In CIDR, 2013.

[15] A. Kumar, J. Naughton, and J. M. Patel. Learning
generalized linear models over normalized data. In
SIGMOD, 2015.

[16] O. Kuželka and F. Železný. A restarted strategy for efficient
subsumption testing. Fundam. Inf., 89(1):95–109, 2009.

[17] S. Muggleton. Inverse Entailment and Progol. New
Generation Computing, Special issue on Inductive Logic
Programming, 13:245–286, 1995.

[18] S. Muggleton and C. Feng. Efficient induction of logic
programs. In New Generation Computing. Academic Press,
1990.

[19] S. Muggleton, J. C. A. Santos, and A. Tamaddoni-Nezhad.
Progolem: A system based on relative minimal
generalisation. In ILP, volume 5989, 2009.

[20] J. Picado, A. Termehchy, A. Fern, and P. Ataei. Schema
independent relational learning.
http://arxiv.org/abs/1508.03846, 2015.

[21] J. R. Quinlan. Learning Logical Definitions From Relations.
Machine Learning, 5, 1990.

[22] M. Richardson and P. Domingos. Markov logic networks.
Machine Learning, 62(1-2):107–136, Feb. 2006.

[23] O. Schulte. A tractable pseudo-likelihood function for Bayes

nets applied to relational data. In SIAM SDM, pages
462–473, 2011.

[24] A. Srinivasan. The Aleph Manual, 2004.
[25] A. Termehchy, M. Winslett, and Y. Chodpathumwan. How

Schema Independent Are Schema Free Query Interfaces? In
ICDE, 2011.

[26] X. Yin, J. Han, J. Yang, and P. S. Yu. CrossMine: Effcient
Classifcation Across Multiple Database Relations. In ICDE,
2004.

[27] Q. Zeng, J. M. Patel, and D. Page. QuickFOIL: Scalable
inductive logic programming. PVLDB, 2014.

APPENDIX
A. ALGORITHMS

Algorithm 3: ARMG algorithm.

Input : Bottom-clause ⊥e,IR , positive example e′.
Output: An ARMG of ⊥e,IR that covers e′.
−→
C is ⊥e,IR= T ← L1, · · · , Ln
while there is a blocking atom Li w.r.t. e′ in the body of

−→
C do

Remove Li from
−→
C

Remove atoms from
−→
C which are not head-connected

Return
−→
C

Algorithm 4: Castor negative reduction algorithm.

Input : Clause
−→
C = T ← L1, · · · , Ln, database instance I ,

negative examples E−.
Output: Reduced clause

−→
C′.

E−c ← subset of E− covered by
−→
C

I← list containing all instances of inclusion classes in
−→
C

while true do
Ii ← first inclusion instance in I such that clause T ← B,

where B contains literals in inclusion instances
I1, · · · , Ii, has negative coverage E−c

H← inclusion instances in I that connect Ii with T
N← literals from inclusion instances I1, · · · , Ii not in H
I′ ← H ∪ [Ii] ∪N
if length(I′) = length(I) then

C′ = T ← B, where B contains all literals in I′

Return C′

I← I′

B. EXPERIMENTAL DETAILS

B.1 Parameter Configuration
Machine learning algorithms usually require parameter tuning to

run them successfully. We try to use the default parameter configu-
ration for all systems, except when needed. Because we use noisy
datasets, we must allow the algorithms to learn clauses that cover
some negative examples. To limit the number of negative examples
covered by any learned clause, we require that the ratio of positive
to negative examples covered by a clause (precision) is at least 2
to 1. That is, the number of positive examples examples covered
by a clause must be two times greater than or equal the number of

negative examples covered by the clause. In FOIL, this value is
set with the aaccur parameter; in Aleph it is set with the minacc
parameter; in ProGolem and Castor it is set with the minprec pa-
rameter. In FOIL, the only settings that we modify is aaccur=0.67.
In Aleph, the settings that we modify are minacc=0.67, minpos=2,
noise=inf, and openlist=1 (only for Aleph-FOIL). In Castor and
ProGolem, the settings are minprec=0.67, noise=1, minpos=2, and
sample=1, beamwidth=1 for HIV-Large, HIV-2K4K, and IMDb,
and sample=20, beamwidth=3 for UW-CSE. In the IMDb dataset,
we also restrict the number of literals with the same relation sym-
bol added to a ground bottom clause in one iteration of the bottom
clause construction algorithm. We set this value to 10. If this value
is unrestricted, a bottom clause may contain hundreds or thousands
of literals with the same relation symbol (one for each tuple).

Top-down algorithms contain the parameter clauselength, which
sets an upper bound on the number of literals in a clause. The
default value for this parameter in Aleph is 4. Over HIV-Large and
HIV-2K4K, the definition for the target relation must contain long
clauses. With clauselength = 4, Aleph-FOIL and Aleph-Progol
do not learn any clause. Therefore, we set this parameter to have
values of 10 and 15.

B.2 Schemas
The HIV dataset was obtained from the National Cancer Insti-

tute’s AIDS antiviral screen (wiki.nci.nih.gov/display/NCIDTPdata).
The initial schema contains relation compound(comp,atm), which
indicates that compound comp contains atom atm. The schema
also has relations that indicate the chemical element that an atom
represents, e.g., element_C(atm), as well as relations to indicate
properties of each atom, e.g., p2_1(atm). The schema represents
a bond between two atoms by relation bonds(bd, atm1,atm2), and
it has a relation for each type of a bond, e.g., bondType1(bd,t1).
We explored the database for possible dependencies. In particu-
lar, we have discovered that the INDs bonds[bd] = bondType1[bd],
bonds[bd] = bondType2[bd], bonds[bd] = bondType3[bd] hold in
the database. We have used these dependencies to compose rela-
tions bonds, bondType1, bondType2, and bondType3 into a single
relation bonds and create a schema in 4NF, named 4NF-1. We also
decompose relation bonds in the initial schema to relations bond-
Source and bondTarget to create another schema, called 4NF-2.
The schemas and INDs for the HIV-Large and HIV-2K4K datasets
are shown in Tables 6 and 7, respectively. The HIV data contains
80 INDs in total.

The UW-CSE dataset was obtained from alchemy.cs.washington.
edu/data/uw-cse. It comes with a set of constraints in form of first-
order logic clauses that should hold over the dataset domain. The
INDs in these constraints are shown in Table 8 (top). The INDs
in these constraints are hasPosition[prof] = professor[prof], stu-
dent[stud] = inPhase[stud], ta[crs] = taughtBy[crs], yearsInPro-
gram[stud] ⊆ student[stud], and ta[stud] ⊆ student[stud]. Ac-
cording to the original set of constraints, if one considers only the
professors whose position is Faculty, the IND taughtBy[prof] =
professor[prof] holds. If there are more INDs with equality in the
schema, one can generate more schemas from the original UW-
CSE schema using composition transformation. To evaluate the ef-
fectiveness of algorithms over more varieties of schemas, we have
considered only professors with position Faculty to use the IND
taughtBy[prof] = professor[prof]. For the same reasons, we also
added the INDs student[stud]⊆ yearsInProgram[stud] and course-
Level[crs] = taughtBy[crs] to the schema. We enforce the afore-
mentioned constraints by removing a small fraction of tuples, 159
tuples, from the original dataset. All INDs for the UW-CSE dataset
are shown in Table 8. Using these INDs, we iteratively compose

the original schema to four different schemas, two of which are
shown in Table 1. We compose courseLevel and taughtBy rela-
tions in 4NF schema to create the a more denormalized schema,
named Denormalized-1, and compose courseLevel, taughtBy, and
professor in 4NF schema to generate the fourth schema, named
Denormalized-2.

JMDB (jmdb.de) provides a relational database of IMDb data
under a 4NF schema. We create a subset of JMDB database by
selecting the movies produced after year 2000 and their related en-
tities, e.g., actors, directors, producers. The relationships between
relation movie(id, title,year) and its related relations, e.g., direc-
tor(id,name), are stored in relations movies2X where X is the name
of the related entity set, e.g., movies2director(id,directorid). The
resulting database has 11 INDs with equality in form of movies2X[Xid]
=X[id], e.g.,
movies2director[directorid] = director[id]. To test over more trans-
formations, we have changed some regular INDs in the database in
form of movies2X[id] ⊆ movie[id] to movies2X[id] = movie[id]
where X is genre, color, prodcompany, producer, and director by
removing some tuples from the database. We use the first set of
11 INDs with equality to compose 11 pairs of relations in JMDB
schema, e.g., composing movies2director(id, directorid) and direc-
tor(id, name) into movies2director(id, directorid, name), to create
a new schema, called Denormalized. We use the second set of
INDs with equality to compose 5 relations in JMDB schema, e.g.,
movies2genre, into movie relation and create a schema called Stan-
ford that follows a structure similar to the one used in the Stan-
ford Movie DB (infolab.stanford.edu/pub/movies). We explored
our JMDB database to find other INDs, which are listed in Table 11
in Appendix B. The three schemas and the full list of INDs in IMDb
data are shown in Tables 9, 10 and 11.

Initial 4NF-1 4NF-2
bonds(bd,atm1,atm2) bonds(bd,atm1,atm2, bSource(bd,atm1)
bType1(bd,t1) t1,t2,t3) bTarget(bd,atm2)
bType2(bd,t2) bType1(bd,t1)
bType3(bd,t3) bType2(bd,t2)

bType3(bd,t3)

Common relations
compound(comp, atm) element_C(atm) ... element_O(atm)
p2_0(atm) p2_1(atm) ... p3(atm)

Table 6: Schemas for the HIV-Large and HIV-2K4K datasets.

bonds[bd]=bType1[bd] bonds[bd]=bType2[bd]
bonds[bd]=bType3[bd]
bonds[atm1]⊆compound[atm] bonds[atm2]⊆ compound[atm]
elem_C[atm]⊆compound[atm] . . . elem_O[atm]⊆ compound[atm]
p2_0[atm]⊆compound[atm] . . . p3[atm]⊆compound[atm]

Table 7: The INDs in the initial HIV dataset.

student[stud] = inPhase[stud] yearsInProg[stud] ⊆ student[stud]
hasPosition[prof] = professor[prof] ta[stud] ⊆ student[stud]
ta[crs] = taughtBy[crs]
taughtBy[prof] = professor[prof] student[stud] ⊆ yearsInProg[stud]
courseLevel[crs] = taughtBy[crs]
inPhase[stud] ⊆ student[stud] yearsInProg[stud] ⊆ student[stud]
hasPosition[prof] ⊆ professor[prof] ta[stud] ⊆ student[stud]
taughtby[prof] ⊆ professor[prof] taughtby[crs] ⊆ courseLevel[crs]

Table 8: Top: INDs in the original UW-CSE dataset. Middle:
added INDs to have bijective transformations. Bottom: INDs that
should hold according to the semantics of the database.

JMDB Stanford
movie(id,title,year) movie(id,title,year,genreid,
movies2genre(id,genreid) colorid,prodcompid,
movies2color(id,colorid) directorid,producerid)
movies2director(id,directorid)
movies2producer(id,producerid)
movies2prodcomp(id,prodcompid)

Common relations
language(id,language) plot(id,plot)
country(id,country) color(id,color)
business(id,text) altversion(id,version)
runningtime(id,times) prodcompany(id,name)
actor(id,name,sex) editor(id,name)
director(id,name) producer(id,name)
writer(id,name) akaname(name,akaname)
akatitle(id,langid,title) cinematgr(id,name)
biography(id,name,bio) movies2misc(id,miscid)
composer(id,name) costdesigner(id,name)
distributor(id,name) rating(id,rank,votes)
genre(id,genre) misc(id,name)
mpaarating(id,text) technical(id,text)
proddesinger(id,name) releasedate(id,countryid,date)
movies2actor(id,actorid,character) movies2editor(id,editorid)
movies2writer(id,writerid) movies2cinematgr(id,cinamtid)
movies2composer(id,composerid) movies2costdes(id,costdesid)
movies2language(id,langid) certificate(id,countryid,cert)
movies2proddes(id,proddesid) movies2country(id,countryid)

Table 9: JMDB and Stanford schemas for the IMDb dataset. Rela-
tions in bottom are contained in both schemas.

Denormalized
movie(id,title,year) language(id,language)
movies2actor(id,actorid,name, plot(id,plot)

character,sex) business(id,text)
movies2color(id,colorid,color) altversion(id,version)
movies2X(id,Xid,name) s.t. runningtime(id,times)
X= {writer,editor,composer, prodcompany(id,name)

cinematgr,costdes,proddes, country(id,country)
director,producer,misc} akaname(name,akaname)

akatitle(id,langid,title) biography(id,name,bio)
distributor(id,name) rating(id,rank,votes)
genre(id,genre) releasedate(id,countryid,date)
movies2language(id,langid) certificate(id,countryid,cert)
mpaarating(id,text) technical(id,text)
movies2country(id,countryid)

Table 10: Denormalized schema for the IMDb dataset.

B.3 Analysis

B.3.1 Performance Measures
Similar to other machine learning tasks, it is not often possi-

ble to learn an ideal definition for a target concept due to various
reasons, such as the hardness of the target concept or the lack of
sufficient amount of training data. In these situations, the values of
reasonable precision and recall for a definition depend on the un-
derlying applications, e.g., 5% improvement in precision may not
be important in a financial application but vital in a medical appli-
cation. Nevertheless, definitions with higher precision and/or recall
are generally more desirable [21, 19, 24].

B.3.2 Robustness and Effectiveness
Aleph-FOIL and Aleph-Progol are not able to find any defini-

tion over the 4NF-2 schema of HIV-Large and HIV-2K4K datasets.
The reason is that any good clause must contain information about
bonds. In the 4NF-2 schema, this information is represented by
two relations, bondSource and bondTarget, and three more to in-

movies2X[id] = movie[id]
s.t. X= {genre, color, prodcompany, producer, director}

movies2Y[Yid] = Y[id]
s.t. Y= {actor, cinematagr, color, composer, costdes, director,

editor, misc, proddes, producer, writer}
Z[id] ⊆ movie[id]

s.t. Z={business, runningtime, altversion, certificate,
plot, rating, akatitle, distributor, releasedate,

technical, movies2actor, movies2country, movies2composer,
movies2writer, movies2costdes, movies2misc, movies2editor,

movies2cinematgr, movies2language, movies2proddes}
certificate[countryid] ⊆ country[countryid]
releasedate[countryid] ⊆ country[countryid]

akatitle[langid] ⊆ language[langid]
movies2country[countryid] ⊆ country[countryid]

movies2language[langid] ⊆ language[langid]
movies2genre[genreid] ⊆ genre[genreid]

movies2prodcompany[prdcompid] ⊆ prodcompany[prdcompid]

Table 11: The INDs in IMDB dataset

dicate their types. With a top-down search, these algorithms are
not able to find a clause that contains these relations. Aleph-FOIL
terminates without learning anything and Aleph-Progol does not
terminate after 75 hours.

Over the UW-CSE dataset, Aleph-FOIL learns definitions that
overfit to the training data. These definitions vary with the dif-
ferent schemas. For instance, over denormalized schemas, Aleph-
FOIL learns definitions consisting of many clauses, each covering
a few examples. This results in low generalization, hence very low
precision and recall. On the other hand, over the Original schema,
it learns definitions consisting of a lower number of clauses, each
covering a greater number of examples. Note that Aleph-FOIL
does not exactly emulate FOIL. FOIL uses a different evaluation
function and explores an unrestricted hypothesis space. There-
fore, FOIL does not suffer from the same problems as Aleph-FOIL.
However, it is less effective than other algorithms.

Generally, the style of design on which a relational learning algo-
rithm delivers its most effective results varies based on the metric of
effectiveness, the dataset, and the algorithm. For example, Aleph-
Progol delivers its highest precision over a denormalized schema,
Denormalized-1, for UW-CSE, but its highest recall over the orig-
inal schema, which is more normalized than 4NF. Aleph-Progol
also delivers its lowest precision on UW-CSE data over another de-
normalized schema, Denormalized-2, for this dataset. Hence, it is
generally hard to find a straightforward relationship between the
style of design and the precision or recall of an algorithm over a
given dataset. Furthermore, each algorithm prefers a different style
of design over each dataset. For example, Aleph-Progol has higher
overall precision and recall on the most normalized schema, origi-
nal schema, for UW-CSE. But, it delivers its highest overall preci-
sion and recall over the most denormalized schema, Stanford, for
IMDb. Finally, different algorithms prefer distinct styles of design
over the same dataset. For example, FOIL delivers both its highest
precision and highest recall over a denormalized schema for UW-
CSE data, Denormalized-2, over which Aleph-Progol delivers both
its lowest precision and lowest recall. Over the same database, Pro-
Golem achieves both its highest precision and highest recall for the
most normalized schema, i.e., original schema.

B.3.3 Efficiency
Aleph-FOIL and Castor are the only algorithms that scale to the

HIV-Large dataset. Aleph-FOIL with clauselength = 10 is more
efficient than Castor. However, when clauselength is set to 15, it
becomes less efficient, as shown in Tables 12. Aleph-FOIL with
both clauselength = 10 and 15 is also faster than Castor over the

HIV-Large
Algorithm Metric Initial 4NF-1 4NF-2

Aleph-FOIL Precision 0.68 0.68 0
(clauselength = 15) Recall 0.41 0.85 0

Time (hours) 11.7 3.7 47
HIV-2K4K

Algorithm Metric Initial 4NF-1 4NF-2
Aleph-FOIL Precision 0.70 0.78 0

(clauselength = 15) Recall 0.79 0.89 0
Time (min) 6.72 7.07 122.2

Aleph-Progol Precision 0.72 0.75 -
(clauselength = 15) Recall 0.89 0.87 -

Time (min) 155.51 13.56 > 75 h

Table 12: Results of learning relations over HIV-Large and HIV-2K4K
data with clauselength parameter set to 15.

HIV-2K4K dataset, as shown in Tables 3 and 12. In general, top-
down algorithms that follow greedy search strategies are expected
to be more efficient than bottom-up algorithms. Top-down algo-
rithms have a search bias for shorter clauses, which are cheaper to
compute. They usually limit the maximum length of the clauses
to be learned. Further, algorithms that follow greedy search strate-
gies can be more efficient. This is exploited by related work that
focuses on efficiency [27, 26, 10]. However, as the maximum
clause length is increased, the hypothesis space grows, and these
algorithms become less efficient. Top-down algorithms that do not
follow a greedy search strategy, such as Progol, are generally not
efficient. This is reflected in our empirical studies, where Aleph-
Progol did not scale to the HIV-Large dataset, and is the slowest
algorithm on the HIV-2K4K dataset.

Castor is able to scale to large databases such as HIV-Large and
HIV-2K4K because of the optimizations explained in Section 7.4.
By reusing information about previous coverage tests, Castor re-
duces the number of coverage tests on new clauses. This is par-
ticularly useful on large databases with complex schemas, such as
the HIV datasets, where generated clauses are large and expensive
to evaluate. Parallelization also helps Castor on reducing the time
spent on coverage testing. For these experiments, Castor paral-
lelized coverage testing by using 32 threads. Finally, minimization
helps in reducing the size of clauses. For instance, over both of
HIV datasets, Castor reduces the size of bottom-clauses over the
Initial schema by 19%, over the 4NF-1 schema by 13%, and over
the 4NF-2 schema by 18%, on average. Castor removes redundant
literals from the bottom-clause, which results in reducing the search
space and the cost of performing coverage tests.

The efficiency of Castor is comparable to the efficiency of Aleph-
FOIL and Aleph-Progol over the Original and 4NF schemas of the
UW-CSE dataset. The running time of Aleph-FOIL and Aleph-
Progol is heavily impacted over the Denormalized-2 schema, as
shown in Table 4. Castor is efficient over all schemas of this dataset.
UW-CSE is the only dataset for which FOIL and ProGolem scale.
However, in general, they are less efficient.

Castor is significantly more efficient and effective than Aleph-
FOIL and Aleph-Progol on the IMDb dataset, as shown in Table 5.
In general, top-down algorithms are efficient if they take the correct
first steps when searching for the definition. In this case, Aleph-
FOIL and Aleph-Progol (over two schemas) take the wrong steps
and focus on a section of the hypothesis space that does not contain
the correct definition.

HIV-2K4K
Metric Initial 4NF-1 4NF-2

Precision 0.77 0.79 0.73
Recall 0.63 0.87 0.76

Time (min) 27 14.8 576
UW-CSE

Metric Original 4NF Denorm-1 Denorm-2
Precision 0.93 0.93 0.93 0.93

Recall 0.54 0.54 0.54 0.54
Time (s) 8 8.9 9.1 13.3

IMDb
Metric JMDB Stanford Denormalized

Precision 1 0.98 1
Recall 1 0.84 1

Time (min) 7.3 90.8 8.1

Table 13: Results of Castor learning relations over HIV-2K4K, UW-CSE
and IMDb data using only INDs in the form of subset.

B.3.4 General Decomposition/ Composition
To explore non-bijective decomposition/ compositions of HIV,

UW-CSE, and IMDb, we restore the INDs with equality that we
have enforced on their schemas to their original forms. For in-
stance, we restore the enforced INDs with equality movies2X[id] =
movie[id] in IMDb schemas to movies2X[id]⊆ movie[id] in IMDb
schemas. We also modify the INDs with equality that are originally
found in these datasets to INDs in form of foreign key to primary
key referential integrities in their schemas. For example, we have
changed INDs movies2X[Xid] = X[id] to movies2X[Xid] ⊆ X[id]
over IMDb schemas. Hence, the transformations explained in Sec-
tion 8.1 for these datasets are general decomposition/ composition
and not bijective. We run the extended version of Castor from Sec-
tion 7.3 using the aforementioned INDs and all other regular INDs
in each schema.

Table 13 shows the results of Castor learning relations over the
HIV-2K4K, UW-CSE and IMDb datasets, using only INDs in the
form of subset. For HIV-2K4K, it uses the INDs in Table 7 (bot-
tom). For UW-CSE, it uses the INDs in Table 8 (bottom). For
IMDb, it uses the INDs in Table 11 (bottom). The extension of
Castor gets the same results as in Table 4 over UW-CSE and is
schema independent. It is also robust and delivers the same results
as in Table 5 for JMDB and Denormalized schemas of IMDb. But,
it returns precision of 0.98 and recall of 0.84 over the database with
Stanford schema. Overall, it is more effective and schema inde-
pendent than other algorithms over IMDb. However, the results of
the extension of Castor vary with the schema over the HIV-2K4K
dataset. This is because it cannot access some tuples in the bottom-
clause construction in these databases as explained in Section 7.3.
Its precisions are equal or higher than the those of Aleph-FOIL and
Aleph-Progol over all schemas and its recall is higher than that of
Aleph-FOIL and Aleph-Progol in 4NF-2 schema. But, its recall
is lower than the recall of Aleph-FOIL and Aleph-Progol over the
Initial and Aleph-Progol over 4NF-1 schemas.

