
Scalable and Usable Relational Learning With Automatic
Language Bias

Jose Picado

Oregon State University

picadolj@oregonstate.edu

Arash Termehchy

Oregon State University

termehca@oregonstate.edu

Alan Fern

Oregon State University

alan.fern@oregonstate.edu

Sudhanshu Pathak

Oregon State University

pathaks@oregonstate.edu

Ilango, Praveen

Oregon State University

ilangop@oregonstate.edu

John Davis

Oregon State University

davisjo5@oregonstate.edu

ABSTRACT
A large body of machine learning and AI is focused on learningmod-

els composed of (probabilistic) logical rules, i.e., relational models,

over relational databases and knowledge bases. To learn effective

relational models over the huge space of possible ones efficiently,

users of the current learning systems must restrict the structure

of the candidate models using language bias. ML experts have to

spend a long time inspecting the data and performing many rounds

of trial and error to develop an effective language bias. We propose

AutoBias, a system that leverages information in the underlying

data to generate the language bias. As its induced language bias may

not restrict the set of candidate models as tightly as the manually-

written ones, learning may not scale to large datasets. Thus, we

design novel and efficient methods to sample and learn effective

relational models over large data. Our extensive empirical study

shows that AutoBias delivers the same accuracy as using manually-

written language bias by imposing only a slight overhead on the

learning time.

CCS CONCEPTS
• Information systems→ Data management systems; •Com-
puting methodologies → Logical and relational learning;

KEYWORDS
Scalable Relational Learning; Language Bias; Sampling

ACM Reference Format:
Jose Picado, Arash Termehchy, Alan Fern, Sudhanshu Pathak, Ilango, Praveen,

and John Davis. 2021. Scalable and Usable Relational Learning With Auto-

matic Language Bias. In Proceedings of the 2021 International Conference on
Management of Data (SIGMOD ’21), June 20–25, 2021, Virtual Event, China.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3448016.3457275

1 INTRODUCTION
Relational Learning. A large body of machine learning and AI

is focused on learning models composed of a set of (probabilistic)

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00

https://doi.org/10.1145/3448016.3457275

logical rules over relational databases and knowledge bases [6, 12,

13, 15, 21, 28, 30, 33, 46, 48, 55, 56]. Consider the UW database

(alchemy.cs.washington.edu/data/uw-cse), which contains informa-

tion about a computer science department whose schema fragments

are shown in Table 2. One may want to predict the new relation ad-
visedBy(stud,prof), which indicates that the student stud is advised
by professor prof. Given the UW database and positive and nega-

tive training examples of the advisedBy relation, relational learning
algorithms exploit the relational structure of the data to find a defi-
nition of this relation in terms of the other existing relations in the

database [13, 15, 28, 30, 33, 44, 46, 56, 58]. Learned definitions are

usually (probabilistic) first-order logic formulas and often restricted

to Datalog programs. From the set of all possible Datalog programs,

the learning algorithm returns the one that covers the most positive

and fewest negative examples in the data. For example, given some

positive and negative examples of relation advisedBy(stud,prof) and
other existing relation instances of the schema in Table 2, a rela-

tional learning algorithm may learn the following definition for

advisedBy:
advisedBy(𝑥,𝑦) ← student (𝑥), professor (𝑦),

publication(𝑧, 𝑥), publication(𝑧,𝑦),
ta(𝑡, 𝑥,𝑢), taughtBy(𝑡, 𝑦,𝑢)

which means that if a student is a co-author on some publication

with a professor and is also a TA of a course taught by the professor,

the student is advised by the professor.

Advantages of Relational Learning. Non-relational learning
methods, e.g., logistic regression, rely on the assumption that the

data points are independent and follow an identical distribution

(IID) [36]. The IID assumption is often violated over relational data,

therefore, using non-relational models may result in inaccurate

models that are too biased to the training data [13, 15, 21, 46].

Relational models are also interpretable and easy to understand.

Moreover, as relational models directly leverage the structure of the

data, users do not need to perform the lengthy process of feature

engineering. Interestingly, when users choose to use non-relational

models over structured data, they often use relational learning

methods to extract relevant features for their models [24, 30]. Thus,

relational models are widely used in AI, e.g., information extraction

[15, 28, 46, 54], question answering [40, 41, 46, 56]; data manage-

ment, usable query interfaces [3, 4, 8, 17, 26, 27, 31, 49], entity

resolution [7, 16, 20], schema mapping discovery [7, 9, 50–52], data

cleaning [5, 25, 47], data provenance [10, 14]; and programming

languages and software engineering [22].

https://doi.org/10.1145/3448016.3457275
https://doi.org/10.1145/3448016.3457275

Challenges of Scaling Relational Learning. It is very diffi-

cult to scale relational learning to large data for two reasons. First,

the space of possible hypotheses that a relational learning algo-

rithm should explore consists of all Datalog programs defined over

the schema of the underlying data, which is enormous over a large

database [6, 12, 44, 46, 58]. Second, a relational learning algorithm

has to evaluate the quality of each hypothesis in the space, i.e.,

whether it covers sufficiently many positive and few negative ex-

amples, to pick the most effective one. It generally takes a long

time to evaluate each hypothesis over large data. In particular, the

Datalog programs that explain the data often have many literals

and complex structures, e.g., joins of many relations.

Current Approach: Manual Language Bias. To address the

first aforementioned challenge, users constrain the hypothesis space

of the algorithm using a type of inductive bias called language bias
[13]. Language bias restricts the relations, the join paths between

the relations, and the values used in the hypotheses to ensure

that the hypothesis space is both sufficiently small and contains

promising definitions. To develop accurate language bias, a user

should know both the internals of the learning algorithm and the

schema and content of the database well. They should also have a

clear intuition on the structure of accurate models. However, most

users are not sufficiently familiar with the structure of the data

and accurate models as well as internals of learning algorithms.

Due to the huge volume, complex structures, or frequent evolution

of datasets, it is challenging for users to gain knowledge about

the data and structure of promising definitions for large datasets.

Currently, language bias is developed by ML experts via a tedious

and lengthy process of trial and error and may consist of hundreds

of rules, which are hard to maintain. Language bias is called the
“black magic” needed to make relational learning work [6].

Our Contributions. In this paper, we propose a novel and us-

able system called AutoBias that scales relational learning to large

data. We proposed novel methods to generate language bias auto-

matically with minimal user intervention. We also propose new

techniques to explore the hypothesis space induced by the language

bias and evaluate candidate models efficiently over large data. Our

contributions are:

• We propose a novel method that leverages the exact and ap-

proximate database constraints [1, 2, 43] and content to induce

language bias automatically (Section 3). These constraints are

usually available in the schema or can be discovered from the

database [1, 19, 43].

• Since the language bias induced by our method may not suf-

ficiently restrict the hypothesis space over large datasets, we

propose random sampling techniques to enable the learning al-

gorithm explore a large hypothesis space efficiently (Section 4.2).

It is challenging to randomly sample the hypothesis space over

relational data as it requires the construction and materialization

of all possible Datalog definitions over the data before selecting

a random sample, which takes a very long time. We propose an

efficient method to construct only randomly chosen definitions.

• Randomly sampled definitions might be biased toward highly

connected tuples or relations in the data, which may reduce

the accuracy of learned model. Thus, we propose a stratified

sampling method that delivers more diverse hypotheses than

random sampling (Section 4.3).

Table 1: Relational Learning Notations
𝑅(𝑒1, . . . , 𝑒𝑛) literal

𝑇 (𝑥) ← 𝑅1 (𝑢1) . . . 𝑅𝑛 (𝑢𝑛) clause

𝐼 ∧𝐶 |= 𝑒 clause 𝐶 covers 𝑒 given 𝐼

Table 2: Schema for the UW data.
student(stud) professor(prof)

inPhase(stud, phase) hasPosition(prof, position)

yearsInProgram(stud, years) taughtBy(course, prof, term)

courseLevel(course, level) ta(course, stud, term)

publication(title, person)

• A relational learning algorithm must evaluate the quality of each

potential hypothesis. Since each hypothesis may contain hun-

dreds of literals, it takes a very long time to evaluate its quality

over large data. We propose sampling techniques that effectively

evaluate the quality of each hypothesis efficiently (Section 5).

• We empirically evaluate our proposed methods over real-world

and large databases. Our empirical study indicates that our pro-

posed language bias generation method delivers almost as ac-

curate models as the ones developed by experts over multiple

datasets. They also show that the random sampling approach

improves the efficiency of our system significantly and delivers

more effective or as effective results than the other techniques

over large databases.

2 BACKGROUND
2.1 Basic Definitions
An atom is a formula in the form of 𝑅(𝑒1, . . . , 𝑒𝑛), where 𝑅 is a

relation symbol. A literal is an atom, or the negation of an atom.

Each attribute in a literal is set to either a variable or a constant,

i.e., value. Variable and constants are called terms.

Definition 2.1. A Horn clause (clause for short) is a finite set of

literals that contains exactly one positive literal called head-literal.

Definition 2.2. A Horn definition (definition for short) is a set of

clauses with the same head-literal.

A relational learning algorithm learns definitions from input

relational databases and training data. The learned definitions are

usually restricted to non-recursive Datalog programs without nega-

tion for efficiency reasons.

Definition 2.3. The hypothesis space is the set of all definitions
that a relational learning algorithm explores. Each member of the

hypothesis space is a hypothesis.

Definition 2.4. Given a database instance 𝐼 , clause 𝐶 covers ex-

ample 𝑒 if 𝐼 ∧𝐶 |= 𝑒 , where |= is the entailment operator, i.e., if 𝐼

and 𝐶 are true, then 𝑒 is true.

Horn definition𝐻 covers an example 𝑒 if at least one of its clauses

covers 𝑒 . Relational learning algorithms search over the hypothesis

space for a definition that covers as many positive and few negative

examples as possible.

2.2 Language Bias
Language bias is a set of predicate and mode definitions [13].

Table 3: Predicate and mode definitions for UW data.
Predicate definitions Mode definitions

student(T1) student(+)

inPhase(T1,T2) inPhase(+,-)

professor(T3) inPhase(+,#)

hasPosition(T3,T4) professor(+)

publication(T5,T1) hasPosition(+,-)

publication(T5,T3) publication(-,+)

2.2.1 Predicate Definitions. Predicate definitions assign one or

more types to each attribute in a database relation. In a candidate

clause, two relations can be joined over two attributes (i.e., attributes

are assigned the same variable) only if the attributes have the same

type. For instance, in Table 3, the predicate definition student(T1)
indicates that the attribute in relation student is of type T1, and
the predicate definition inPhase(T1,T2) indicates that the first

and second attributes of relation inPhase are of type T1 and T2,
respectively. Hence, relations student and inPhase can be joined

on attributes student[stud] and inPhase[stud]. Multiple types may

be assigned to an attribute. For example the predicate definitions

publication(T5,T1) and publication(T5,T3) indicate that the

attribute author in relation publication belongs to both types T1 and
T3. Predicate definitions restrict the joins that appear in a candidate

clause: two relations are joined only if their attributes share a type.

Intuitively, predicate definitions should assign the same types

to attributes that refer to entities of the same semantic type. For
instance, attributes student[stud] and inPhase[stud] both refer to

the entity type student. Therefore, predicate definitions should as-

sign the same type to these attributes. On the other hand, attribute

inPhase[phase] refers to entities of type phase. Therefore, this at-
tribute should be of a different type. Note that relying on attribute

names would not be a reliable way of inferring the semantic types

of entities stored in an attribute. A user should know the schema

of the database and the meaning of all attributes in order to write

effective predicate definitions.

2.2.2 Mode Definitions. Mode definitions indicate whether a

term in an literal should be a new variable, i.e., existentially quanti-

fied variable, an existing variable, i.e., appears in a previously added

literal, or a constant. They do so by assigning one or more symbols

to each attribute in a relation. Symbol + indicates that a term must

be an existing variable. Symbol − indicates that a term can be an ex-

isting variable or a new variable. For instance, the mode definition

inPhase(+,-) in Table 3 indicates that the first term must be an

existing variable and the second term can be either an existing or a

new variable. Symbol # indicates that a term should be a constant.

For instance, the mode definition inPhase(+,#) indicates that the

second term must be a constant.

Mode definitions restrict the candidate clauses that are explored

by the learning algorithm. Each literal in a candidate clause must

satisfy at least one mode definition. Some mode definitions do not

add any value to the creation of candidate clauses. For instance,

mode definition inPhase(+,+) means that both variables in a new

literal must be existing variables. The same literal can be created

from mode definitions inPhase(+,-) or inPhase(-,+). Therefore,
mode definition inPhase(+,+) does not add new more informa-

tion to the candidate clause. On the other hand, mode definition

inPhase(-,-) means that both variables in a literal can be new

variables. In this case, the new literal would not be connected to

any previously added literal, resulting in a Cartesian product in

the clause. A user should know the learning algorithm and have

an intuition of the desired hypotheses in order to write effective

mode definitions. We explain how predicate and mode definitions

are used in the learning algorithm in Section 2.3.1.

2.3 Relational Learning Algorithms
AutoBias uses the same learning algorithm as existing relational

learning systems [46]. In this section, we explain this algorithm and

how it uses language bias. Like other relational learning systems,

AutoBias uses a sequential covering approach [33, 38, 44, 46, 54, 58].

Algorithm 1 depicts this approach. The algorithm constructs one

clause at a time using the LearnClause function. If the clause satisfies
the minimum criterion, it adds the clause to the learned definition

and discards the positive examples covered by the definition. It

stops when all positive examples are covered by the definition.

It is shown that the most effective way to implement the Learn-
Clause function is with the bottom-up approach, in which the algo-

rithm first finds relevant patterns in the data and then generalizes

them to find clauses that explain the training examples accurately

[35, 38, 44]. Thus, we use this approach. It has two main steps: a

Bottom-clause Construction step and a Generalization step.

Algorithm 1: Sequential covering algorithm.

Input :Database instance 𝐼 , positive examples 𝐸+,
negative examples 𝐸−

Output :A Horn definition 𝐻

1 𝐻 = {}
2 𝑈 = 𝐸+

3 while𝑈 is not empty do
4 𝐶 = 𝐿𝑒𝑎𝑟𝑛𝐶𝑙𝑎𝑢𝑠𝑒 (𝐼 ,𝑈 , 𝐸−)
5 if 𝐶 satisfies minimum criterion then
6 𝐻 = 𝐻 ∪𝐶
7 𝑈 = 𝑈 − {𝑒 ∈ 𝑈 |𝐻 ∧ 𝐼 |= 𝑒}
8 return 𝐻

Algorithm 2: Bottom-clause construction.

Input :example 𝑒 , # of iterations 𝑑 , sample size 𝑠

Output :BC 𝐶𝑒
1 𝐼𝑒 = {}
2 𝑀 = {} //𝑀 stores known constants

3 add constants in 𝑒 to𝑀

4 for 𝑖 = 1 to 𝑑 do
5 foreach relation 𝑅 ∈ 𝐼 do
6 foreach attribute 𝐴 in 𝑅 do
7 𝐼𝑅 = 𝜎𝐴∈𝑀 (𝑅)
8 foreach tuple 𝑡 ∈ 𝐼𝑅 do
9 add 𝑡 to 𝐼𝑒 and constants in 𝑡 to𝑀

10 𝐶𝑒 = create clause from 𝑒 and 𝐼𝑒

11 return 𝐶𝑒

2.3.1 Bottom-clause Construction. A bottom-clause (BC for short)

𝐶𝑒 associated with an example 𝑒 is the most specific clause in the

hypothesis space that covers 𝑒 relative to the underlying database

𝐼 . The BC construction algorithm consists of two phases: 1) it finds

all the set of tuples 𝐼𝑒 ⊆ 𝐼 that are connected to 𝑒 , and 2) given

𝐼𝑒 , it creates the BC 𝐶𝑒 . Algorithm 2 shows the BC construction

algorithm. Learning systems use predicate and mode definitions to

restrict the structure and syntax of the BCs [13, 44].

More precisely, assume that we want to create the bottom-clause

for example e, relative to database I . The algorithm maintains a

hash table that maps constants to variables. The algorithm first

assigns new variables to constants in example e, and inserts the

mapping from constants to variables in the hash table. It creates the

head of the bottom-clause by replacing the constants in e with their

assigned variables. Then, for each constant 𝑎 in the hash table, the

algorithm looks for relations that contain attributes with the same

type as 𝑎 and then searches for tuples in these relations that contain

constant 𝑎. The type of a constant is determined by the attribute in

which the constant appears. The attribute types are assigned using

predicate definitions. To further restrict the search, the algorithm
considers only attributes that contain symbol +, according to the
mode definitions.

For each tuple, the algorithm creates one or more literals with

the same relation name as the tuple and adds the literals to the body

of the bottom-clause. The algorithm also uses mode definitions to

determine whether an attribute in a literal should be a variable or a

constant. An attribute 𝐴 in relation 𝑅 can be a variable if the mode

definitions for relation 𝑅 contain symbols + or − on attribute 𝑅.

Attribute 𝐴 can be a constant if the mode definitions for relation

𝑅 contain symbol # on attribute 𝑅. If an attribute 𝐴 can be both a

variable and a constant, the algorithm creates two new literals, one

for each case. If an attribute should be a variable according to mode

definitions, and the constant in this attribute is new, the algorithm

assigns a new variable to the constant and adds the new mapping

to the hash table. In the following iterations, the algorithm selects

tuples in the database that contain the newly added constants to

the hash table and adds their corresponding literals to the clause. It

finishes after a given number of iterations 𝑑 for efficiency.

Time Complexity. At each iteration of BC construction, the

algorithm must find database tuples that contain constants in the

literals of the current BC. As the algorithm terminates after a fixed

number of iterations, its time complexity is linear in the size of

the database. It is challenging to scale BC construction to large

databases.

Example 2.5. Consider the database 𝐼 in Table 4, the predicate

and mode definitions in Table 3, and a positive example e, which is

advisedBy(juan,sarita). Given that 𝑑 is 1, the BC associated with 𝑒

and relative to 𝐼 is:

advisedBy(𝑥,𝑦) ← student (𝑥), professor (𝑦),
inPhase(𝑥,𝑢), inPhase(𝑥, post_quals), hasPosition(𝑦, 𝑣),
publication(𝑧, 𝑥), publication(𝑧,𝑦).

The hash table created by the algorithm contains the following

mapping from constants to variables: { juan→ 𝑥 , sarita→ 𝑦, p1→ 𝑧,

post_quals→ 𝑢, assistant_prof→ 𝑣 }. Note that there are two literals

with relation inPhase, the first one created using mode definition

inPhase(+,-) and the second one created using mode definition

inPhase(+,#).

Table 4: Fragments of the UW database.
student(juan) professor(sarita)

student(john) professor(mary)

inPhase(juan,post_quals) hasPosition(sarita,assistant_prof)

inPhase(john,post_quals) hasPosition(mary,associate_prof)

publication(p1,juan) publication(p1,sarita)

publication(p2,john) publication(p2,mary)

2.3.2 Generalization. After building the BC associated with a

given positive example, the algorithm generalizes the clause to cover

more positive examples. It uses the asymmetric relative minimal
generalization (armg) operator to generalize clauses [13]. It performs

a beam search to select the best clause generated after multiple

applications of the armg operator. More formally, given clause 𝐶 , it

randomly picks a subset 𝐸+
𝑆
of positive examples to generalize 𝐶 .

For each example 𝑒 ′ ∈ 𝐸+
𝑆
, it uses the armg operator to generate

a candidate clause 𝐶 ′, which is more general than 𝐶 and covers

𝑒 ′. It then selects the highest scoring candidate clauses to keep in

the beam and iterates until the clauses cannot be improved. The

score of a clause is usually computed as the difference between the

number of positive and negative examples it covers.

We now explain the armg operator. Let 𝐶 be the BC associated

with example 𝑒 , relative to 𝐼 . Let 𝑒 ′ be another example. 𝐿𝑖 is a

blocking atom iff 𝑖 is the least value such that for all substitutions 𝜃

where 𝑒 ′ = 𝑇𝜃 , the clause 𝐶𝜃 = (𝑇 ← 𝐿1, · · · , 𝐿𝑖)𝜃 does not cover

𝑒 ′, relative to 𝐼 . Given the BC 𝐶 and a positive example 𝑒 ′, armg
drops all blocking atoms from the body of 𝐶 until 𝑒 ′ is covered.
After removing a blocking atom, some literals in the body may not

have any variable in common with the other literals in the body

and head of the clause, i.e., they are not head-connected. Armg also
drops those literals. Because armg drops literals from the clause,

it is guaranteed that the size of the clause reduces when doing

generalization.

Time Complexity. To capture relevant patterns in a large data-

base, a BC usually contains hundreds of literals. Hence, clauses

processed during most generalization steps contain hundreds of

literals, i.e., hundreds of joins. Using proper indexes, coverage com-

putation of a clause is linear to the size of the database. The gen-

eralization algorithm itself is quadratic in the number of literals

in the generalized clause. As each clause is significantly smaller

than the database, coverage computation dominates the time of

generalization.

3 SETTING LANGUAGE BIAS
In this section, we propose methods to generate predicate and mode

definitions automatically. We use exact or approximate database

constraints to induce predicate definitions and the cardinality at-

tributes to generate mode definitions.

3.1 Generating Predicate Definitions
Let 𝑅 and 𝑆 be two relation symbols in the schema of the underlying

database. Let 𝑅(𝑒1, · · · , 𝑒𝑛) and 𝑆 (𝑜1, · · · , 𝑜𝑚) be two atoms in a

clause 𝐶 . Let 𝑒𝑖 be the term in attribute 𝑅 [𝐴] and 𝑜 𝑗 be the term in

attribute 𝑆 [𝐵], and let 𝑒𝑖 and 𝑜 𝑗 be assigned the same variable or

constant. That is, clause 𝐶 joins 𝑅 and 𝑆 on 𝐴 and 𝐵. Clause 𝐶 is

satisfiable only if these attributes share some values in the input

database. Typically, the more frequently used joins are the ones

over the attributes that participate in inclusion dependencies (INDs),

such as foreign-key to primary-key referential constraints. AutoBias

uses INDs in the input database to find which attributes, among all

relations, share the same type. Let𝑋 and𝑌 be sets of attribute names

in 𝑅 and 𝑆 , respectively. Let 𝐼𝑅 and 𝐼𝑆 be the relations of 𝑅 and 𝑆 in

the database. Relations 𝐼𝑅 and 𝐼𝑆 satisfy exact IND (IND for short)

𝑅 [𝑋] ⊆ 𝑆 [𝑌] if 𝜋𝑋 (𝐼𝑅) ⊆ 𝜋𝑌 (𝐼𝑆). If 𝑋 and 𝑌 each contain only a

single attribute, the IND is a unary IND. Given IND 𝑅 [𝑋] ⊆ 𝑆 [𝑌]
in a database, the database satisfies unary IND 𝑅 [𝐴] ⊆ 𝑆 [𝐵], where
𝐴 ∈ 𝑋 and 𝐵 ∈ 𝑌 . INDs are normally stored in the schema of the

database. If they are not available in the schema, one can extract

them from the database content. We use Binder [43] to discover

INDs from the data and produce all unary INDs implied by them.

Binder efficiently discovers INDs by using a divide-and-conquer

approach. First, it produces all unary candidate INDs. Second, it

partitions the input data into small buckets that fit in main memory.

Third, it loads each bucket into memory and validates the candidate

INDs against the current bucket. It returns all INDs that pass all

checks.

We have observed that in some cases using exact INDs is not

enough for generating helpful predicate definitions. Consider two

attributes 𝐴1 and 𝐴2, which contain values for domains 𝐷1 and

𝐷2, respectively. There may be another attribute 𝐴3 that contains

some values from 𝐷1 and some values from 𝐷2. It makes sense to

join attributes 𝐴1 (or 𝐴2) with 𝐴3, as 𝐴1 and 𝐴3 contain values for

domain 𝐷1. However, exact INDs may not hold between 𝐴1 (or

𝐴2) and 𝐴3. An example of this scenario can be seen in the UW

database, whose schema fragments are shown in Table 2. Consider

the task of learning a definition for the relation advisedBy(stud, prof),
which indicates that the student stud is advised by professor prof.
A relational learning algorithm may learn the following Datalog

program for the advisedBy relation:

advisedBy(𝑥,𝑦) ← student (𝑥), professor (𝑦),
publication(𝑧, 𝑥), publication(𝑧,𝑦)

which indicates that a student is advised by a professor if they have

been co-authors of a publication. This definition requires joining

relations publication, student, and professor on attributes publica-
tion[author], student[stud], and professor[prof]. However, the UW
database does not satisfy INDs publication[author] ⊆ student[stud]
or publication[author] ⊆ professor[prof] because publication[author]
contains both students and professors.

To account for the issue described above, AutoBias also uses

approximate INDs to assign types to attributes. In an approximate
unary IND (𝑅 [𝐴] ⊆ 𝑆 [𝐵], 𝛼), one has to remove at least 𝛼 frac-

tion of the distinct values in 𝑅 [𝐴] so that the database satisfies

𝑅 [𝐴] ⊆ 𝑆 [𝐵] [1]. Approximate INDs are not usually maintained

in a schema and are instead discovered from the database con-

tent. We have implemented a program to extract approximate INDs

from the database. We use a relatively high error rate, 50%, for the

approximate INDs to allow for a flexible hypothesis space.

After discovering unary exact and approximate INDs, AutoBias

runs Algorithm 3 to generate a directed graph called type graph,
which it then uses to assign types to attributes. First, it creates a

graph whose nodes are attributes in the input schema and has an

edge between each pair of attributes that participate in an exact

or approximate IND. Figure 1 shows an example of the type graph

containing a subset of the attributes in the UW schema, where edges

Figure 1: Part of the type graph for the UW data. Solid and
dashed lines show exact and approximate INDs.

corresponding to exact and approximate INDs are shown by solid

and dashed lines, respectively. If there are both approximate INDs

(𝑅 [𝐴] ⊆ 𝑆 [𝐵], 𝛼1) and (𝑆 [𝐵] ⊆ 𝑅 [𝐴], 𝛼2), AutoBias uses only the

one with lower error rate. The algorithm then assigns a new type to

every node in the graph without any outgoing edges. For example,

it assigns new types T1, T3, and T5 to student[stud], professor[prof],
and publication[title], respectively, in Figure 1. If there are cycles

in the type graph, the algorithm assigns the same new type to all

nodes in each cycle. Next, it propagates the assigned type of each

attribute to its neighbors in the reverse direction of edges in the

graph until no changes are made to the graph. For example, in

Figure 1, the algorithm propagates type T1 to inPhase[stud] and
ta[stud] and attribute publication[author] inherits types T1 and T3
from student[stud] and professor[prof], respectively. Because the

error rates of approximate INDs accumulate over multiple edges

in the graph, AutoBias propagates types only once over edges that

correspond to approximate INDs.

Given the resulting graph, for each relation, AutoBias com-

putes the Cartesian product of the types associated with its at-

tributes. For each tuple in this Cartesian product, it produces a

predicate definition for the relation. For instance, given the type

assignment in Figure 1, AutoBias generates predicate definitions

publication(T5,T1) and publication(T5,T3) for the publica-
tion relation.

Algorithm 3: Algorithm to generate the type graph.

Input :Schema S and all unary INDs Σ.
Output :Type graph 𝐺 .

1 create graph 𝐺 = (𝑉 , 𝐸) where 𝑉 contains a node for each

attribute in the schema and 𝐸 = ∅
2 foreach IND 𝑅 [𝐴] ⊆ 𝑆 [𝐵] ∈ Σ do
3 add edge 𝑣 → 𝑢 to 𝐸, where 𝑣 and 𝑢 correspond to

attributes 𝑅 [𝐴] and 𝑆 [𝐵], respectively
4 foreach node 𝑢 ∈ 𝑉 without outgoing edges do
5 generate new type 𝑇 and set 𝑡𝑦𝑝𝑒𝑠 (𝑢) = {𝑇 }
6 foreach cycle 𝐾 ⊆ 𝑉 do
7 generate new type 𝑇 and set 𝑡𝑦𝑝𝑒𝑠 (𝑢) = {𝑇 } ∀𝑢 ∈ 𝐾
8 repeat
9 foreach 𝑣 → 𝑢 ∈ 𝐸 where 𝑡𝑦𝑝𝑒𝑠 (𝑢) ≠ ∅ do
10 set 𝑡𝑦𝑝𝑒𝑠 (𝑣) = 𝑡𝑦𝑝𝑒𝑠 (𝑣) ∪ 𝑡𝑦𝑝𝑒𝑠 (𝑢)
11 until no changes in 𝐺
12 return 𝐺

3.2 Generating Mode Definitions
AutoBias allows every attribute of each relation be a variable. How-

ever, it forces at least one variable in an atom to be an existing

variable, i.e., appears in previously added atoms, to avoid generat-

ing Cartesian products in the clause. For each attribute𝐴 in relation

𝑅, AutoBias generates a mode definition for 𝑅 where attribute 𝐴 is

assigned the + symbol and all other attributes are assigned the −
symbol. Hence, all attributes are allowed to have new variables ex-

cept the attribute with symbol +. For instance, AutoBias generates
the mode definitions publication(+,-) and publication(-,+)
for relation publication in Table 2.

AutoBias uses a hyper-parameter called constant-threshold to

determine whether an attribute can be a constant. The value for

constant-threshold can take an absolute or a relative threshold. If

it is an absolute threshold, AutoBias allows an attribute to be a

constant if the number of distinct values in the attribute is below

the value of constant-threshold. If it is a relative threshold, AutoBias

allows an attribute to be a constant if the ratio of distinct values

of the attribute to the total number of tuples in the relation is

below the value of constant-threshold. This hyper-parameter must

be tuned by the user. As it has a relatively intuitive meaning, it is

relatively easy to determine with which values or ranges one should

experiment. For each relation 𝑅 in the database, AutoBias finds all

attributes in 𝑅 that can be constants using the aforementioned rule.

Then, it computes the power set M of these attributes. For each

non-empty set 𝑀 ∈ M, AutoBias generates a new set of mode

definitions where it assigns + and − symbols as described above,

except for the attributes in𝑀 , which are assigned the # symbol. For

example, AutoBias finds that the number of values in attribute phase
of relation inPhase in Table 2 is smaller than the input threshold.

Then, this attribute can be constant and AutoBias generates the

mode definition inPhase(+,#) for relation inPhase.

4 EFFICIENT BC CONSTRUCTION
The BC construction algorithmfinds all the information in 𝐼 relevant

to example 𝑒 , denoted by 𝐼𝑒 . Then, it creates the BC 𝐶𝑒 associated

with 𝑒 by converting tuples in 𝐼𝑒 to literals in the BC. 𝐼𝑒 is often large

as many tuples in 𝐼 are usually relevant to 𝑒 , which in turn makes

𝐶𝑒 too large. As the time of creating BCs is linear to the size of the

database, it takes a long time to create a BC over a large dataset.

It may take significantly longer for AutoBias as the its induced

language bias may not restrict the hypothesis space as much as

manually tuned ones. To overcome this problem, one may use some

sampling technique to obtain a smaller tuple set 𝐼𝑠𝑒 ⊆ 𝐼𝑒 . Then, the
algorithmmay create a BC𝐶𝑠𝑒 from tuples in 𝐼𝑠𝑒 that has significantly

fewer literals than 𝐶𝑒 . The subset 𝐼
𝑠
𝑒 should contain representative

and predictive patterns that allow the learning algorithm to learn

an accurate definition.

4.1 Naïve Sampling
4.1.1 Naïve Sampling Algorithm. A naïve sample 𝐶𝑠𝑒 of clause

𝐶𝑒 is the clause obtained the following way [13, 44]. Let 𝐼𝑅 be

the set of tuples in relation 𝑅 that can be added to 𝐼𝑠𝑒 during BC

construction. The naïve sampling algorithm obtains a uniform and

random sample 𝐼𝑠
𝑅
of 𝐼𝑅 and adds only the tuples in 𝐼𝑠

𝑅
to 𝐼𝑠𝑒 . Let

the inclusion probability 𝑝 (𝑡) of tuple 𝑡 ∈ 𝐼𝑒 be the probability

that 𝑡 is included in 𝐼𝑠𝑒 . In a uniform sample, every tuple in 𝐼𝑅 is

sampled independently with the same inclusion probability, i.e.,

∀𝑡 ∈ 𝐼𝑅, 𝑝 (𝑡) = 1

|𝐼𝑅 | .
Time Complexity. The naïve sampling partially scans each re-

lation to sample a subset of its tuples, therefore, its time complexity

is linear to the size of the underlying data.

4.1.2 Shortcomings of Naïve Sampling. This method is biased to-

ward tuples in relations with fewer tuples. It may add non-relevant

literals from the small relations, i.e., small |𝐼𝑅 |, and ignore the rel-

evant ones from the large ones. Using Example 2.5, many more

literals from hasPosition may be added to the BC compared to pub-
lication due to the size of the relations. The result is an inaccurate

definition for advisedBy. Moreover, it delivers a BC that does not

contain a representative and random sample of relational patterns

in the data.

Consider again Example 2.5. In the original UW database, there

are many instances of the co-author relationship represented by

the self-join of publication. But, because the naïve method samples

tuples from publication relations independently from each other,

it may not include any instance of this relationship in its created

BC. This leads to learning inaccurate results. Furthermore, since

the generalizations of the BCs returned by this method may not

cover sufficiently many positive examples, each iteration may not

lead to removing a considerable number of positive examples in

the covering approach. Thus, it may also take many iterations

and consequently a long time for the learning algorithm to find a

reasonably effective model.

4.2 Random Sampling
4.2.1 Challenges of Randomly Sampling Over BCs. To address

the aforementioned shortcomings of the naïve sampling algorithm,

one may obtain a random sample of the literals in the body of 𝐶𝑒
to construct a small and representative clause 𝐶𝑠𝑒 . This method,

however, faces three following challenges.

First, as explained in Section 2.3.1, each literal in 𝐶𝑒 is head-

connected, which means that it is either connected to the head-

literal of 𝐶𝑒 via some shared variables or it has some variables

in common with other literals in the body of 𝐶𝑒 that are head-

connected. As explained in Section 2.3.2, a literal that is not head-

connected will be removed during generalization as it does not offer

any useful information about the underlying positive example. If

one selects literals from the body of 𝐶𝑒 uniformly at random, most

or all the selected literals may not be head-connected. Hence, the

subsequent generalizations may not have sufficient information

about the underlying example and deliver an inaccurate or empty

clause. Thus, every literal in 𝐶𝑠𝑒 must also be head-connected.

Second, a random sample of 𝐶𝑒 must reflect a random sample

of the relationships between literals in 𝐶𝑒 , i.e., the more connected

and related a literal is to other literals in 𝐶𝑒 , the more likely it is

for that literal to be in the randomly sampled clause. Third, it is too

time-consuming to construct and materialize 𝐶𝑒 over large data.

Hence, we have to create 𝐶𝑠𝑒 without materializing 𝐶𝑒 .

4.2.2 Using Semi-Joins to Compute Inclusion Probability. To ad-

dress the aforementioned challenges, we should define a reasonable

inclusion probability for each literal in 𝐶𝑒 and equivalently each

tuple in 𝐼𝑒 for the random sample such that the sampled clause

does not contain literals that are not head-connected and reflect

the relationships between literals in𝐶𝑒 . Furthermore, we should be

able to compute these probabilities without materializing 𝐶𝑒 and

𝐼𝑒 . Next, we precisely compute this inclusion probability without

materializing 𝐼𝑒 . The right semi-join of relations 𝑅1 and 𝑅2 on at-

tributes 𝐴 and 𝐵, denoted as 𝑅1 ⋊𝑅1 .𝐴=𝑅2 .𝐵 𝑅2, is the set of tuples

in 𝑅2 such that the values of their attribute 𝐵 are equal to the value

of 𝐴 of at least one tuple in 𝑅1 [19].

Example 4.1. Consider relations𝑈1 (𝐴, 𝐵) and 𝑈2 = (𝐴,𝐶) such
that𝑈1 = {(𝑎1, 𝑏1), (𝑎2, 𝑏2), . . . , (𝑎2, 𝑏𝑘)} and𝑈2 = {(𝑎0, 𝑐1), (𝑎2, 𝑐2), (𝑎1, 𝑐3), · · · , (𝑎1, 𝑐𝑚)},
we have𝑈1 ⋊𝑈1 .𝐴=𝑈2 .𝐴 𝑈2 = {(𝑎2, 𝑐2), (𝑎1, 𝑐3), · · · , (𝑎1, 𝑐𝑚)}.

For brevity, we call right semi-join simply semi-join and show

𝑅1 ⋊𝑅1 .𝐴=𝑅2 .𝐵 𝑅2 as 𝑅1 ⋊𝐴,𝐵 𝑅2 unless otherwise noted. The BC

construction algorithm in Section 2.3.1 is in fact iteratively applying

semi-joins to the database relations to add tuples to 𝐼𝑒 that are

directly or indirectly connected to the positive example 𝑒 according

to the mode and predicate definitions. More precisely, for each pair

of attributes of the same type 𝐴 and 𝐵 between the target relation

𝑇 and the relation 𝑅 in the background knowledge according to the

predicate definitions, the BC construction algorithm will add the

tuples of {𝑒}⋊𝑅 to 𝐼𝑒 . It then adds the tuples from another relation

𝑆 to 𝐼𝑒 using the semi-join of {𝑒} ⋊ 𝑅 ⋊𝑆 . Generally, the algorithm
computes ⋓(⋊

1≤𝑖≤𝑑−1
𝑅1 ⋊ . . . ⋊ 𝑅1+𝑖) in its 𝑑th iteration where

𝑅1 = 𝑇 and {𝑅2, . . . , 𝑅𝑑 } is a multi-set of possibly non-distinct

relations in the background knowledge such that 𝑅𝑖 and 𝑅𝑖+1 have

attributes of same type according to the mode definitions. Thus, we

should efficiently compute a random sample of every 𝑅1⋊ . . .⋊𝑅1+𝑖 .

4.2.3 Random Sampling Over Semi-Joins. To compute a random

sample of 𝑅1 ⋊𝐴,𝐵 𝑅2, one should materialize 𝑅1 ⋊𝐴,𝐵 𝑅2 and then

take a random sample of it. Nonetheless, this defeats the purpose of

not computing 𝐼𝑒 . Another approach is to take independent random

samples of 𝑅1 and 𝑅2 and semi-join them. However, the results may

be empty or have very few tuples. Thus, it may take a long time

to get a sufficiently large sample. Consider the relations𝑈1 and𝑈2

in Example 4.1. It is very unlikely for a random sample of 𝑈1 to

contain a tuple whose value for 𝐴 is 𝑎1 for a sufficiently large 𝑘 .

Also, a random sample of 𝑈2 is unlikely to have a tuple whose 𝐴

value is 𝑎2 for large values of𝑚.

Hence, we extend existing techniques for performing efficient

sampling over joins [11, 42, 59] to sample over semi-join 𝑅1⋊𝐴,𝐵 𝑅2

efficiently. Let 𝑆1 be such a random sample of 𝑅1. The distributions

of attribute values in tuples of 𝑆1 are influenced by the ones of the

tuples in 𝑅1. For instance, a random sample of 𝑈1 in Example 4.1

contains mostly tuples whose values of attribute 𝐴 is 𝑎2. But, the

values of attribute 𝐴 of tuples in 𝑈1 ⋊𝐴,𝐴 𝑈2 are mostly 𝑎1. Thus,

one should accept the results of 𝑆1⋊𝐴,𝐵𝑅2 based on the distribution

of attribute values in 𝑅2 to create a random sample of 𝑅1 ⋊𝐴,𝐵 𝑅2.

Furthermore, let the tuple 𝑡 ∈ 𝑅2 be the only tuple in 𝑅2 whose

value of attribute 𝐵 is 𝑏. Let 𝑏 appear in the attribute 𝐴 of only a

single tuple of 𝑅1. In this case, 𝑡 will be the only tuple in 𝑅1 ⋊𝐴,𝐵 𝑅2

whose value of 𝐵 is 𝑏. Now, assume that 𝑏 appears in the attribute𝐴

of more than a single tuple of 𝑅1. This will not change the number

of tuples in 𝑅1 ⋊𝐴,𝐵 𝑅2 whose value for attribute 𝐵 is 𝑏.

Thus, the distribution of values in 𝑅1 ⋊𝐴,𝐵 𝑅2 depends on the

existence of values in 𝑅1 [𝐴] but does not change if their frequencies
go beyond 1. Therefore, one may randomly select only from values

in the set of 𝜋𝐴𝑅1 and use it to compute a random sample of the

semi-join. Computing the distribution of values of 𝑅1⋊𝐴,𝐵 𝑅2 based

on the existence of values in 𝑅1 [𝐴] instead of their frequencies is

the only difference between random sampling over semi-joins and

over joins.

We adapt the extended Olken algorithm [42] for performing

random sampling over multi-way joins proposed by Zhao et al. [59]

to work over semi-joins. Our sampling algorithm over semi-join

𝑅1⋊𝑅1 .𝐴=𝑅2 .𝐵𝑅2 is as follows.We first select a random value from all

values of the set of 𝜋𝐴𝑅1 called 𝑎. Let𝑚𝑅2 .𝐵 (𝑎) denote the frequency
of 𝑎 in attribute 𝐵 of 𝑅2. Let 𝑀𝑅2 .𝐵 be an upper bound on the

frequency of each value of 𝐵 in 𝑅2. From all tuples in 𝑅2 whose

values of attribute 𝐵 is 𝑎, we select a tuple 𝑡 randomly. We accept

𝑡 with the probability 𝑝 =
𝑚𝑅

2
.𝐵 (𝑎)

𝑀𝑅
2
.𝐵

and reject it with 1 − 𝑝 . We

repeat this process from sampling a value from 𝜋𝐴𝑅1 from the

beginning until a given number of tuples from 𝑅2 are picked. To

compute the values of𝑚𝑅2 .𝐵 (𝑎) and𝑀𝑅2 .𝐵 and find tuples of 𝑅2 that

match 𝑎 efficiently, we build indexes over the semi-join attributes

[11, 42, 59]. To compute the semi-join 𝑅1 ⋊𝑅2 . . .⋊𝑅𝑛 , we compute

the sample 𝑆2 of 𝑅1⋊𝑅2 using the aforementioned algorithm. Then,

we compute the sample 𝑆3 of 𝑆2 ⋊ 𝑅3 using this algorithm and

continue the same process until the sample of semi-join 𝑆𝑛−1 ⋊ 𝑅𝑛
is calculated. The proof of the next proposition follows the one of

random sampling over multi-way joins in [42].

Proposition 4.2. The aforementioned algorithm produces a ran-
dom sample 𝑅1 ⋊ 𝑅2 . . . ⋊ 𝑅𝑛 .

The samples of some 𝑆𝑖 ⋊ 𝑅𝑖+1, 1 < 𝑖 < 𝑛 might be empty as the

values in 𝑆𝑖 may not match any tuple in 𝑅𝑖+1. In this case, one

has to repeat the sampling of a preceding binary semi-join to get

different values from the ones in 𝑆𝑖 . To avoid this problem, we take

sufficiently larger number of samples than the desired final number

of samples in each binary semi-join.

4.2.4 Random Sampling Over BC. Given an input number of

iterations 𝑑 , the BC construction algorithm computes all semi-joins

of size up to 𝑑 and unions their output to construct 𝐼𝑒 . To share

computation between different samplings, we organize all relations

that will be semi-joined according to the predicate definitions in a

semi-join tree 𝐺 of depth 𝑑 . Each node in 𝐺 is a relation symbol in

the schema. The root of 𝐺 represents the target relation symbol, 𝑇 .

Let𝑛𝑅 be a node in𝐺 that represents relation 𝑅. A node𝑛𝑅1
in𝐺 has

a child 𝑛𝑅2
if 𝑅1 and 𝑅2 can be semi-joined according to the mode

definitions. If the semi-join of 𝑅1 and 𝑅2 is 𝑅1 ⋊𝐴,𝐵 𝑅2, we place

the label (𝐴, 𝐵) on the edge from 𝑛𝑅1
to 𝑛𝑅2

in 𝐺 . Since relation 𝑅2

may appear at the right hand side of multiple semi-joins according

to the mode definitions, 𝑅2 may be represented by multiple distinct

nodes in 𝐺 .

Next, we apply the sampling algorithm following edges in 𝐺

starting from its root to generate the sample of 𝐼𝑒 , 𝐼
𝑠
𝑒 . We consider

the example 𝑒 as the only tuple of the relation of the root of𝐺 , which

is sampled with probability of 1. This enables us to share and reuse

the random sample of a semi-join for the subsequent and longer

ones. After sampling the semi-join between a parent 𝑛𝑅1
and one of

its children 𝑛𝑅2
, we add the sampled tuples to 𝐼𝑠𝑒 . We also use this

set for the semi-join of 𝑛𝑅2
and its children. After constructing 𝐼𝑠𝑒 ,

we create the BC𝐶𝑠𝑒 according to 𝐼
𝑠
𝑒 . Different paths in𝐺 may share

some tuples. In this case, the union of randomly sampling from a

set of relations is not exactly equivalent to random sampling over

the union of the relations [42]. We, however, make the simplifying

assumption that they are equivalent to ensure sampling is efficient

over large databases. Otherwise, sampling requires considering the

intersection of various semi-joins in𝐺 that needs significantly more

computations.

Time Complexity. Using indexes, the time complexity of the

random sampling is linear to the size of the underlying database.

But, similar to naïve sampling, random sampling checks only a

small sample of tuples in the underlying data, therefore, it is sig-

nificantly faster creating a BC using the full information of each

relation. Additionally, it delivers a more representative BC than the

one returned by naïve sampling, which leads to finding an effec-

tive definition sooner in the generalization step as shown in our

empirical studies.

4.3 Stratified Sampling
4.3.1 Issues of Random Sampling. As explained in Section 1,

relational learning methods are sometimes used to extract and

feed relational features to train non-relational models [24, 30]. In

these settings, researchers have found out that using attributes

and features from highly connected tuples may not be useful as
they do not provide enough discriminating information about the

target concept [24]. Translated to our setting, one may argue that

our proposed random sampling algorithm may be biased toward

relations and tuples that are strongly connected to other relations

and tuples in the database. Thus, it maymiss patterns that effectively

predict the target concept but are not sufficiently well-connected.

For instance, in the original UW database whose fragments are

used in Example 2.5, the TAship relationship between a student

and professor, represented by the join of ta and taughtBy, may be

an effective feature to indicate that the student is being advised

by the professor. The number of instances of TAship relationship

is significantly less than that of the co-authorship relationship. It

is likely that the random sampling algorithm does not include an
instance of TAship relationship in its BC and misses this feature.

Algorithm 4: Stratified Sampling Algorithm.

Input :example 𝑒 , # of iterations 𝑑 , sample size 𝑠

Output :BC 𝐶𝑒
1 𝐼𝑠𝑒 = {}
2 foreach attribute 𝐴 in 𝑒 do
3 foreach relation 𝑅 containing attribute 𝐴 do
4 𝐼𝑠𝑒 = 𝐼𝑠𝑒 ∪ StratRec(𝑅,𝐴, {𝑒 [𝐴]}, 1, 𝑑, 𝑠)
5 𝐶𝑠𝑒 = create clause from 𝑒 and 𝐼𝑠𝑒
6 return 𝐶𝑠𝑒
7 Function StratRec(𝑅, 𝐴,𝑀 , 𝑖 , 𝑑 , 𝑠):
8 𝐼𝑠𝑒 = {}
9 𝐼𝑅 = 𝜎𝐴∈𝑀 (𝑅)

10 if 𝑖 = 𝑑 (last iteration) then
11 𝐼𝑠𝑒 = 𝐼𝑠𝑒 ∪ SampleStrata(𝐼𝑅, 𝑠)
12 else
13 foreach attribute 𝐵 in 𝑅 do
14 foreach relation 𝑆 containing attribute 𝐵 do
15 𝐼𝑆 = StratRec(𝑆, 𝐵, 𝜋𝐵 (𝐼𝑅), 𝑖 + 1, 𝑑, 𝑠)
16 𝐼𝑠𝑒 = 𝐼𝑠𝑒 ∪ (𝜎𝐵∈𝜋𝐵 (𝐼𝑆) (𝐼𝑅))
17 return 𝐼𝑠𝑒

4.3.2 Stratified Sampling of a BC. To investigate this phenom-

ena, we propose a method that samples a diverse subset of tuples

and relationships in the data to construct a sufficiently diverse sam-

ple 𝐼𝑠𝑒 of 𝐼𝑒𝑠 according to the mode and predicate definitions. Our

method provides a sample that contains each possible variation

of every literal and ensures that the sampled BC covers all join

paths that connect them according to the language bias. Let 𝐺 be a

semi-join tree defined in Section 4.2 whose only tuple of its root

node is example 𝑒 . Let 𝑆 be a relation that contains attribute 𝐴,

where 𝐴 can appear as a constant according to the language bias

and let 𝑛𝑆 be a node that represents 𝑆 in 𝐺 . We replace each 𝑛𝑆
with a set of new nodes each of which represent a relation that is

a subset of 𝑆 with a distinct value for 𝑆 [𝐴]. The parents of these
nodes are the same as 𝑛𝑆 . Given a node 𝑛𝑅 in𝐺 , we define a stratum
for each child of 𝑛𝑅 . Therefore, there is a stratum for each relation

𝑆 that can join with 𝑅 and, if 𝑆 contains an attribute 𝐴 that can

be a constant, there is a stratum for each distinct value in 𝑆 [𝐴]. A
stratified sample 𝐼𝑠𝑒 of 𝐼𝑒 is a subset of 𝐼𝑒 that contains at least one

tuple for each stratum in𝐺 . A stratified sample 𝐶𝑠𝑒 of clause 𝐶𝑒 is

the clause created from the stratified sample 𝐼𝑠𝑒 of 𝐼𝑒 .

Algorithm 4 depicts the BC construction algorithm using strat-

ified sampling. The algorithm traverses the semi-join tree 𝐺 in a

depth-first manner. Once it reaches a given depth 𝑑 , it computes

the strata in the current relation, e.g., relation 𝑆 . If 𝑆 contains an

attribute 𝐴 that can be constant according to the language bias, the

algorithm creates a stratum for each distinct value for 𝑆 [𝐴]. If 𝑆
does not contain attributes that can be constant according to the

language bias, the only stratum is the set of all tuples in 𝑆 . It then

uniformly samples 𝑠 tuples for each stratum in 𝑆 and adds them to

𝐼𝑠𝑒 . Thus, 𝐼
𝑠
𝑒 is the union of the all sampled strata in 𝑆 . When the

algorithm backtracks to the parent relation 𝑅 of 𝑆 , it adds all tuples

in 𝑅 that join the sampled tuples in 𝑆 to 𝐼𝑠𝑒 .

Time Complexity. The stratified sampling algorithm traverses

and backtracks nodes in 𝐺 and performs corresponding operations.

Thus, its time complexity is linear in the number of tuples in the

database. As it inspects all tuples in the examined relations to

construct strata, it takes longer than naïve and random sampling.

As opposed random sampling, it does not need the precomputed

statistics and indexes to perform sampling efficiently.

5 EFFICIENT COVERAGE TESTING
Coverage Testing As Query Execution. As explained in Sec-

tion 2.3.2, the most time-consuming step in generalization is eval-

uating the quality of each generalized clause by computing the

number of positive and negative examples covered by the clause.

One approach is to translate the clause to a Select-Project-Join SQL

query and execute it over the underlying data. These clauses may

contain hundreds of literals that translates to queries with hundreds

of joins. It is very time-consuming to run such queries over large

data.

Using 𝜃-Subsumption. Thus, we use 𝜃 -subsumption to com-

pute the coverage of clauses [37, 39, 44]. In this approach, one builds

a ground BC for each positive and negative example using the BC

construction algorithm in Section 2.3.1 in which constants are not
replaced with variables. A substitution 𝜃 replaces constants and

variables in clause 𝐶1 with a set of fresh constants or variables.

The resulting clause is denoted as 𝐶1𝜃 . Clause 𝐶 𝑡ℎ𝑒𝑡𝑎-subsumes

ground BC 𝐺 if and only if there is some substitution 𝑡ℎ𝑒𝑡𝑎 such

that 𝐶𝜃 ⊆ 𝐺 , i.e., the set of literals in the body of 𝐶𝜃 is a subset or

equal to the set of literals in the body of𝐺 . To test whether a clause

covers an example, we check if the clause subsumes the ground

BC of the example. As subsumption testing is NP-hard, we use an

approximation algorithm to test subsumption [29, 37].

Efficient 𝜃-Subsumption Using Sampling. Ideally, a ground
BC 𝐺𝑒 for example 𝑒 must contain one literal per each tuple in

the database that is connected to 𝑒 through some joins. Other-

wise, the 𝜃 -subsumption test may declare that 𝐶 does not cover 𝑒
when 𝐶 actually covers 𝑒 . However, it is time-consuming to check

𝜃 -subsumption for clauses with many literals. Since a learning al-

gorithm performs numerous coverage tests during learning, it is

essential to improve the time of coverage testing otherwise learning

may take an extremely long time. Hence, we use the three afore-

mentioned sampling techniques, i.e., naïve, random, and stratified,

to generate ground BCs. Given that the BC is built using sampling

technique S, we also use S to generate all ground BCs.

Time Complexity. Testing whether a candidate clause (approx-
imately) covers an example using the aforementioned approach is

linear in terms of the number of literals in the ground BC of the

example [29]. The number of literals in the ground BC is a very

small sample of the underlying database. Also, the ground BC are

created once for each example at the beginning of learning and are

used multiple times for all candidate clauses during generalization.

Hence, this approach checks the coverage of of each candidate

clause significantly faster than running complex SQL queries with

hundreds of joins over the full database.

6 EMPIRICAL STUDY
6.1 Experiment Setup
Data.We run experiments over five datasets. The UW data is ex-

plained in Section 1 over which we learn the target relation ad-
visedBy(stud, prof). It contains 9 relations, 1.8K tuples, 102 positive

and 204 negative examples. The HIV data contains structural infor-

mation about chemical compounds (wiki.nci.nih.gov/display/NCIDTPdata).
We learn the target relation antiHIV(comp), which indicates that

compound comp has anti-HIV activity. It has 5 relations, 7.9M tuples,

2K positive and 4K negative examples. IMDb (imdb.com) contains

information about movies and people who make them. We learn

dramaDirector(dir), which shows that dir directed a drama movie.

It contains 46 relations, 8.4M tuples, 1.8K positive and 3.6K nega-

tive examples. The FLT dataset contains information about flights

and airports given to us in a funded project. It has three relations,

201K tuples, and 200 positive and 600 negative examples. We were

asked to learn the flights with the same source that pass through a

given location. SYS contains information about various processes

on a server, provided by a private software company. SYS has a

single relation of 10.6M tuples with 150 positive and 2000 negative

examples. We were asked to learn the patterns of files accesses by

malicious processes. SYS has more negative than positive examples

due to the rarity of malicious activities. The company selected our

relational learning system due to the interpretability of its results.

Measure. We compare the quality of the learned definitions

using precision (Prec.) and recall [13]. Let the set of true positives for
a Horn definition be the set of positive examples in the testing data

that are covered by the Horn definition. The precision of a Horn

definition is the proportion of its true positives over all examples

covered by the Horn definition. The recall of a Horn definition

is the number of its true positives divided by the total number

of positive examples in the testing data. Precision and recall are

between 0 and 1, where an ideal definition delivers both precision

and recall of 1. F-measure (FM) is the weighted harmonic mean of

the precision and recall. We perform 10-fold cross validation for all

datasets except for UW and 5-fold for UW due to its small size. We

evaluate precision, recall, and learning time, showing the average

over the cross validation.

Systems.We implement AutoBias over Castor, an open source

relational learning algorithm built on top of VoltDB, (voltdb.com),
a main-memory database system It is shown to be more effective

than other available systems [44]. Our implementation is available

at github.com/OSU-IDEA-Lab/AutoBias.
Methods.We compare AutoBias against several methods. Castor

assigns the same types to all attributes and allows every attribute

to be a variable or a constant. Castor without constants (No const.) is
the same as the baseline method, except that it does not allow any

attribute to be a constant. Castor-Manual tuning (Manual) uses the
language bias written by an expert who has knowledge of the rela-

tional learning system and knows how to write predicate and mode

definitions. The expert had to learn the schema and go through

several trial and error phases by running the underlying learning

system and observing its results to write the predicate and mode

definitions. Aleph is a popular and public relational learning system,

which as opposed to Castor does not use relational database systems.

Like Auto-Bias, Aleph follows the sequential covering algorithm

shown in Algorithm 1. However, Aleph follows a top-down ap-

proach. Aleph can emulate multiple relational learning algorithms.

We configure Aleph to emulate FOIL [45, 58], which is a popular

top-down relational learning algorithm. As any other relational

learning algorithm, Aleph requires manual tuning to setup its lan-

guage biases. We use the same predicate and mode definitions used

for Castor-Manual tuning. AutoBias generates predicate and mode

definitions as described in Section 3. The original databases do not

contain INDs. AutoBias calls the IND discovery tools explained in

Section 3. The preprocessing step to extract INDs takes 1.2 seconds,

1.4 minutes, 7.8 minutes, 1 minute, and 2.8 minutes over the UW,

HIV, IMDb, FLT, and SYS respectively.

Manual Language Bias. The expert wrote 19, 14, 112, 18, and
9 predicate and mode definitions for UW, HIV, IMDb, FLT, and SYS,

respectively. The number of predicate and mode definitions for SYS

is relatively small due to the information being in a single relation.

But, it was still challenging as the expert had to talk to security

analysts for a long time to understand the domain and promising

patterns and manually inspect thousands of tuples to understand

the structure of and the meaning of various constants.

Parameters. We set the constant-threshold hyper-parameter

(Section 3.2) to 18% for all datasets. Over all settings of Castor

and AutoBias, we build bottom-clauses and ground bottom-clauses

using naïve sampling to make our results comparable to the ones

of Castor. Aleph also uses naïve sampling. We set the sampling rate

to at most 20 tuples per mode for each dataset. In Section 6.3, we

evaluate different sampling techniques. We run experiments on a

2.3GHz Intel Xeon E5-2670 processor, running CentOS Linux 7.2

with 500GB memory.

6.2 Approaches to Setting Language Bias
Table 5 illustrates the results of our experiments. Over the UW

database, Castor is less accurate and efficient compared to other set-

tings. Over the HIV database, Castor obtains competitive precision

and recall, but is significantly less efficient than manual tuning and

AutoBias. Castor is killed by the kernel for other datasets because

of extreme use of resources. By allowing every attribute to be a con-

stant, every value in the database – even if it has a non-predictive

value – may appear in a literal as a constant. Hence, the generated

BC contains too many literals, most of which are not useful for

learning a definition. No const. is the most efficient and obtains

competitive F-measure compared to manual tuning and AutoBias

over UW. But, it cannot scale over larger datasets and it either takes

an extremely long time without producing any results or learns

an ineffective definition. The latter is because accurate definitions

over many datasets, e.g., IMDb, need constants. Since the top-down

learning algorithm used by Aleph is generally biased toward learn-

ing relatively short clauses, it is faster than other methods over

most data. But, Aleph delivers less effective definitions than those

by Castor with manual tuning and AutoBias over all datasets.

Over all datasets, except for HIV data, Manual results in the

most effective definitions. Castor with manual is efficient over all

datasets. However, an expert had to spend a significant amount of

time tuning the language bias. Further, a non-expert user would

not be able to specify this bias.

In general, AutoBias is more effective than Castor, No const,

Aleph, and almost as effective as manual tuning. Manually written

language bias provides a more restricted hypothesis space than the

ones generated by AutoBias. Thus, AutoBias has to explore a larger

hypothesis space than manual. Nevertheless, the overhead in the

running time is none (SYS and UW) or at most about ten minutes

(HIV data), which is a reasonable overhead for saving an expert’s

time and the enterprise’s financial resources that pay the machine

learning expert. Hence, we argue that automating the generation of

predicate and mode definitions with the cost of a modest overhead

in performance is a reasonable trade-off. Further, AutoBias enables

non-experts to use learning systems easily.

For the manual approach over IMDb, the expert had to learn the

complex schema and relationships between relations. They also

had to inspect many tuples from each relation. They progressively

developed 112 lines of code to specify predicate and mode defini-

tions. During manual tuning, the expert made syntactic mistakes.

We identified these only after running the system and observing

the effectiveness of the results. AutoBias did not need most of these

steps. AutoBias generated about 30% more predicate and mode

definitions, which expands its hypothesis space.

6.3 Sampling Techniques
Table 6 shows the effectiveness and efficiency of learning using

different sampling techniques for BC construction and coverage

testing. We run random and stratified sampling over each dataset

5 times and computed their average. Generally, random delivers

higher efficiency than other methods over IMDb, HIV, and FLT,

which confirms that Random selects more promising BCs that in

turn constructs an accurate model fast and in relatively few itera-

tions. This difference is more significant over HIV data. This dataset

Table 5: Results of differentmethods of setting language bias
(h=hours, m=minutes, s=seconds).
Data Measure Castor No const. Manual Aleph AutoBias

UW

Prec. 0.76 0.96 0.93 0.78 0.84

Recall 0.50 0.48 0.54 0.17 0.54

FM 0.60 0.64 0.68 0.27 0.64

Time 47s 6.6s 11s 3.5s 24.4s

IMDb

Prec. - 0.68 1 0.66 1

Recall - 0.51 0.99 0.44 0.99

FM - 0.58 0.99 0.52 0.99

Time >10h 9.2h 2.7m 6.4m 3.21m

HIV

Prec. 0.80 - 0.74 0.72 0.80

Recall 0.83 - 0.84 0.69 0.85

FM 0.81 - 0.78 0.70 0.82

Time 59.7m >10h 22.6m 6.2m 35.1m

FLT

Prec. - 0 1 0 1

Recall - 0 1 0 1

FM - 0 1 0 1

Time >10h 14m 1m 6s 5.04m

SYS

Prec. - - 0.9 0 0.89

Recall - - 0.51 0 0.51

FM - - 0.65 0 0.65

Time >10h >10h 41s 6s 41s

Table 6: Results of different sampling techniques
(m=minutes, s=seconds).

Data Measure Naïve Random Stratified

UW

FM 0.64 0.61 0.54

Time 24.4s 50.23s 37.86s

IMDb

FM 0.99 0.99 0.99

Time 3.21m 3.13m 4.05m

HIV

FM 0.82 0.83 0.79

Time 35.1m 21.87m 34.16m

FLT

FM 1 1 1

Time 5.04m 4.96m 4.94m

SYS

FM 0.65 0.39 0.35

Time 41s 2.19m 6.41m

is large and has a relatively complex schema with significant di-

versities in values and relationships. Moreover, its target relation

is complex and there is not any definition with a reasonably small

literals and clauses that covers all positive examples and does not

cover any negative ones. For example, each compound in this data

may contain hundreds of atoms. Some atoms are common elements,

e.g., Hydrogen, while other atoms are rare elements, e.g., Lithium.

Random can explore join paths that lead to all types of elements in

a compound.

Due to the small size of the data and schema of UW, Naïve is able

to create a sufficiently representative sample of the data and learn

an effective definition over this dataset. It is also faster than other

methods as it does not have their overheads. Naïve is both more

efficient and effective than other sampling techniques for SYS. Since

SYS is stored in a single large relation, the effective definition does

as much of a relational structure compared to the other datasets. It

indicates that naïve outperforms other methods over small or single-

relation datasets. Stratified performs less effective and efficient than

other approaches, which indicate that the observations made for

non-relational models using relational features may not hold in a

relational learning setting.

7 RELATEDWORK
Some systems provide users with a graphical representation of the

schema so they can specify the mode and predicate definitions

easily [23]. Others ask experts to provide examples and advise in

the form of logical theories to construct language bias [53]. These

systems require heavy experts’ intervention. The work in [34] is

similar to ours, where the goal is to induce predicate and mode

definitions from data. Their algorithm assigns the same type to two

attributes if there is an overlap of at least one element. This may

deliver a significantly under-restricted search space. Moreover, it

does not leverage sampling techniques to improve the efficiency

and effectiveness of learning over large databases. An interesting

future work is to generate other types of more expressive language

biase used in other logical learning settings [32].

Recently, there has been a growing interest in relational learning

algorithms that scale to large data in both DB and ML communities

[18, 33, 44, 57, 58]. Researchers have used differentiable matrix

operations to learn relational models over RDF data [55, 56]. They

are limited to datasets with relatively few distinct values, e.g., tens

of thousands, and short clauses, e.g., at most 3 literals.

8 CONCLUSION
We have proposed AutoBias, a system that automatically induces

the language bias used by relational learning algorithms. Our empir-

ical studies indicate that AutoBias delivers a comparable learning

effectiveness to the systems where the language bias is specified

by experts.

REFERENCES
[1] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2015. Profiling relational

data: a survey. The VLDB Journal 24 (2015), 557–581.
[2] Serge Abiteboul, Richard Hull, and Victor Vianu. 1994. Foundations of Databases:

The Logical Level. Addison-Wesley.

[3] Azza Abouzeid, Dana Angluin, Christos H. Papadimitriou, Joseph M. Hellerstein,

and Abraham Silberschatz. 2013. Learning and verifying quantified boolean

queries by example. In PODS.
[4] Marcelo Arenas, Gonzalo I. Diaz, and Egor V. Kostylev. 2016. Reverse Engineering

SPARQL Queries. In Proceedings of the 25th International Conference on World
Wide Web (WWW ’16). International World Wide Web Conferences Steering

Committee, Republic and Canton of Geneva, CHE, 239–249. https://doi.org/10.

1145/2872427.2882989

[5] Daniel W. Barowy, Sumit Gulwani, Ted Hart, and Ben Zorn. 2014. FlashRelate:

Extracting Relational Data from Semi-Structured Spreadsheets Using Examples.

In PLDI ’15 Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (pldi 2015 ed.). Microsoft Research Technical

Report. Distinguished Artifact Award.

[6] Peter Battaglia, Jessica Blake Chandler Hamrick, Victor Bapst, Alvaro Sanchez,

Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam

Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andy Ballard, Justin

Gilmer, George E. Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Vic-

toria Jayne Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet

Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. 2018. Re-

lational inductive biases, deep learning, and graph networks. arXiv (2018).

https://arxiv.org/pdf/1806.01261.pdf

[7] Michael Benedikt, Kristian Kersting, Phokion G. Kolaitis, and Daniel Neider. 2019.

Logic and Learning (Dagstuhl Seminar 19361). Dagstuhl Reports 9, 9 (2019), 1–22.
https://doi.org/10.4230/DagRep.9.9.1

[8] Angela Bonifati, Radu Ciucanu, and Sławek Staworko. 2016. Learning Join

Queries from User Examples. ACM Trans. Database Syst. 40, 4, Article 24 (Jan.
2016), 38 pages. https://doi.org/10.1145/2818637

[9] Angela Bonifati, Ugo Comignani, Emmanuel Coquery, and Romuald Thion. 2019.

Interactive Mapping Specification with Exemplar Tuples. ACM Trans. Database
Syst. 44, 3, Article 10 (June 2019), 44 pages. https://doi.org/10.1145/3321485

[10] Peter Buneman and Wang-Chiew Tan. 2019. Data Provenance: What Next?

SIGMOD Rec. 47, 3 (Feb. 2019), 5–16. https://doi.org/10.1145/3316416.3316418

[11] Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. 1999. On Random

Sampling over Joins. In SIGMOD Conference.
[12] WilliamW. Cohen, Haitian Sun, R. AlexHofer, andMatthew Siegler. 2020. Scalable

Neural Methods for Reasoning With a Symbolic Knowledge Base. In 8th Interna-
tional Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net. https://openreview.net/forum?id=BJlguT4YPr

[13] Luc De Raedt. 2010. Logical and Relational Learning (1st ed.). Springer Publishing
Company, Incorporated.

[14] Daniel Deutch and Amir Gilad. 2019. Reverse-Engineering Conjunctive Queries

from Provenance Examples. In Advances in Database Technology - 22nd Interna-
tional Conference on Extending Database Technology, EDBT 2019, Lisbon, Portugal,
March 26-29, 2019, Melanie Herschel, Helena Galhardas, Berthold Reinwald, Irini

Fundulaki, Carsten Binnig, and Zoi Kaoudi (Eds.). OpenProceedings.org, 277–288.

https://doi.org/10.5441/002/edbt.2019.25

[15] Pedro Domingos. 2018. Machine Learning for Data Management: Problems and

Solutions. In Proceedings of the 2018 International Conference on Management of
Data (SIGMOD’18). Association for Computing Machinery, New York, NY, USA,

629. https://doi.org/10.1145/3183713.3199515

[16] Richard Evans and Edward Grefenstette. 2018. Learning Explanatory Rules from

Noisy Data. J. Artif. Intell. Res. 61 (2018), 1–64.
[17] Anna Fariha and Alexandra Meliou. 2019. Example-Driven Query Intent Discov-

ery: Abductive Reasoning Using Semantic Similarity. Proc. VLDB Endow. 12, 11
(July 2019), 1262–1275. https://doi.org/10.14778/3342263.3342266

[18] Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. 2015.

Fast rule mining in ontological knowledge bases with AMIE+. The VLDB Journal
24 (2015), 707–730.

[19] Hector GarciaMolina, Jeff Ullman, and Jennifer Widom. 2008. Database Systems:
The Complete Book. Prentice Hall.

[20] Lise Getoor and Ashwin Machanavajjhala. 2013. Entity resolution for big data.

In KDD.
[21] Lise Getoor and Ben Taskar. 2007. Introduction to Statistical Relational Learning.

MIT Press.

[22] Sumit Gulwani. 2017. Research for Practice: Programming by Examples. Research
for Practice, CACM 60 (July 2017), 46–49. https://www.microsoft.com/en-us/

research/publication/research-practice-programming-examples/

[23] Alexander L. Hayes, Mayukh Das, Phillip Odom, and Sriraam Natarajan. 2017.

User Friendly Automatic Construction of Background Knowledge: Mode Con-

struction from ER Diagrams. In Proceedings of the Knowledge Capture Con-
ference (K-CAP 2017). ACM, New York, NY, USA, Article 30, 8 pages. https:

//doi.org/10.1145/3148011.3148027

[24] David D. Jensen and Jennifer Neville. 2002. Linkage and Autocorrelation Cause

Feature Selection Bias in Relational Learning. In Machine Learning, Proceedings
of the Nineteenth International Conference (ICML 2002), University of New South
Wales, Sydney, Australia, July 8-12, 2002. 259–266.

[25] Zhongjun Jin, Michael R. Anderson, Michael J. Cafarella, and H. V. Jagadish. 2017.

Foofah: Transforming Data By Example. In Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL,
USA, May 14-19, 2017, Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang,

and Dan Suciu (Eds.). ACM, 683–698. https://doi.org/10.1145/3035918.3064034

[26] Dmitri V. Kalashnikov, Laks V.S. Lakshmanan, and Divesh Srivastava. 2018.

FastQRE: Fast Query Reverse Engineering. In Proceedings of the 2018 International
Conference on Management of Data (SIGMOD ’18). Association for Computing Ma-

chinery, New York, NY, USA, 337–350. https://doi.org/10.1145/3183713.3183727

[27] Dmitri V. Kalashnikov, Laks V.S. Lakshmanan, and Divesh Srivastava. 2018.

FastQRE: Fast Query Reverse Engineering. In Proceedings of the 2018 International
Conference on Management of Data (SIGMOD ’18). ACM, New York, NY, USA,

337–350. https://doi.org/10.1145/3183713.3183727

[28] Angelika Kimmig, David Poole, and Jay Pujara. 2020. Statistical Relational AI

(StarAI) WorkShop. In AAAI.
[29] Ondrej Kuzelka and Filip Zelezný. 2008. A Restarted Strategy for Efficient Sub-

sumption Testing. Fundam. Inform. 89 (2008), 95–109.
[30] Ni Lao, Einat Minkov, and William Cohen. 2015. Learning Relational Features

with Backward RandomWalks. In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers). Association for Compu-

tational Linguistics, Beijing, China, 666–675. https://doi.org/10.3115/v1/P15-1065

[31] Hao Li, Chee Yong Chan, and David Maier. 2015. Query From Examples: An

Iterative, Data-Driven Approach to Query Construction. PVLDB 8 (2015), 2158–

2169.

[32] Dianhuan Lin. 2013. Logic programs as declarative and procedural bias in inductive
logic programming. Ph.D. Dissertation. Imperial College London, Department of

Computing.

[33] Marcin Malec, Tushar Khot, James Nagy, Erik Blasch, and Sriraam Natarajan.

2016. Inductive logic programming meets relational databases: An application to

statistical relational learning. In ILP.
[34] Eric Mccreath and Arun Sharma. 1995. Extraction of Meta-Knowledge to Restrict

the Hypothesis Space for ILP Systems. In Australian Joint Conference on AI.

https://doi.org/10.1145/2872427.2882989
https://doi.org/10.1145/2872427.2882989
https://arxiv.org/pdf/1806.01261.pdf
https://doi.org/10.4230/DagRep.9.9.1
https://doi.org/10.1145/2818637
https://doi.org/10.1145/3321485
https://doi.org/10.1145/3316416.3316418
https://openreview.net/forum?id=BJlguT4YPr
https://doi.org/10.5441/002/edbt.2019.25
https://doi.org/10.1145/3183713.3199515
https://doi.org/10.14778/3342263.3342266
https://www.microsoft.com/en-us/research/publication/research-practice-programming-examples/
https://www.microsoft.com/en-us/research/publication/research-practice-programming-examples/
https://doi.org/10.1145/3148011.3148027
https://doi.org/10.1145/3148011.3148027
https://doi.org/10.1145/3035918.3064034
https://doi.org/10.1145/3183713.3183727
https://doi.org/10.1145/3183713.3183727
https://doi.org/10.3115/v1/P15-1065

[35] Lilyana Mihalkova and Raymond J. Mooney. 2007. Bottom-up learning of Markov

logic network structure. In ICML.
[36] Tom Mitchell. 1997. Machine Learning. McGraw-Hil.

[37] Stephen Muggleton. 1995. Inverse entailment and Progol. New Generation
Computing 13 (1995), 245–286.

[38] Stephen Muggleton, Luc De Raedt, David Poole, Ivan Bratko, Peter A. Flach,

Katsumi Inoue, and Ashwin Srinivasan. 2011. ILP turns 20. Machine Learning 86

(2011), 3–23.

[39] StephenMuggleton, Jose Santos, andAlireza Tamaddoni-Nezhad. 2009. ProGolem:

A System Based on Relative Minimal Generalisation. In ILP.
[40] Arvind Neelakantan, Quoc V. Le, Martín Abadi, Andrew McCallum, and Dario

Amodei. 2017. Learning a Natural Language Interface with Neural Programmer.

In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net. https:
//openreview.net/forum?id=ry2YOrcge

[41] Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever. 2016. Neural Programmer:

Inducing Latent Programs with Gradient Descent. In 4th International Conference
on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.

org/abs/1511.04834

[42] Frank Olken. 1993. Random Sampling from Databases. Ph.D. Dissertation. UC
Berkeley.

[43] Thorsten Papenbrock, Sebastian Kruse, Jorge-Arnulfo Quiané-Ruiz, and Felix

Naumann. 2015. Divide & Conquer-based Inclusion Dependency Discovery.

PVLDB 8 (2015), 774–785.

[44] Jose Picado, Arash Termehchy, and Alan Fern. 2017. Schema Independent Rela-

tional Learning. In SIGMOD Conference.
[45] J. Ross Quinlan. 1990. Learning Logical Definitions from Relations. Machine

Learning 5 (1990), 239–266.

[46] Luc De Raedt, David Poole, Kristian Kersting, and Sriraam Natarajan. 2017. Sta-

tistical Relational Artificial Intelligence: Logic, Probability and Computation. In

NeurIPS.
[47] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. HoloClean:

Holistic Data Repairs with Probabilistic Inference. Proc. VLDB Endow. 10, 11 (2017),
1190–1201. https://doi.org/10.14778/3137628.3137631

[48] Matthew Richardson and Pedro M. Domingos. 2006. Markov logic networks.

Machine Learning 62 (2006), 107–136.

[49] Wei Chit Tan, Meihui Zhang, Hazem Elmeleegy, and Divesh Srivastava. 2017.

Reverse Engineering Aggregation Queries. Proc. VLDB Endow. 10, 11 (Aug. 2017),
1394–1405. https://doi.org/10.14778/3137628.3137648

[50] Balder ten Cate, Víctor Dalmau, and Phokion G. Kolaitis. 2013. Learning schema

mappings. ACM Trans. Database Syst. 38, 4 (2013), 28:1–28:31. https://doi.org/10.

1145/2539032.2539035

[51] Balder ten Cate, Phokion G. Kolaitis, Kun Qian, and Wang-Chiew Tan. 2017.

Approximation Algorithms for Schema-Mapping Discovery from Data Exam-

ples. ACM Trans. Database Syst. 42, 2 (2017), 12:1–12:41. https://doi.org/10.1145/
3044712

[52] Balder ten Cate, Phokion G. Kolaitis, Kun Qian, and Wang-Chiew Tan. 2018.

Active Learning of GAV Schema Mappings. In Proceedings of the 37th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Houston,
TX, USA, June 10-15, 2018, Jan Van den Bussche and Marcelo Arenas (Eds.). ACM,

355–368. https://doi.org/10.1145/3196959.3196974

[53] Trevor Walker, Ciaran O’Reilly, Gautam Kunapuli, Sriraam Natarajan, Richard

Maclin, David Page, and Jude Shavlik. 2011. Automating the Ilp Setup Task:

Converting User Advice About Specific Examples into General Background

Knowledge. In Proceedings of the 20th International Conference on Inductive Logic
Programming (ILP’10). Springer-Verlag, Berlin, Heidelberg, 253–268. http://dl.
acm.org/citation.cfm?id=2022735.2022765

[54] William Yang Wang and William W. Cohen. 2015. Joint Information Extraction

and Reasoning: A Scalable Statistical Relational Learning Approach. In Proceed-
ings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing of the
Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Bei-
jing, China, Volume 1: Long Papers. The Association for Computer Linguistics,

355–364. https://doi.org/10.3115/v1/p15-1035

[55] William Yang Wang and William W. Cohen. 2016. Learning First-Order Logic

Embeddings via Matrix Factorization. In Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY,
USA, 9-15 July 2016, Subbarao Kambhampati (Ed.). IJCAI/AAAI Press, 2132–2138.

http://www.ijcai.org/Abstract/16/304

[56] Fan Yang, Zhilin Yang, and William W. Cohen. 2017. Differentiable Learning

of Logical Rules for Knowledge Base Reasoning. In Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vish-

wanathan, and Roman Garnett (Eds.). 2319–2328. http://papers.nips.cc/paper/

6826-differentiable-learning-of-logical-rules-for-knowledge-base-reasoning

[57] Xiaoxin Yin, Jiawei Han, Jiong Yang, and Philip S. Yu. 2004. CrossMine: efficient

classification across multiple database relations. ICDE (2004), 399–410.

[58] Qiang Zeng, Jignesh M. Patel, and David Page. 2014. QuickFOIL: Scalable Induc-

tive Logic Programming. PVLDB 8 (2014), 197–208.

[59] Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. 2018. Random

Sampling over Joins Revisited. In SIGMOD.

https://openreview.net/forum?id=ry2YOrcge
https://openreview.net/forum?id=ry2YOrcge
http://arxiv.org/abs/1511.04834
http://arxiv.org/abs/1511.04834
https://doi.org/10.14778/3137628.3137631
https://doi.org/10.14778/3137628.3137648
https://doi.org/10.1145/2539032.2539035
https://doi.org/10.1145/2539032.2539035
https://doi.org/10.1145/3044712
https://doi.org/10.1145/3044712
https://doi.org/10.1145/3196959.3196974
http://dl.acm.org/citation.cfm?id=2022735.2022765
http://dl.acm.org/citation.cfm?id=2022735.2022765
https://doi.org/10.3115/v1/p15-1035
http://www.ijcai.org/Abstract/16/304
http://papers.nips.cc/paper/6826-differentiable-learning-of-logical-rules-for-knowledge-base-reasoning
http://papers.nips.cc/paper/6826-differentiable-learning-of-logical-rules-for-knowledge-base-reasoning

	Abstract
	1 Introduction
	2 Background
	2.1 Basic Definitions
	2.2 Language Bias
	2.3 Relational Learning Algorithms

	3 Setting Language Bias
	3.1 Generating Predicate Definitions
	3.2 Generating Mode Definitions

	4 Efficient BC Construction
	4.1 Naïve Sampling
	4.2 Random Sampling
	4.3 Stratified Sampling

	5 Efficient Coverage Testing
	6 Empirical Study
	6.1 Experiment Setup
	6.2 Approaches to Setting Language Bias
	6.3 Sampling Techniques

	7 Related Work
	8 Conclusion
	References

