

The Data Interaction Game

Ben McCamish, Vahid Ghadakchi, Arash Termehchy, Behrouz Touri, Liang Huang

Information & Data Management and Analytics Laboratory (IDEA)

The User and the Database

Grades			
First_Name Last_Name Dept. C			
Sarah	Smith	CE	А
John	Smith	EE	В
Kerry	Smith	CS	D

• Users wish to find information from the database.

The intent is what the user is looking for in the database

Grades			
First_Name	Last_Name	Dept.	Grade
Sarah	Smith	CE	А
John	Smith	EE	В
Kerry	Smith	CS	D

• The user wishes to find Kerry Smith from the CS department in the database

Intents are expressed using queries

• The user expresses their intent with a SQL query

Most users do not know structure and content of database or SQL

Intents they wish to find

• Normal users such as scientists prefer to use keyword queries

Users prefer to use keyword queries as they are easier to use

- Don't need to know the structure or content of the database
- No need to know SQL or other structured query language

Database struggles with keyword queries

Users learn by interacting with database systems

Database system can also learn from interactions

Naturally data interaction is a game between two rational agents

- Two Players: user and database system
- Agents learn and adapt
- Final goal: user to get desired information
 - Database system understands the intent behind users queries
 - User expresses intent in a way that DBMS understands
- User Strategy: How intents are expressed using queries
- **DBMS Strategy:** How to map imprecise queries to desired queries
- Payoff: The amount of desired information the user receives.

User thinks of what they want to find in DBMS

- The intent can be multiple tuples
- They need to decide how to express their intent to DBMS

Sarah
0 0 E A+
JL

Grades			
First_Name	Last_Name	Dept.	Grade
Sarah	Smith	CE	А
John	Smith	EE	В
Kerry	Smith	CS	D

User strategy is mapping of intents to queries

Intent #	Intent	
ет	John Smith in EE	
e2	Sarah Smith in CE	
e3	Kerry Smith in CS	
Query #	Query	
٩ı	"Smith CE"	
q ₂	"Smith"	

- Use keyword queries
- Row-stochastic mapping from intents to queries.

Grades			
First_Name Last_Name Dept. G			
Sarah	Smith	CE	А
John	Smith	EE	В
Kerry	Smith	CS	D

User may use a single query for multiple intents

Intent #	Intent	
eı	John Smith in EE	$\overline{}$
e2	Sarah Smith in CE	
e3	Kerry Smith in CS	-
Query #	Query	
٩ı	"Smith CE"	
q2	"Smith"	

- Due to the lack of knowledge, saving time, ...
- Makes it hard to interpret the exact intent behind the query.

Grades				
First_Name	First_Name Last_Name			
Sarah	Smith	CE	А	
John	Smith	EE	В	
Kerry	Smith	CS	D	

DBMS receives query and needs to decide what user wants

Query #	Query
q ı	"Smith CE"
q 2	"Smith"
ntent #	Intent
	ans(y)←Grades(x,'Smith', 'EE', y)
	$ans(y) \leftarrow Grades(x, 'Smith', 'CE', y)$
	ans(y) ← Grades(x,'Smith', 'CS', y)

 How should it map the received keyword queries to the user's actual information needs?

First_Name	Last_Name	Dept.	Grade	
Sarah	Smith	CE	А	
John	Smith	EE	В	
Kerry	Smith	CS	D	

DBMS receives query and needs to decide what user wants

			Dat	tabase Sy	vstem St	rategy
Query #	Query			e1	e ₂	eз
٩ı	"Smith CE"		q 1	0	1	0
q ₂	"Smith"		q ₂	0.5	0	0.5
Intent #	Intent	Sara	h Smith			
eı	ans(y)← Grades(x,'Smith', 'EE', y)		n CE	Grade	S	
e ₂	ans(y)← Grades(x,'Smith', 'CE', y)	×	First_Name	Last_Name	Dept.	Grade
e3	ans(y)← Grades(x,'Smith', 'CS', y)					
		1	Sarah	Smith	CE	A

• Row-stochastic mapping from queries to intents

В

 D

. . .

Smith

Smith

. . .

John

Kerry

. . .

EE

CS

. . .

Payoff: expected effectiveness of communicating every intent

Intent #	Intent
e	John Smith in EE
e2	Sarah Smith in CE
e3	Kerry Smith in CS

Query #	Query	
٩ı	"Smith CE"	
q ₂	"Smith"	

User Strategy

	q 1	q 2
e1	0	1
e ₂	1	0
e 3	0	1

Database Strategy

	e1	e ₂	e ₃
q 1	0	1	0
q 2	0.5	0	0.5

$$U(U,D) = \sum_{i=1}^{m} \pi_i \sum_{j=1}^{n} U_{ij} \sum_{\ell=1}^{o} D_{j\ell} \ prec(e_i, e_\ell)$$

 Prior on how often intents are queried for

Y

Payoff: expected effectiveness of communicating every intent

Intent #	Intent	
eı	John Smith in EE	
e2	Sarah Smith in CE	
ез	Kerry Smith in CS	

Query #	Query	
٩ı	"Smith CE"	
<i>q</i> ₂	"Smith"	

User Strategy

Database Strategy

 $\ell = 1$

i=1

• Computed using user feedback, such as clicks

 Any user satisfaction metric can be used

i=1

What algorithms model user learning?

- Research in psychology and empirical game theory shows that humans exhibit reinforcement learning behavior
- Components of reinforcement learning:
 - Select a query based on its past success, i.e., exploitation.
 - Explore and try new/less successful queries to gain new knowledge, i.e., exploration.
 - Sacrifice immediate success for more success in the long run.

We evaluate user learning using human learning algorithms from empirical game theory.

- These algorithms generally differ in
 - How much they use past interactions
 - Short-Term Memory Only remembers most recent interaction
 - Long-Term Memory Remembers all of previous interactions
 - The degree of exploration versus exploitation
 - Reinforcement formula: e.g., use payoff versus discounted payoff.

Empirical evaluation of user learning methods

Dataset

- Yahoo! interaction history of ~200,000 interactions (101 hours)
- <u>Each interaction record contains</u>: Query entered, Timestamp, User ID, Returned urls, which results were clicked, and which clicks are **not** noise.
- It can model database users as our users do not know the schema.

• Experiment Design

 Train and test the algorithms on how accurately they predict what the user will do next, given the previous interactions

Roth and Erevs Method closely resembles user learning

- Reinforces a query based on its payoff.
- Picks a query randomly to express an intent with a probability proportional to its accumulated success (exploration)

Method	Mean Squared Error	
Win-Stay/Lose-Randomize	0.0713	
Latest Reward	0.3421	
Bush and Mosteller's	0.0673	
Cross's	0.0686	
Roth and Erev	0.0666	
Roth and Erev Modified	0.0666	
UCB-1	0.1624	

Roth and Erevs Method closely resembles user learning

 As it picks queries randomly, it may use new/ less frequently used queries once in a while (exploration).

Method	Mean Squared Error		
Win-Stay/Lose-Randomize	0.0713		
Latest Reward	0.3421		
Bush and Mosteller's	0.0673		
Cross's	0.0686		
Roth and Erev	0.0666		
Roth and Erev Modified	0.0666		
UCB-1	0.1624		

How should the DBMS learn and adapt its strategy?

- Web search systems use reinforcement learning algorithms, e.g., UCB-1
 - They assume that user does not learn to change her strategy
- Intuitive answer:
 - User and DBMS have identical interest, so user learning only helps.
 - Thus, DBMS may use current online learning methods.

How should the DBMS learn and adapt its strategy?

Intuitive answer:

User and DBMS have identication

• Thus, DBMS may use curr

• Wrong!!

est, so user learning only helps.

e learning methods.

User/DBMS may trap in cycles and **not** communicate effectively

er learning only helps.

methods used in IR.

- Intuitive answer:
 - User and DBMS have identical intered
 - Thus, DBMS may use current onling
- Wrong!!

1. There are games in which players learn and collaborate but effectiveness decreases over time!

• The players may get trapped in a cycle

- 2. Current online learning algorithms, e.g., UCB-1, assume that users do **not** learn and have a **fixed** strategy
 - They cannot discover user intents accurately where users learn (dynamic environment)

How our DBMS algorithm works

Students	

	name	year	dept_name	school
e1	Kerry Smith	Senior	CS	EECS
e2	John Smith	Junior	EE	EECS
e3	Sarah Smith	Senior	CE	EECS

Database

• This is a toy example to illustrate the learning algorithm

The reward matrix

Students

dept_name school year name CS EECS Kerry Smith Senior e1 EE **EECS** John Smith e2 Junior Sarah Smith **EECS** Senior CE e3

Q: Smith

- Keeps track of all reward accumulated
- Initialized to all 1 for this example

DBMS strategy is constructed from the reward matrix

Students

	name	year	dept_name	school
e1	Kerry Smith	Senior	CS	EECS
e2	John Smith	Junior	EE	EECS
e3	Sarah Smith	Senior	CE	EECS

Database Strategy

• $D_{ij} = R_{ij} / sum(R_i)$

Q: Smith

• $D_{11} = 1 / sum(R_i)$

Reward Matrix

DBMS strategy is constructed from the reward matrix

Students

	name	year	dept_name	school
e1	Kerry Smith	Senior	CS	EECS
e2	John Smith	Junior	EE	EECS
e3	Sarah Smith	Senior	CE	EECS

Database Strategy

	e1	e ₂	e ₃
q 1	0.33		
q 2			

Oregon State University

Q: Smith

- $D_{ij} = R_{ij} / sum(R_i)$
 - $D_{11} = 1/3$

DBMS strategy is constructed from the reward matrix

Students

	name	year	dept_name	school
e1	Kerry Smith	Senior	CS	EECS
e2	John Smith	Junior	EE	EECS
e3	Sarah Smith	Senior	CE	EECS

Database Strategy

	e1	e ₂	e 3
q 1	0.33	0.33	0.33
q 2	0.33	0.33	0.33

• $D_{ij} = R_{ij} / sum(R_i)$

Q: Smith

Reward Matrix

DBMS returns results based on its random strategy

Students

	name	year	dept_name	school
e1	Kerry Smith	Senior	CS	EECS
e2	John Smith	Junior	EE	EECS
e3	Sarah Smith	Senior	CE	EECS

Database Strategy

_		e ₁	e ₂	e 3
	q 1	0.33	0.33	0.33
	q 2	0.33	0.33	0.33

- User submits q1
- DBMS returns e1 to the user randomly with a probability of 0.33
 - As opposed to the current systems, it does not return the top-K answers.

Reward Matrix

Feedback from user updates the reward matrix

St	tu	d	er	nt	S	

	name	year	dept_name	school
e1	Kerry Smith	Senior	CS	EECS
e2	John Smith	Junior	EE	EECS
e3	Sarah Smith	Senior	CE	EECS

Database Strategy

	e1	e ₂	e 3
q 1	0.33	0.33	0.33
q 2	0.33	0.33	0.33

Oregon State University

- It satisfies the user, they give some feedback such as a click
- Add add 1 to the reward matrix
- Reward matrix is updated

The DBMS strategy is updated from the reward matrix

Students

	name	year	dept_name	school
e1	Kerry Smith	Senior	CS	EECS
e2	John Smith	Junior	EE	EECS
e3	Sarah Smith	Senior	CE	EECS

Database Strategy

	e1	e2	€₃
q 1	0.5	0.25	0.25
q 2	0.33	0.33	0.33

Oregon State University

- Use reward matrix to update database strategy
- Q1,E1 is reinforced since user gave good feedback
- All other intents for that query have their probabilities implicitly reduced

How our algorithm works

	Students					
	name	year	dept_name	school		
e1	Kerry Smith	Senior	CS	EECS		
e2	John Smith	Junior	EE	EECS		
e3	Sarah Smith	Senior	CE	EECS		

Database Strategy

	e1	e ₂	e 3
q 1	0.5	0.25	0.25
q 2	0.33	0.33	0.33

However, there may be so many intents and queries to make this impractical

- We keep features for the queries and intents in practice
 - Such as n-grams of the query and tuples

Reward Matrix

Theoretical guarantees

- **Theorem:** If user and database system learn use the Roth and Erev method, the payoff of the game will remain the same or increase.
 - ► The result also holds if the user does **not** learn and has a fixed strategy.
 - Slow learners!
 - The sequence of payoffs converges stochastically sparking (almost surely).

DBMS learning and query processing are inefficient for DB with multiple tables

Kerry Smith	Senior	1	CS	EECS	P1
Bob Smith	Junior	1	CS	EECS	P2

- The keyword query is sent to each table.
- The answers are in the join of matching tuples from different tables.
- The join must be materialized to compute probabilities and then sampled.
- DBMS may have to do several joins as it does **not** know the join user is looking for.

We leverage sampling over join techniques to improve efficiency

• We use **reservoir sampling** to eliminate the need for join materialization.

- We can be smarter and first sample tuples from the base tables and then join only the sampled tuples. (**Poisson-Olken algorithm**)
 - Joins significantly fewer tuples.
 - Details in the paper.

Evaluating Effectiveness: Experiment setting

Dataset

- Yahoo! query workload, same format as the user study
- Used to create queries and a database of URLs
- Experimental Setup
 - User learns based on Roth and Erev during interaction
 - Use Mean Reciprocal Rank to measure effectiveness

Our learning algorithm outperforms UCB-1 in the long run

Experimental evaluation: Efficiency

- We use subsets of Freebase database
 - e.g., **TV Program:** 7 tables and 291,026 tuples
- We use subsets of from the Bing query log whose relevant answers are in these databases.
 - e.g., 621 queries over TV Program
- Run for 1000 interactions

Database	Reservoir (sec)	Poisson-Olken (sec)
TV Program	0.298	0.171

Conclusion & Future Work

- The interaction between user and DBMS is better modeled as a collaborative game.
- DBMS should use randomized learning strategies, considering the user learns.
- We use sampling over join to efficiently implement DBMS learning.
- Data integration between databases is the next step
 - Where databases communicate to establish a common mapping.

