
Certain and Approximately Certain Models for Statistical
Learning

Cheng Zhen

Oregon State University

Corvallis, Oregon

zhenc@oregonstate.edu

Nischal Aryal

Oregon State University

Corvallis, Oregon

aryaln@oregonstate.edu

Arash Termehchy

Oregon State University

Corvallis, Oregon

termehca@oregonstate.edu

Amandeep Singh Chabada

Oregon State University

Corvallis, Oregon

chabadaa@oregonstate.edu

ABSTRACT
Real-world data is often incomplete and contains missing values.

To train accurate models over real-world datasets, users need to

spend a substantial amount of time and resources imputing and

finding proper values for missing data items. In this paper, we

demonstrate that it is possible to learn accuratemodels directly from

data with missing values for certain training data and target models.

We propose a unified approach for checking the necessity of data

imputation to learn accurate models across various widely-used

machine learning paradigms. We build efficient algorithms with

theoretical guarantees to check this necessity and return accurate

models in cases where imputation is unnecessary. Our extensive

experiments indicate that our proposed algorithms significantly

reduce the amount of time and effort needed for data imputation

without imposing considerable computational overhead.

CCS CONCEPTS
• Information systems→ Data cleaning.

ACM Reference Format:
Cheng Zhen, Nischal Aryal, Arash Termehchy, andAmandeep SinghChabada.

2024. Certain and Approximately Certain Models for Statistical Learning.

In Proceedings of the 2024 International Conference on Management of Data
(SIGMOD ’24), June 06, 2024, Santiago, Chile. ACM, New York, NY, USA,

17 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The performance of a machine learning (ML) model relies substan-

tially on the quality of its training data. Real-world training data

often contain a considerable number of examples with missing val-

ues, i.e., incomplete data. One may train an ML model by ignoring

the training examples with missing values. This approach, however,

may significantly reduce the accuracy of the resulting model as it

may lose out on some useful examples [30].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’24, June 06, 2024, Santiago, Chile
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

To address the problem of training over incomplete data, users

usually replace each missing data item with a value, i.e., data impu-

tation, and train their models over the resulting repaired data. To
repair incomplete data, users must figure out the mechanisms and

causes of data missingness, e.g., completely at random or based on

observed values of some features [28]. Based on this mechanism,

they build a (statistical) model for missing data and replace the

missing values with some measurements defined over this model,

e.g., mean. Users may also leverage a variety of ML models to

repair missing values, e.g., tree-based or linear regression [21]. Re-

searchers have shown that the desired imputation method may

vary depending on the downstream ML task [20]. Hence, it is often

challenging to find a model of data missingness that results in an

accurate MLmodel for a downstream task [20]. The aforementioned

steps of finding a missingness mechanism, constructing an accurate

missingness model, and finding the right statistical measurement(s)

for imputation usually require a significant amount of time and

manual effort. Surveys indicate that most users spend about 80% of

their time on data preparation and repair [18, 24].

Researchers have recently shown that one may learn accurate

Datalog rules [25] and K-nearest neighbor classifier [10, 16] over a

training dataset without cleaning and repairing it. Generally speak-

ing, these methods check whether incomplete or inconsistent exam-

ples influence the target model. If this is not the case, they return

the model learned over the original training data. This approach

may save significant time and effort spent repairing data.

However, it is not clear whether themethods above can be used to

check the necessity of data repair for other ML models. As opposed

to learning Datalog rules or K-nearest neighbors, training popular

ML models usually requires optimizing a continuous loss function.

Moreover, these methods detect the necessity of data repair only

for classification problems and do not handle learning over missing

data for regression models. Also, each of these methods handles a

single ML model. Due to the relatively large number and variety

of ML models, one would ideally like to have a single approach to

the problem of learning over data with missing values for multiple

types of ML models.

In this paper, we aim to develop a general approach for learning

accurate ML models over training data with missing values without

any data repair. We focus onMLmodels that optimize loss functions

over continuous spaces, which arguably contain the most popular

ML models. We formally define the necessity of data repair for

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SIGMOD ’24, June 06, 2024, Santiago, Chile Zhen and Aryal, et al.

learning accurate models over training data with missing values.

Our methods efficiently detect whether data repair is needed to

learn accurate models. If data repair is not necessary, they learn

effective models over the original training data. Particularly, we

make the following contributions:

• We formally define the conditions where data repair is not

needed for training optimal models over incomplete data for

a large group of ML models (Section 3).

• We prove necessary and sufficient conditions for learning an

optimal model without repairing incomplete data for linear
regression. Based on these conditions, we design an efficient

algorithm for 1) checking the existence of the optimal model,

and 2) learning the optimal model if it exists (Section 4).

• We prove necessary and sufficient conditions for learning an

optimal model without repairing incomplete data for linear
Support Vector Machine (SVM), a popular classification ML

model. We present an efficient algorithm for checking and

then learning the optimal model if it exists (Section 5).

• Linear SVM models only learn linear classifiers, limiting

their representation power in nonlinear spaces. We prove

necessary and sufficient conditions for learning an optimal

model without repairing incomplete data for two popular

kernel SVMs. Then we provide algorithms to check and then

learn the optimal models for each kernel SVM (Section 6)

• We formalize the notion of certain models for Deep Neural
Networks (DNNs). Due to the non-convexity of the loss func-

tions in DNNs, it is challenging to design an algorithm that

efficiently finds the optimal model for them. We prove the

necessary conditions for having certain models for DNNs in

some special cases (Section 7).

• It might not be possible to learn an optimal model over in-

complete data without any data repair. Hence, we introduce

and formally define the condition under which it is possible

to learn a model that is sufficiently close to an optimal model

over incomplete data without any repair. We propose novel

and efficient algorithms to check for the existence of these

models over linear regression and SVM (Section 8).

• We conduct experiments to show cost savings in data clean-

ing and program execution time compared to mean impu-

tation, a deep learning-based imputation algorithm, and a

benchmark framework across real-world datasets with ran-

dom corruption. We also extend the comparison to diverse

real-world datasets with inherent missing values, yielding

results consistent with randomly corrupted datasets. Our

studies show that our algorithms significantly reduce data

repair costs when optimal or approximately optimal models

can be learned over incomplete data and introduce minimal

computational overhead in other cases (Section 9).

2 BACKGROUND
2.1 Supervised Learning
In this section, we review ML terminology and notations.Dataset. In ML, we work with a relation consisting of a finite

number of attributes and tuples. For instance, the relation shown
in Table 1 has two tuples and three attributes. For an ML problem,

a relation with tuples and attributes is generally referred to as a

dataset with rows and columns. In supervised learning, an ML

Table 1: A training dataset for rain prediction

Temperature(F) Humidity(%) Rainfall

Seattle 65 80 1

New York 50 𝑛𝑢𝑙𝑙 -1

model takes certain columns from a dataset as input and makes

predictions for a designated output column.

Features. The columns of the dataset we provide as input to an

ML model are called features. In Table 1, Temperature and Humidity
are the two features that provide information on atmospheric condi-
tions. We denote a single feature as z and 𝑑 features as [z1, ..., z𝑑].
The domain of feature zi is the set of values that appear in feature

zi. To simplify our exposition, we assume that the domain of all

values in a feature is the set of real numbers R.

Label. The column of the dataset we want an ML model to make

predictions on is called a label. In our example, given current atmo-
spheric conditions we want to predict chances of Rainfall. Therefore
Rainfall is the label column, and it takes on two possible values: -1
to denote No Rain and 1 for Rain. We represent a single label as

𝑦 and the entire label column, consisting of 𝑛 labels, as a vector

y = [𝑦1, ..., 𝑦𝑛].

Training Example. We refer to a row in the dataset as a training

example. In Table 1, we observe two examples, Seattle and New York.
We denote a single training example as x. For 𝑛 training examples,

a training set is a collection of an input matrix X = [x1, ..., x𝑛]𝑇
and a corresponding label vector y = [𝑦1, ..., 𝑦𝑛]𝑇 . Each training

example with 𝑑 features in X can be expressed as a vector x𝑖 =

[𝑥𝑖1, ..., 𝑥𝑖𝑑], where 𝑥𝑖 𝑗 represents the 𝑗𝑡ℎ feature in the 𝑖𝑡ℎ example.

Target Function. We define the domain of examples as X and

the domain of labels asY. For𝑛 examples and𝑑 features, we assume,

X andY are R𝑛×𝑑 , and R𝑛 , respectively. A target function 𝑓 (X,w)
transforms feature inputs into label outputs based on model w,

represented as 𝑓 (X,w) : X → Y. Here, model w is a real-valued

vector parameterizing the space of target functions that map fromX
to Y. For instance, consider a single training example xi consisting
of 𝑑 features. Given a vector of real numbers w, the target function

may be a linear transformation of the example xi, i.e 𝑓 (xi,w) =
𝑤1 · 𝑥𝑖1 + ... +𝑤𝑑 · 𝑥𝑖𝑑 .

(a) Data cleaning is not needed (b) Data cleaning is needed

Figure 1: Data cleaning may not always be necessary

Example 2.1. Consider Figure 1a, which uses a popular ML algo-
rithm called Support Vector Machine (SVM). The goal is to learn a

Certain and Approximately Certain Models for Statistical Learning SIGMOD ’24, June 06, 2024, Santiago, Chile

linear boundary (blue rectangle) for rain prediction using tempera-
ture and humidity features from different cities (examples X). The
boundary (margin) separates the examples based on their Rain out-
comes. The target function transforms all examples to one of the two
possible y values [1, -1]. The approximation of the target function
is 𝑓 (X,w)=w𝑇X.

Loss function. A loss function, L, is defined as a mapping of

prediction for an example xi, i.e., 𝑓 (xi,w), with its corresponding

label 𝑦𝑖 to a real number 𝑙 ∈ R. 𝑙 captures the similarity between

𝑓 (xi,w) and 𝑦𝑖 . The exact form of the loss function varies between

ML problems. One reasonable measure to capture similarity is to

get the difference between prediction 𝑓 (xi,w) and actual label 𝑦𝑖 .

Aggregating over the 𝑛 examples in the input matrix (X), we find
the overall loss function, 𝐿: 𝐿(𝑓 (X,w), y) = 1

𝑛

∑𝑛
𝑖=1 L(𝑓 (xi,w), 𝑦𝑖)

=
1

𝑛

∑𝑛
𝑖=1 (𝑓 (xi,w) − 𝑦𝑖)2. For the rest of the paper, we will refer

to the ‘overall loss function’ as the loss function since we will be

working with a matrix of examples rather than individual examples.

Example 2.2. For the SVM in Figure 1, the loss function, L, is
defined as 𝐿(𝑓 (X,w), y) = 1

2
∥w∥2

2
+𝐶∑𝑛

𝑖=1max{0, 1 − 𝑦𝑖w𝑇 x𝑖 }.
Here, w𝑇 x𝑖 comes from the target function and represents the
model’s prediction for an example x𝑖 . The actual label is denoted
as 𝑦𝑖 . When the prediction and the label have the same sign, they are
similar, therefore the loss is lower. The notation | | · | |2

2
represents the

squared Euclidean norm, and 𝐶 ∈ (0, +∞) is a tunable parameter.

Classification and Regression. Supervised learning is divided
into two types of ML problems. In a classification problem, the

label domain Y consists of discrete values (such as Rain(1) or No
Rain(-1)). Whereas if the label domain consists of continuous values

(e.g. inches of Rainfall), then it is a regression problem.

Model Training. Taking an input matrix X, a label vector y, a
targte function 𝑓 , and a loss function 𝐿, the goal of training is to

find an optimal model w∗ that minimizes the training loss, i.e.,
w∗ = arg min

w∈W
𝐿(𝑓 (X,w), y).

Example 2.3. For the SVM in Figure 1, optimal model w∗ is
the model that creates the widest margin between the example with
different labels (red and green) while ensuring accurate predictions,
to minimize training loss.

2.2 Missing Values and Repairs
In this section, we formally define concepts for missing value repair.

Missing values. Any𝑥𝑖 𝑗 is amissing value (MV) if it is unknown

(marked by null). We use the term incomplete example to refer

to an example with missing values, and incomplete feature for a
feature that contains missing values. Conversely, we use the terms

complete feature and complete example to describe features

and examples that are free of missing values. We further denote the

set of incomplete examples as𝑀𝑉 (x) = {x𝑖 |∃𝑥𝑖 𝑗 , 𝑥𝑖 𝑗 = null}, and
the set of incomplete features as𝑀𝑉 (z) = {z𝑗 |∃𝑥𝑖 𝑗 , 𝑥𝑖 𝑗 = null}.

Example 2.4. In Table 1, the Humidity feature is an incomplete
feature while the Temperature feature is a complete feature. Sim-
ilarly, the New York example is an incomplete example, and the
Seattle example is a complete example

Repair. A repair is a complete version of the raw data where all

missing values (MV) are imputed i.e. replaced with values from the

domain of features or examples (Subsection 2.1). More formally:

Definition 1. (Repair) For an input matrix X having missing
values (MV),X𝑟 is a repair toX if 1)𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛(X𝑟) = 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛(X),
2) ∀𝑥𝑟

𝑖 𝑗
∈ X𝑟 , 𝑥𝑟

𝑖 𝑗
≠ null, and 3) ∀𝑥𝑖 𝑗 ≠ null, 𝑥𝑟

𝑖 𝑗
= 𝑥𝑖 𝑗 .

Example 2.5. In Table 1, the Humidity feature for the New York
example has a missing value. FromDefinition 1, replacing the missing
data with a value (e.g. 90) yields a repair (X𝑟). However, deleting the
humidity feature, which eliminates the missing value, is not a repair
since it changes dimension(X).

Set of possible repairs. The range of values that can be used

to replace missing values is large. Consequently, a large number

of repairs may exist. We denote this set of all possible repairs as

X𝑅
. For brevity, we refer to ‘a value replacing the missing value’ as

a repairing value.

3 CERTAIN MODELS
In this section, we formally define certain models that minimize

training loss irrespective of how missing data is repaired.

Definition 2. (Certain Model) A model w∗ is a certain model if:

∀X𝑟 ∈ X𝑅,w∗ = argmin

w∈W
𝐿(𝑓 (X𝑟 ,w), y) (1)

Where X𝑟 is one possible repair, X𝑅 is the set of all possible repairs
and 𝐿(𝑓 (X𝑟 ,w), y) is the loss function

Definition’s intuition: Intuitively, Definition 2 says that if a model

is optimal (minimizes the training loss) for all possible repairs, this

model is a certain model.

Example 3.1. Consider the ML problem in Figure 1. Figures 1a
and 1b display two sets of training examples with a missing humidity
value, possibly due to a malfunctioning sensor. The green dashed
line represents the range of possible values for the incomplete feature
(empty circle). In Figure 1a, the incomplete example does not touch the
blue rectangle in any possible repair (X𝑟 ∈ X𝑅). Therefore, the model
(decision boundary: blue dashed line) is optimal for all repairs. Hence,
a certain model (w∗) exists. But, in Figure 1b, since the example may
touch the blue rectangle in many repairs, the optimal model changes
from one repair to another and certain models do not exist.
Advantages of finding certain models: To repair incomplete

data users may resort to methods such as deleting data (e.g., entire

examples or features), potentially leading to information loss. An-

other option is data imputation, which requires additional effort

and domain expertise [30]. Regardless of how well these data repair

techniques are constructed, they may produce suboptimal results,

i.e., the repaired data is not the ground truth [22]. However when

a certain model exists, imputing missing data is unnecessary since

this model is optimal for all possible repairs. Therefore users may

save a significant amount of time and effort by finding certain mod-

els. Users may ignore missing values in practice to investigate the

properties of the trained model. Nonetheless, there is no guarantee

that their trained model is accurate. The concept of certain models

ensures cases for which this approach leads to accurate models.

SIGMOD ’24, June 06, 2024, Santiago, Chile Zhen and Aryal, et al.

Prevalence of certainmodels:Certainmodels may not often exist

from the restrictive definition (a model is optimal for all repairs).
However, when they exist, we save a significant amount of time

and resources. Furthermore, these savings significantly grow as the

number of datasets increases alongside the rapid expansion of the

ML community utilizing these datasets for model training.

Problems: We aim to solve our problem of finding certain models

by solving the following sub-problems.

(1) Certain Model Checking: Given inputs (1) a training set

consisting of a feature matrix X potentially with missing

values and a label vector y (2) a target function 𝑓 (X,w) and
(3) a loss function𝐿. The first problem is to determinewhether
a certain model w∗ exists that minimizes the training loss

𝐿(𝑓 (X,w), y) for all repairs (∀X𝑟 ∈ X𝑅
) to the incomplete

dataset. If a certain model (w∗) exists, it implies that data

imputation is unnecessary.

(2) Certain Model Learning: If a certain model exists, then

the second problem is learning a certain model (w∗), given a

training set, loss function, and a target function as inputs.
This certain model output can be used for downstream tasks.

Minimal overhead of not finding certain models:When cer-

tain models exist users do not have to spend any effort in repairing

missing data. When certain models do not exist, the effort to check

for them may appear wasteful. Therefore, an ideal solution would

require minimal time to check for certain models even when they

do not exist. Consequently, the overhead of checking certain models
is negligible compared to the significant time and resources users

may save by finding certain models.
Baseline Algorithm: Given Equation 1, a baseline algorithm for

checking and learning a certainmodel is: (1) learning possible models
from all possible repairs one by one, and (2) a certain model exists if

all repairs share at least one mutual optimal model. Here, the set of

possible repairs is often large (Subsection 2.2). Therefore, learning
models from all repairs may be incredibly slow. More precisely, if

we denote the training time for learning one model as O(𝑇𝑡𝑟𝑎𝑖𝑛),
the baseline algorithm’s complexity grows in proportion to the

size of all possible repairs (X𝑅
). This results in a complexity of

O(|X𝑅 |∗𝑇𝑡𝑟𝑎𝑖𝑛), where |X𝑅 | represents the total number of possible

repairs. Therefore, we aim to find efficient algorithms to check for
certain models in multiple ML problems.

4 CERTAIN MODELS FOR LINEAR
REGRESSION

Linear regression is a popular and classic ML model. It assumes

a linear relationship between feature input (X) and label output

(y). The difference between the model’s prediction and actual label,

Xw − y, is the residue e = [𝑒1, ..., 𝑒𝑛].
The loss function (Section 2) for linear regression is𝐿(𝑓 (X,w), y)

= | |Xw − y| |2
2
. Here, ∥ · ∥2

2
represents the squared Euclidean norm.

4.1 Conditions For Having Certain Models
Based on the definition of certain models (Definition 2), the certain
model w∗ for linear regression is defined as:

∀X𝑟 ∈ X𝑅,w∗ = argmin

w∈W
| |X𝑟w − y| |2

2
(2)

Where X𝑟 is one possible repair to the input matrix X, X𝑅 is set of all
possible repairs and | |X𝑟w − y| |2

2
is the loss function

Linear regression finds a model w∗ ∈ R𝑑 such that the linear

combination of all feature vectors,𝑤∗
1
z1+ ...+𝑤∗𝑑z𝑑 , has the shortest

Euclidean distance to the label vector y, i.e., the minimum training

loss. Intuitively, a certain model exists when this Euclidean distance

is independent of any incomplete features z𝑗 , 𝑗 ∈ 𝑀𝑉 (z).
To formalize this intuition and avoid checking for all possible

repairs, we introduce Theorem 4.2. Given an input matrix with 𝑛

examples and 𝑑 features, X ∈ R𝑛×𝑑 , we denote a missing-value-

free (complete) matrix X𝑐 ∈ R𝑛×𝑚 as a submatrix (𝑚 < 𝑑) of the
input matrix. X𝑐 only consists of the𝑚 complete features z𝑗 from
X, z𝑗 ∉ 𝑀𝑉 (z). Performing linear regression withX𝑐 and the labels

y, we get the modelw∗𝑐 ∈ R𝑚 . To facilitate subsequent analysis, we

introduce another model w• by expanding w∗𝑐 from R𝑚 to R𝑑 by

appending (𝑑 −𝑚) zero coefficients corresponding to incomplete

features. For example, if the columns 2 and 4 in X ∈ R4 contain
missing values, and w∗𝑐 = [1, 1]𝑇 , we create w• by expanding w∗𝑐
to R4 and inserting zeros in the second and fourth entries. This

process results in an expanded model, w• = [1, 0, 1, 0]𝑇 . This step
aligns the linear coefficients between X𝑐 and X𝑟

, simplifying the

following theorems and proof.

Lemma 4.1. If a certain model w∗ exists, ∀z𝑗 ∈ 𝑀𝑉 (z), the corre-
sponding coefficient𝑤∗

𝑗
= 0. In other words, if a certain model exists,

w• is a certain model.

Proof. The gradient of linear regression model’s loss function

is ∇𝐿(w) = 2

𝑛

∑𝑛
𝑖=1 (w𝑇 x𝑖 − 𝑦𝑖)x𝑖 . Since linear regression has a

convex loss function with respect to model w, a certain model w∗

exists if and only if ∇𝐿(w∗) = 0 for all repairs, i.e.,

∀X𝑟 ∈ X𝑅,∀𝑗 ∈ {1, ..., 𝑑}, 2
𝑛

𝑛∑︁
𝑖=1

(w∗𝑇 x𝑟𝑖 − 𝑦𝑖)𝑥
𝑟
𝑖 𝑗 = 0 (3)

For z𝑗 ∈ 𝑀𝑉 (z), we can split the gradient in Equation 3: ∀X𝑟 ∈ X𝑅
,

2

𝑛
[

∑︁
𝑥𝑖 𝑗≠null

(w∗𝑇 x𝑟𝑖 − 𝑦𝑖)𝑥𝑖 𝑗 +
∑︁

𝑥𝑖 𝑗=null

(w∗𝑇 x𝑟𝑖 − 𝑦𝑖)𝑥
𝑟
𝑖 𝑗] = 0 (4)

To guarantee that the second summations term in Equation 4 is

equal to 0 regardless of the value of the repair 𝑥𝑟
𝑖 𝑗
, w∗𝑇 x𝑟

𝑖
− 𝑦𝑖 =

𝑤∗
1
𝑥𝑟
𝑖1
+ ...+𝑤∗

𝑗
𝑥𝑟
𝑖 𝑗
+ ...+𝑤∗

𝑑
𝑥𝑟
𝑖𝑑
−𝑦𝑖 must equal 0 for all repairs. This

leads to a condition of 𝑤∗
𝑗
= 0. Given this, w• is a certain model

because it is trained with all complete features. ■

Based on this Lemma 4.1, we have the following result.

Theorem 4.2. A certain model exists if and only if ;∀z𝑗 ∈ 𝑀𝑉 (z),
these conditions are met: 1)∀𝑥𝑖 𝑗 = null, 𝑒𝑖 = 0; 2)

∑
𝑥𝑖 𝑗≠null 𝑥𝑖 𝑗 ·𝑒𝑖 = 0.

Proof. To reduce notations, we reformulate the gradient in

Equation 3 to the form of the inner product:

∀X𝑟 ∈ X𝑅,∀𝑗 ∈ {1, ..., 𝑑}, ⟨X𝑟w∗ − y, z𝑟𝑗 ⟩ = 0 (5)

First, we prove the necessity. For all complete features z𝑗 ∉ 𝑀𝑉 (z),
⟨X𝑐w∗𝑐 − y, z𝑗 ⟩ = 0 holds from the definition of w∗𝑐 . Since residue
e = X𝑟w• − y = X𝑐w∗𝑐 − y, it is trivial that ∀z𝑗 ∉ 𝑀𝑉 (z),∀X𝑟 ∈
X𝑅, ⟨X𝑟w• − y, z𝑟

𝑗
⟩ = ⟨r, z𝑟

𝑗
⟩ = 0 because e is orthogonal to all

Certain and Approximately Certain Models for Statistical Learning SIGMOD ’24, June 06, 2024, Santiago, Chile

complete features that are used to trainw∗𝑐 . From the two conditions

in Theorem 4.2, we find: ∀z𝑗 ∈ 𝑀𝑉 (z),∀X𝑟 ∈ X𝑅, ⟨X𝑟w•−y, z𝑟
𝑗
⟩ =

0. Hence, Equation 5 holds, justifying the necessity.

Then, we prove sufficiency by contradiction. Assume that a cer-

tain model exists, but at least one condition in Theorem 4.2 is

not satisfied. Based on Lemma 4.1, w• is the certain model where

∀z𝑗 ∈ 𝑀𝑉 (z),𝑤•
𝑗
= 0. However, breaking either condition in Theo-

rem 5.1 leads to the existence of a repair to an incomplete feature

z𝑟1
𝑗
, z𝑗 ∈ 𝑀𝑉 (z) such that ⟨r, z𝑟1

𝑗
⟩ = ⟨X𝑟w• − y, z𝑟

𝑗
⟩ ≠ 0. Because

the feature repair z𝑟1
𝑗
is not orthogonal to the fitting residue e, we

may find a model other thanw• whose training loss is smaller than

| |r| |2. In other words, w• is not an optimal model with respect to

the repair X𝑟1
. This violates the definition that a certain model is

optimal for all repairs. As a result, the sufficiency of Theorem 4.2

holds through the contradiction. ■

4.2 Checking and Learning Certain Models
Theorem 4.2 says that a certain model exists for linear regression

if and only if the residue vector e is orthogonal to incomplete

features. If a certain model exists, the incomplete features may be

safely ignored without compromising the minimization of training

loss since they do not contribute to a smaller training loss than e.
Based on Theorem 4.2, we present Algorithm 1. Our algorithm

has two major steps: 1) computing the residue vector e along with

expanded model w• based on complete features, and 2) checking

the orthogonality between e and all incomplete features. Finally,

we obtain a certain model when it exists by getting w•, in which

the incomplete features are ignored by the zero linear coefficients.

The algorithm’s time complexity is O(𝑇𝑡𝑟𝑎𝑖𝑛), which is signifi-

cantly faster than the baseline we discuss in Section 3. The efficiency

of our algorithm stems from its ability to check for certain models

without traversing over all possible repairs.

Algorithm 1 Checking and learning certain model for Linear Re-

gression

𝑀𝑉 (z) ← features with missing values (incomplete features)

w• ← expanded model trained with complete features

e← fitting residue with complete features

𝑛 ← the number of training examples

for z𝑗 ∈ 𝑀𝑉 (z) do
𝑖𝑛𝑛𝑒𝑟𝑃𝑟𝑜𝑑𝑢𝑐𝑡 ← 0

for 𝑖 = 1, 2, . . . , 𝑛 do
if 𝑥𝑖 𝑗 = null AND 𝑒𝑖 ≠ 0 then

return "Certain model does not exist"

else if 𝑥𝑖 𝑗 ≠ null then
𝑖𝑛𝑛𝑒𝑟𝑃𝑟𝑜𝑑𝑢𝑐𝑡 ← 𝑖𝑛𝑛𝑒𝑟𝑃𝑟𝑜𝑑𝑢𝑐𝑡 + 𝑥𝑖 𝑗 ∗ 𝑒𝑖

end if
end for
if 𝑖𝑛𝑛𝑒𝑟𝑃𝑟𝑜𝑑𝑢𝑐𝑡 ≠ 0 then

return "Certain model does not exist"

end if
end for
return "A certain model w• exists"

5 CERTAIN MODELS FOR SVM
Another widely used ML model is SVM. In this section, we are

specifically interested in linear SVM, which aims to learn a linear

decision boundary to classify examples. This decision boundary is

of the form w𝑇 x = 0.

A typical soft-margin SVM’s loss function comprises of a loss

term and a regularizer, 𝐿(𝑓 (X,w), y) = 1

2
| |w| |2

2
+𝐶∑𝑛

𝑖=1𝑚𝑎𝑥{0, 1−
𝑦𝑖w𝑇 x𝑖 }. Here, the first term is the regularization, the second term

is the hinge loss [12], and 𝐶 ∈ (0, +∞) is a tunable parameter. Sup-
port vectors are the closest training examples that decide a decision

boundary, i.e. (x𝑖 , 𝑦𝑖) is a support vector if 𝑦𝑖w𝑇 x𝑖 ≤ 1.

5.1 Conditions For Having Certain Models
Similar to the definition in Subsection 4.1,certain model, w∗, for
SVM is defined as:

∀X𝑟 ∈ X𝑅,w∗ = argmin

w∈W
[1
2

| |w| |2
2
+𝐶

𝑛∑︁
𝑖=1

𝑚𝑎𝑥{0, 1−𝑦𝑖w𝑇 x𝑖 }] (6)

Where X𝑟 denotes one possible repair, and X𝑅 is the set of all possible
repairs. x𝑖 is an input example with 𝑑 features, and 𝑦𝑖 is its corre-
sponding label. w𝑇 x𝑖 comes from the target function and measures
the proximity between the example x𝑖 and the decision boundary

An SVM leverages support vectors to construct a decision bound-

ary for classifying examples. Therefore, the existence of a certain

model for an SVM implies that incomplete examples are not support

vectors in any repairs (Lemma 5.1).

To formalize this intuition, we present Theorem 5.4 to check for

certain models. Similar to the notations used in Subsection 4.1, we

denote a complete matrix X𝑐 as a submatrix of X that consists of

all the complete examples x𝑖 , x𝑖 ∉ 𝑀𝑉 (x). Similarly, we define a

subvector y𝑐 to include all labels corresponding to these complete

training examples. We denote the SVM model trained with these

complete examples and labels as w⋄ = [𝑤 ⋄
1
, ...,𝑤 ⋄

𝑑
]𝑇 .

Lemma 5.1. If a certain modelw∗ exists, there are only two possible
cases and they do not have any overlap. Case 1: none of the incomplete
examples is a support vector with respect to w∗ in any repair, i.e.,
∀X𝑟 ∈ X𝑅,∀x𝑖 ∈ 𝑀𝑉 (x), 𝑦𝑖w∗𝑇 x𝑟𝑖 > 1. Case 2: ∃x𝑖 ∈ 𝑀𝑉 (x),
𝑦𝑖w∗𝑇 x𝑟𝑖 = 1. Also, ∀z𝑗 ∈ 𝑀𝑉 (z),𝑤∗

𝑗
= 0. And ∀x𝑖 ∈ 𝑀𝑉 (x),

𝑦𝑖w∗𝑇 x𝑟𝑖 ≥ 1.

Proof. We prove the lemma by contradiction. The sub-gradient
of the loss function for SVM is:

𝜕𝐿(𝑓 (X,w), y)
𝜕w

= w+𝐶 ·[
∑︁

{x𝑝 |𝑦𝑝w𝑇 x𝑝<1}
−𝑦𝑝x𝑝+

∑︁
{x𝑝 |𝑦𝑝w𝑇 x𝑝=1}

−𝛼𝑝𝑦𝑝x𝑝]

where 0 ≤ 𝛼𝑝 ≤ 1 are constrained parameters corresponding to

the non-differentiable point in the hinge loss. SVM has a unique

optimal model w∗. Therefore, a certain model exists if and only if

the sub-gradient equals zero in all repairs: ∃0 ≤ 𝛼𝑝 ≤ 1,

∀X𝑟 ∈ X𝑅,w∗+𝐶 ·[
∑︁

{x𝑟𝑝 |𝑦𝑝w∗𝑇 x𝑟𝑝<1}
−𝑦𝑝x𝑟𝑝+

∑︁
{x𝑟𝑝 |𝑦𝑝w∗𝑇 x𝑟𝑝=1}

−𝛼𝑝𝑦𝑝x𝑟𝑝] = 0

(7)

Now, assume that we have neither Case 1 nor Case 2 described

in Lemma 5.1, but a certain model exists. To construct this main

SIGMOD ’24, June 06, 2024, Santiago, Chile Zhen and Aryal, et al.

assumption, we need two separate sets of sub-assumptions. Sub-

assumption 1: a certain model w∗ exists, and there is a repair X𝑟1

such that ∃x𝑖 ∈ 𝑀𝑉 (x), 𝑦𝑖w∗𝑇 x𝑟1𝑖 < 1. Sub-assumption 2: a cer-

tain model w∗ exists where ∃z𝑗 ∈ 𝑀𝑉 (z),𝑤∗
𝑗
≠ 0. ∀x𝑖 ∈ 𝑀𝑉 (x),

𝑦𝑖w∗𝑇 x𝑟𝑖 ≥ 1, and ∃x𝑖 ∈ 𝑀𝑉 (x), 𝑦𝑖w∗𝑇 x𝑟𝑖 = 1. The goal is to show

both sub-assumptions contradict and thus the main assumption

contradicts.

Starting with sub-assumption 1, suppose 𝑗𝑡ℎ feature value 𝑥𝑖 𝑗 =

𝑛𝑢𝑙𝑙 in the incomplete training example x𝑖 , one may easily find

another repair X𝑟2
such that: 1) 𝑦𝑖w∗𝑇 x𝑟2𝑖 < 1, and 2) the only

difference between X𝑟1
and X𝑟2

is the repairing value to 𝑥𝑖 𝑗 , i.e.,

𝑥𝑟1
𝑖 𝑗

≠ 𝑥𝑟2
𝑖 𝑗
, and 3) �0 ≤ 𝛼 ≤ 1 that satisfy Equation 7 with re-

spect to X𝑟2
. This is because the repairing value to 𝑥𝑖 𝑗 may be

any value within [−∞, +∞] while the last term in Equation 7,∑
{x𝑟𝑝 |𝑦𝑝w∗𝑇 x𝑟𝑝=1} −𝛼𝑝𝑦𝑝x

𝑟
𝑝 , is bounded by finite numbers since

0 ≤ 𝛼 ≤ 1. Therefore, w∗ is not an optimal model for X𝑟2
, contra-

dicting the sub-assumption 1.

Moving to sub-assumption 2, ∃z𝑗 ∈ 𝑀𝑉 (z),𝑤∗
𝑗
≠ 0. Similar to

the proof for sub-assumption 1, we can always find a repair such

that no 0 ≤ 𝛼 ≤ 1 satisfies Equation 7. This is again because the term∑
{x𝑝 |𝑦𝑝w𝑇 x𝑝<1} −𝑦𝑝x𝑝 , is unbounded from the arbitrary repairing

value, while the term

∑
{x𝑟𝑝 |𝑦𝑝w∗𝑇 x𝑟𝑝=1} −𝛼𝑝𝑦𝑝x

𝑟
𝑝 , is bounded by

finite numbers since 0 ≤ 𝛼 ≤ 1.

As a result, the proof is complete from the contradicting assump-

tions.

■

Lemma 5.2. If a certain model exists by Case 1 in Lemma 5.1, w⋄

is the certain model.

Proof. Based on Lemma 5.1, if a certain model exists, none

of the incomplete examples are support vectors with respect to

w∗ in any repair. As a nice property of SVM, removing examples
that are not support vectors does not change the optimal SVM model.
Therefore, the model trained without incomplete examples is also

the optimal model with respect to the full training set. As a result,

when a certain model exists, w⋄ is the certain model. ■

Lemma 5.3. If a certain model exists by Case 2 in Lemma 5.1,
models trained with any repairs of X are certain models.

Proof. Based on Case 2 in Lemma 5.1, when a certain model ex-

ists, every incomplete example x𝑖 is either a support vector always
standing exactly at the boundary of𝑦𝑖w∗𝑇 x𝑖 = 1, or never a support

vector. In the first scenario, for any repair, we can always find a

set of slackness variables 𝛼𝑖 such that the optimality condition in

Equation 7 holds for a single w∗. Similarly, in the second scenario,

if an incomplete example is never a support vector in any repair,

training with any repairs leads to an identical model. Therefore,

models trained with any repairs of X are certain models. ■

Theorem 5.4. A certain model exists if and only if one of the two
sets of conditions below is met. Set 1: 1) ∀z𝑗 ∈ 𝑀𝑉 (z),𝑤 ⋄

𝑗
= 0, 2)

∀x𝑖 ∈ 𝑀𝑉 (x), 𝑦𝑖
∑
𝑥𝑖 𝑗≠null𝑤

⋄
𝑗
𝑥𝑖 𝑗 > 1. Set 2: 1) training a model w′

with a random repair X𝑟 ′ ∈ X𝑅 , ∀z𝑗 ∈ 𝑀𝑉 (z),𝑤 ′
𝑗
= 0, 2) ∀x𝑖 ∈

𝑀𝑉 (x), 𝑦𝑖
∑
𝑥𝑖 𝑗≠null𝑤

′
𝑗
𝑥𝑖 𝑗 ≥ 1.

Proof. We prove the necessity first. When conditions in Set 1

are satisfied, since w⋄ is the optimal model trained by removing

incomplete examples,

w⋄ +𝐶 [
∑︁

{x𝑖 |𝑦𝑖w⋄𝑇 x𝑖<1,
x𝑖∉𝑀𝑉 (x) }

−𝑦𝑖x𝑖 +
∑︁

{x𝑖 |𝑦𝑖w⋄𝑇 x𝑖=1,
x𝑖∉𝑀𝑉 (x) }

−𝛼𝑖𝑦𝑖x𝑖] = 0 (8)

Combining the two conditions in Set 1, we get∀x𝑖 ∈ 𝑀𝑉 (x),∀X𝑟 ∈
X𝑅, 𝑦𝑖w⋄x𝑟𝑖 > 1. Hence, the incomplete training examples are not

support vectors with respect to w⋄ in any repair. Therefore, from

Equation 8, we have:

∀X𝑟 ∈ X𝑅,w⋄ +𝐶 [
∑︁

x𝑖 |𝑦𝑖w⋄𝑇 x𝑖<1
−𝑦𝑖x𝑖 +

∑︁
x𝑖 |𝑦𝑖w⋄𝑇 x𝑖=1

−𝛼𝑖𝑦𝑖x𝑖] = 0

Based on the previous discussion about Equation 7, w⋄ is a certain
model. When conditions in Set 2 hold, similarly, w′ is optimal for

all repairs based on Equation 7. Hence, the necessity holds.

We prove sufficiency by contradiction. For condition Set 1, as-

sume that a certain model exists but at least one condition does not

hold. Based on Lemma 5.2, w⋄ is the certain model. Further, from

Case 1 in Lemma 5.1,∀X𝑟 ∈ X𝑅,∀x𝑖 ∈ 𝑀𝑉 (x),𝑦𝑖w⋄𝑇 x𝑟𝑖 > 1. If con-

dition 2) does not hold, i.e. ∃x𝑝 ∈ 𝑀𝑉 (x), 𝑦𝑝
∑
𝑥𝑝 𝑗≠null𝑤

⋄
𝑗
𝑥𝑝 𝑗 ≤

1. One may easily find a repair X𝑟1
such that 𝑦𝑝

∑𝑑
𝑗=1𝑤

⋄
𝑗
𝑥𝑟1
𝑝 𝑗

=

𝑦𝑝w⋄𝑇 x𝑟1𝑝 ≤ 1. This contradicts Lemma 5.1. Instead, if condition 1)

does not hold, ∃z𝑞 ∈ 𝑀𝑉 (z),𝑤 ⋄𝑞 ≠ 0. Suppose 𝑥𝑠𝑞 = null is themiss-

ing value in feature z𝑞 , onemay always find another repairX𝑟2
such

that 𝑦𝑠w⋄𝑇 x𝑟2𝑠 = 𝑦𝑠𝑤
⋄
1
𝑥𝑟2
𝑠1
+ ... +𝑦𝑠𝑤 ⋄𝑞 𝑥𝑟2𝑠𝑞 + ... +𝑦𝑠𝑤 ⋄𝑑 𝑥

𝑟2
𝑠𝑑
≤ 1. This

is because the term 𝑦𝑠𝑤
⋄
𝑞 𝑥

𝑟2
𝑠𝑞 may be any value within [−∞, +∞]:

the repairing value to the missing 𝑥𝑠𝑞 may be any value within

[−∞, +∞], 𝑦𝑠 = ±1 and 𝑤 ⋄𝑞 ≠ 0. Therefore, original assumptions

contradict. For condition Set 1, similarly, assumptions also contra-

dict, proving the sufficiency.

■

5.2 Checking and Learning Certain Models
Theorem 5.4 says that a certain model for SVM exists if and only

if none of the incomplete training examples are support vectors.

Therefore, these incomplete examples are redundant when it comes

to learning the decision boundary given other complete examples.

Using5.4, we propose Algorithm 2 with two major steps: 1) learn-

ing w⋄ from complete training examples, and checking the condi-

tions in Set 1 in 5.4 against w⋄ . If a certain model exists, w⋄ is the
certain model. 2) If certain models are not found in step 1, learning

w′ from an arbitrary repair, and checking the conditions in Set 2

againstw′. If a certain model exists from this step,w′ is the certain
model. The algorithm’s time complexity is O(𝑇𝑡𝑟𝑎𝑖𝑛) as training
models is the dominant part compared to condition checking.

6 CERTAIN MODELS FOR KERNEL SVM
SVM models in Section 5 can only separate classes linearly, limit-

ing their representation power in the nonlinear space. A natural

approach to overcome this limitation is to use kernel SVM.

Training a nonlinear model while maintaining the properties

of linear SVM, a kernel SVM first maps the input feature vectors,

denoted as X, into a higher-dimensional space, often referred to as

the kernel space, through a non-linear transformation Φ. After this
transformation, the kernel SVM seeks to learn a linear SVM model

Certain and Approximately Certain Models for Statistical Learning SIGMOD ’24, June 06, 2024, Santiago, Chile

Algorithm 2 Checking and learning certain models for linear SVM

𝑀𝑉 (z) ← incomplete features

𝑀𝑉 (x) ← incomplete examples

w⋄ ← the model trained with complete training examples

for z𝑗 ∈ 𝑀𝑉 (z) do
if 𝑤 ⋄

𝑗
≠ 0 then

Case 1← False

end if
end for
if Case 1 ≠ False then

for x𝑖 ∈ 𝑀𝑉 (x) do
if 𝑦𝑖

∑
𝑥𝑖 𝑗≠null𝑤

⋄
𝑗
𝑥𝑖 𝑗 ≤ 1 then

Case 1← False

end if
end for

end if
if Case 1 ≠ False then

return "A certain model w⋄ exists"
else

w′ ← the model trained with an arbitrary repair

for z𝑗 ∈ 𝑀𝑉 (z) do
if 𝑤 ′

𝑗
≠ 0 then

return " Certain models do not exist"

end if
end for
for x𝑖 ∈ 𝑀𝑉 (x) do

if 𝑦𝑖
∑
𝑥𝑖 𝑗≠null𝑤

′
𝑗
𝑥𝑖 𝑗 < 1 then

return " Certain models do not exist"

end if
end for
return "A certain model w′ exists"

end if

within the kernel space. Therefore, the resulting model is non-linear

with respect to the original feature space, while remaining linear

within the kernel space.

However, transforming all training examples into kernel space

is computationally expensive. To avoid this cost, kernel function
𝑘 (x1, x2) =< Φ(x1),Φ(x2) >: X × X → R offers a shortcut for

computing inner products between two vectors in the kernel space

without explicit transformation.

We presented the primal problem to linear SVM’s model train-
ing in Section 5. Here, to make use of kernel functions, we present
SVM training in terms of inner products through its dual problem.

max

a∈R𝑛

𝑛∑︁
𝑖=1

𝑎𝑖 −
1

2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑎𝑖𝑎 𝑗𝑦𝑖𝑦 𝑗𝑘 (x𝑖 , x𝑗) (9)

s.t. 𝐶 ≥ 𝑎𝑖 ≥ 0, 𝑖 = 1, ..., 𝑛

𝑛∑︁
𝑖=1

𝑎𝑖𝑦𝑖 = 0

Based on this dual formulation, one can show thatw∗ =
∑𝑛
𝑖=1 𝑎

∗
𝑖
𝑦𝑖𝜙 (x𝑖)

where a∗ = [𝑎∗
1
, ..., 𝑎∗𝑛]𝑇 is the solution to the dual problem. In

Section 5, a training example (x𝑖 , 𝑦𝑖) is a support vector in lin-
ear space if 𝑦𝑖w∗𝑇 x𝑖 ≤ 1. Representing w∗𝑇 by its dual form, a

training example (x𝑖 , 𝑦𝑖) is a support vector in kernel space if

𝑦𝑖
∑𝑛

𝑗=1 𝑎
∗
𝑗
𝑦 𝑗𝑘 (x𝑖 , x𝑗) ≤ 1.

6.1 Conditions For Having Certain Models
The kernel function transforms input data to a higher dimension

while the SVM model remains linear. The linear properties of the

kernel SVM are preserved within the kernel space. Hence, certain

model conditions in Section 5 still apply. A certain model exists if
and only if none of the incomplete examples are support vectors for
any repair in the kernel space.

We now formally present these conditions for kernel SVM. Fol-

lowing the same notations used in Section 5, we use w⋄ to denote

the model learned from X𝑐 , the subset of data that only containing

complete training examples, and y𝑐 , the corresponding labels. As
derived from Equation 9, w⋄ =

∑
x𝑗∉𝑀𝑉 (x) 𝑎

⋄
𝑗
𝑦 𝑗𝜙 (x𝑗). Hence, x𝑟𝑖 ,

a repair to an incomplete training example, is a support vector

in kernel space if 𝑦𝑖
∑
x𝑗∉𝑀𝑉 (x) 𝑎

⋄
𝑗
𝑦 𝑗𝑘 (x𝑟𝑖 , x𝑗) ≤ 1. Therefore, the

certain model conditions for kernel SVM are represented as:

∀x𝑖 ∈ 𝑀𝑉 (x),∀X𝑟 ∈ X𝑅, 𝑦𝑖

∑︁
x𝑗∉𝑀𝑉 (x)

𝑎⋄𝑗 𝑦 𝑗𝑘 (x
𝑟
𝑖 , x𝑗) ≥ 1 (10)

Further, seeking the opportunity to avoid materializing all possible

repairs, we reformulate the above condition to an optimization

problem over possible repairs:

∀x𝑖 ∈ 𝑀𝑉 (x), min

X𝑟 ∈X𝑅
𝑦𝑖

∑︁
x𝑗∉𝑀𝑉 (x)

𝑎⋄𝑗 𝑦 𝑗𝑘 (x
𝑟
𝑖 , x𝑗) ≥ 1 (11)

From the dual problem, we note that a complete example, x𝑗 , x𝑗 ∉
𝑀𝑉 (x), is a support vector if and only if the corresponding solution
𝑎⋄
𝑗
≠ 0. Hence, only complete examples that are support vectors

play a role in Inequality 11

In the following sections, we apply these general conditions for

certain model existence in kernel SVM to popular kernel functions.

6.2 Polynomial kernel
The kernel function for a polynomial kernel is 𝑘𝑃𝑂𝐿𝑌 (x𝑖 , x𝑗) =
(x𝑇

𝑖
x𝑗 + 𝑐)𝜆 , where 𝜆 = 1, 2, 3, ... is the degree of the polynomial

and 𝑐 ≥ 0 is a free parameter tuning the impact of higher-degree

versus lower-degree terms.

We first intuitively look at how 𝑘𝑃𝑂𝐿𝑌 (x𝑖 , x𝑗) remains the same

value for all repairs. For an incomplete training example x𝑖 and a

complete example x𝑗 , x𝑇𝑖 x𝑗 can be expanded to 𝑥𝑖1 ·𝑥 𝑗1+...+𝑥𝑖𝑑 ·𝑥 𝑗𝑑 .
Suppose the𝑚𝑡ℎ

feature value 𝑥𝑖𝑚 is missing in x𝑖 , the inner prod-
uct x𝑇

𝑖
x𝑗 goes to infinity when 𝑥𝑖𝑚 = +∞ or −∞, unless the corre-

sponding element 𝑥 𝑗𝑚 equals 0, which ensures 𝑥 𝑗𝑚 ·𝑥𝑖𝑚 = 0. Hence,

in order to satisfy Inequality 11, the set of support vectors, 𝑆𝑉 ,

for w⋄ should have zero entries at all incomplete features z𝑚 . This

condition enforces that the value for 𝑘𝑃𝑂𝐿𝑌 (x𝑟𝑖 , x𝑗) is independent
of the missing value repairs. We formalize these conditions in the

following theorem.

Theorem 6.1. A certain model exists if and only if the two con-
ditions are met: 1) ∀x𝑗 ∈ 𝑆𝑉 , ∀z𝑚 ∈ 𝑀𝑉 (z), 𝑥 𝑗𝑚 = 0, and 2)
∀x𝑖 ∈ 𝑀𝑉 (x), 𝑦𝑖

∑
x𝑗 ∈𝑆𝑉 𝑎⋄

𝑗
𝑦 𝑗 (

∑
𝑥𝑖𝑞≠null 𝑥𝑖𝑞 · 𝑥 𝑗𝑞 + 𝑐)

𝜆 > 1

SIGMOD ’24, June 06, 2024, Santiago, Chile Zhen and Aryal, et al.

Proof. Necessity is trivial. Plugging condition 1) into condition

2), we get ∀x𝑖 ∈ 𝑀𝑉 (x), ∀X𝑟 ∈ X𝑅
, 𝑦𝑖

∑
x𝑗 ∈𝑆𝑉 𝑎⋄

𝑗
𝑦 𝑗 (x𝑟𝑇𝑖 x𝑗 +𝑐)𝜆 >

1. Since ∀x𝑗 ∉ 𝑆𝑉 , 𝑎 𝑗 = 0, we further get ∀x𝑖 ∈ 𝑀𝑉 (x), ∀X𝑟 ∈ X𝑅
,

𝑦𝑖
∑
x𝑗∉𝑀𝑉 (x) 𝑎

⋄
𝑗
𝑦 𝑗𝑘𝑃𝑂𝐿𝑌 (x𝑟𝑖 , x𝑗) > 1. As a result, a certain model

exists as Inequality 11 is met.

To prove sufficiency, we first assume a certain model exists when

condition 1) is not met, i.e., ∃z𝑚 ∈ 𝑀𝑉 (z), ∃x𝑗 ∈ 𝑆𝑉 , 𝑥 𝑗𝑚 ≠ 0.

As we discuss above, the inner product x𝑟𝑇
𝑖
x𝑗 goes to infinity in

repairs whose 𝑥𝑟
𝑖𝑚

= +∞ or −∞, hence not satisfying Inequality

11. Then if we assume condition 1) is met but not condition 2), it is

trivial that Inequality 11 is not satisfied either. ■

Checking andLearningCertainModels: Informally Theorem 6.1

says that a certain model for a polynomial kernel SVM (p-SVM)

exists if (1) all the examples that are support vectors have zero

entries for corresponding incomplete features and (2) all incom-

plete examples are not support vectors. Based on this theorem,

Algorithm 3 efficiently checks and learns certain models. Similar

to the algorithm for linear SVM in Section 5.2, if a certain model

is determined to exist, a⋄ is exactly the certain model based on

Lemma 5.2. This algorithm’s time complexity is also O(𝑇𝑡𝑟𝑎𝑖𝑛).

Algorithm 3 Checking and learning certain models for p-SVM

𝑀𝑉 (z) ← incomplete features

𝑀𝑉 (x) ← incomplete examples

𝑆𝑉 ← set of support vectors

a⋄ ← the model trained with complete training examples

for z𝑚 ∈ 𝑀𝑉 (z) do
for x𝑗 ∈ 𝑆𝑉 do

if 𝑥 𝑗𝑚 ≠ 0 then
return "Certain model does not exist"

end if
end for

end for
for x𝑖 ∈ 𝑀𝑉 (x) do

if 𝑦𝑖
∑
x𝑗 ∈𝑆𝑉 𝑎⋄

𝑗
𝑦 𝑗 (

∑
𝑥𝑖𝑞≠null 𝑥𝑖𝑞 · 𝑥 𝑗𝑞 + 𝑐)

𝜆 ≤ 1 then
return "Certain model does not exist"

end if
end for
return "A certain model a⋄ exists"

6.3 RBF kernel
The RBF kernel function is 𝑘𝑅𝐵𝐹 (x𝑖 , x𝑗) = 𝑒𝑥𝑝 (−𝛾 | |x𝑖−x𝑗 | |2). This
kernel function’s transformation depends on the squared Euclidean

distance between the two vectors x𝑖 and x𝑗 .
To check if a certain model exists for the polynomial kernel,

we derived conditions for 𝑘𝑃𝑂𝐿𝑌 (x𝑟𝑖 , x𝑗) to remain the same for
all repairs. In contrast, 𝑘𝑅𝐵𝐹 (x𝑟𝑖 , x𝑗) changes among repairs as the

Euclidean distance between two vectors changes. Therefore, to

check if a certain model exists for SVMwith RBF kernel (RBF-SVM),

we need to directly solve the minimization problem in Inequality

11.

However, this optimization problem is not convex, whichmeans it

is hard to find amethod for checking certainmodels with theoretical

guarantees. Nonetheless, we can still discover the lower bound (𝑙𝑤𝑏𝑖)
of the following optimization target:

∀X𝑟 ∈ X𝑅, 𝑙𝑤𝑏𝑖 ≤ 𝑦𝑖

∑︁
x𝑗∉𝑀𝑉 (x)

𝑎⋄𝑗 𝑦 𝑗𝑘𝑅𝐵𝐹 (x
𝑟
𝑖 , x𝑗) (12)

For each missing value 𝑥𝑖𝑚 , we denote the possible range of

missing value repairs such that 𝑥𝑚𝑖𝑛
𝑚 ≤ 𝑥𝑟

𝑖𝑚
≤ 𝑥𝑚𝑎𝑥

𝑚 ,∀z𝑚 ∈
𝑀𝑉 (z),∀X𝑟 ∈ X𝑅

. This range may come from integrity constraint
for features: any value in a feature z𝑚 is between its minimum

𝑥𝑚𝑖𝑛
𝑚 and maximum 𝑥𝑚𝑎𝑥

𝑚 . Now, we apply this lower bound idea to

reformulate the general certain model conditions for kernel SVM

from Inequality 11.

Lemma 6.2. For any kernel SVM, a certain model exists if

∀x𝑖 ∈ 𝑀𝑉 (x), 𝑙𝑤𝑏𝑖 =
∑︁

x𝑗∉𝑀𝑉 (x)
min

x𝑟
𝑖
∈x𝑅

𝑖

𝛽𝑖 𝑗𝑘 (x𝑟𝑖 , x𝑗) > 1 (13)

where 𝛽𝑖 𝑗 = 𝑦𝑖𝑎
⋄
𝑗
𝑦 𝑗 and

min

x𝑟
𝑖
∈x𝑅

𝑖

𝛽𝑖 𝑗𝑘 (x𝑟𝑖 , x𝑗) =


𝛽𝑖 𝑗 min

x𝑟
𝑖
∈x𝑅

𝑖

𝑘 (x𝑟
𝑖
, x𝑗) if 𝛽𝑖 𝑗 > 0

𝛽𝑖 𝑗 max

x𝑟
𝑖
∈x𝑅

𝑖

𝑘 (x𝑟
𝑖
, x𝑗) if 𝛽𝑖 𝑗 < 0

0 if 𝛽𝑖 𝑗 = 0

Proof. Reformulating Inequality 11 to

∀x𝑖 ∈ 𝑀𝑉 (x), min

x𝑟
𝑖
∈x𝑅

𝑖

∑︁
x𝑗∉𝑀𝑉 (x)

𝛽𝑖 𝑗𝑘 (x𝑟𝑖 , x𝑗) ≥ 1

where 𝛽𝑖 𝑗 = 𝑦𝑖𝑎
⋄
𝑗
𝑦 𝑗 . Given that the summations of minimums are

always smaller or equal to the minimum of summations, we find

the lower bound for the above optimization target as follows:

𝑙𝑤𝑏𝑖 =
∑︁

x𝑗∉𝑀𝑉 (x)
min

x𝑟
𝑖
∈x𝑅

𝑖

𝛽𝑖 𝑗𝑘 (x𝑟𝑖 , x𝑗) ≤ min

x𝑟
𝑖
∈x𝑅

𝑖

∑︁
x𝑗∉𝑀𝑉 (x)

𝛽𝑖 𝑗𝑘 (x𝑟𝑖 , x𝑗)

where

min

x𝑟
𝑖
∈x𝑅

𝑖

𝛽𝑖 𝑗𝑘 (x𝑟𝑖 , x𝑗) =


𝛽𝑖 𝑗 min

x𝑟
𝑖
∈x𝑅

𝑖

𝑘 (x𝑟
𝑖
, x𝑗) if 𝛽𝑖 𝑗 > 0

𝛽𝑖 𝑗 max

x𝑟
𝑖
∈x𝑅

𝑖

𝑘 (x𝑟
𝑖
, x𝑗) if 𝛽𝑖 𝑗 < 0

0 if 𝛽𝑖 𝑗 = 0

When 𝑙𝑤𝑏𝑖 > 1,∀x𝑖 ∈ 𝑀𝑉 (x), Inequality 11 holds. ■

From Lemma 6.2, we see the key to an efficient implemen-
tation is to compute min

x𝑟
𝑖
∈x𝑅

𝑖

𝑘 (x𝑟
𝑖
, x𝑗) and max

x𝑟
𝑖
∈x𝑅

𝑖

𝑘 (x𝑟
𝑖
, x𝑗) without

materializing repairs. We formalize this idea in Theorem 7.3.

Theorem 6.3. For the RBF kernel, the minimum and maximum
kernel function values between an incomplete example and a complete
example are as follows:

min

x𝑟
𝑖
∈x𝑅

𝑖

𝑘𝑟𝑏𝑓 (x𝑟𝑖 , x𝑗) = 𝑒𝑥𝑝{−𝛾{
∑︁

𝑥𝑖𝑚=null

𝑀𝐴𝑋 [(𝑥𝑚𝑎𝑥
𝑚 − 𝑥 𝑗𝑚)2,

(𝑥𝑚𝑖𝑛
𝑚 − 𝑥 𝑗𝑚)2]

+
∑︁

𝑥𝑖𝑚≠null

(𝑥𝑖𝑚 − 𝑥 𝑗𝑚)2}}

max

x𝑟
𝑖
∈x𝑅

𝑖

𝑘𝑟𝑏𝑓 (x𝑟𝑖 , x𝑗) = 𝑒𝑥𝑝{−𝛾 [
∑︁

𝑥𝑖𝑚≠null

(𝑥𝑖𝑚 − 𝑥 𝑗𝑚)2]}

Certain and Approximately Certain Models for Statistical Learning SIGMOD ’24, June 06, 2024, Santiago, Chile

Proof. Since𝑘 (x𝑟
𝑖
, x𝑗) = 𝑒𝑥𝑝 [−𝛾 [(𝑥𝑟

𝑖1
−𝑥 𝑗1)2+...+(𝑥𝑟𝑖𝑑−𝑥 𝑗𝑑)

2]]
by definition, the maximum of the kernel function value comes from

theminimal (𝑥𝑟
𝑖1
−𝑥 𝑗1)2+...+(𝑥𝑟𝑖𝑑−𝑥 𝑗𝑑)

2
. Therefore, max

x𝑟
𝑖
∈x𝑅

𝑖

𝑘 (x𝑟
𝑖
, x𝑗)

is achieved in the repair X𝑟1
such that ∀𝑥𝑖𝑚 = null, x𝑟1

𝑖𝑚
= 𝑥 𝑗𝑚 .

Similarly, the minimum of the kernel function value comes from

the maximal (𝑥𝑟
𝑖1
−𝑥 𝑗1)2+ ...+(𝑥𝑟𝑖𝑑−𝑥 𝑗𝑑)

2
, corresponding to another

repair X𝑟2
such that:

∀𝑥𝑖𝑚 = null, 𝑥𝑟2𝑖𝑚 =

{
𝑥𝑚𝑖𝑛
𝑚 if (𝑥𝑚𝑎𝑥

𝑚 − 𝑥 𝑗𝑚)2 < (𝑥𝑚𝑖𝑛
𝑚 − 𝑥 𝑗𝑚)2

𝑥𝑚𝑎𝑥
𝑚 if (𝑥𝑚𝑎𝑥

𝑚 − 𝑥 𝑗𝑚)2 ≥ (𝑥𝑚𝑖𝑛
𝑚 − 𝑥 𝑗𝑚)2

■

Checking and Learning Certain Models: Similar to the algo-

rithm for the polynomial kernel, we can use Theorem 6.3 to check

and learn certain model in O(𝑇𝑡𝑟𝑎𝑖𝑛) time.

7 CERTAIN MODELS FOR DNN
DNNs are popular ML models for a wide variety of tasks such as

natural language processing and image classification [2]. Training a

DNN involves solving complex non-convex optimization problems,

making the discovery of an optimal model a challenging task [8].

Finding a certain model for DNN adds another layer of difficulty

because the certain model needs to be optimal for all repairs within

the non-convex loss landscape.

Fortunately, some well-studied kernel SVMs have been shown

to approximate DNNs [8]. Therefore, our goal in this section is to

build on the conditions we prove for kernel SVMs in Section 6 to

prove the conditions for having certain models for DNN.
More specifically, we employ the arc-cosine kernel, which is used

in SVM to approximate DNN’s computation [7]. The justification

behind this approximation stems from the following property. Feed-

ing two input vectors x𝑖 and x𝑗 individually into a single-layer

network with polynomial activation functions, we obtain the corre-

sponding output vectors y𝑖 and y𝑗 . Under some assumptions, the

inner product between these two output vectors can be represented

by the arc-cosine kernel function, i.e., 𝑘𝑎𝑟𝑐𝑐𝑜𝑠 (x𝑖 , x𝑗) =< y𝑖 , y𝑗 >
[7]. This implies that the arc-cosine kernel function mimics the

computation in a single-layer network. Then, iteratively perform-

ing kernel transformation, i.e., < 𝜙 (𝜙 (...𝜙 (x𝑖))), 𝜙 (𝜙 (...𝜙 (x𝑗))) >,
should mimic the computation in a multi-layer network. The most

basic arc-cos kernel function is defined by the inverse cosine of the

dot product between two vectors divided by the product of their

Euclidean norms, i.e. 𝑘arccos (x𝑖 , x𝑗) = cos
−1

(
x𝑖 ·x𝑗
|x𝑖 | · |x𝑗 |

)
. By discov-

ering the certain model conditions for SVM with the arc-cosine

kernel (arccos-SVM), we approximate the certain model conditions

for DNN.

To check the existence of certain models, we need to solve the

minimization problem in Inequality 11. As the problem is non-

convex, we find a lower bound (𝑙𝑤𝑏𝑖) for the necessary condition:

∀X𝑟 ∈ X𝑅, 𝑙𝑤𝑏𝑖 ≤ 𝑦𝑖

∑︁
x𝑗∉𝑀𝑉 (x)

𝑎⋄𝑗 𝑦 𝑗𝑘𝑎𝑟𝑐𝑐𝑜𝑠 (x
𝑟
𝑖 , x𝑗)

Following a similar approach as we describe in Subsection 6.3, we

look for the lower bound defined in Lemma 6.2. The key of this pro-

cess is to find theminimum andmaximum values for𝑘𝑎𝑟𝑐𝑐𝑜𝑠 (x𝑟𝑖 , x𝑗)
for a pair of incomplete example x𝑖 and complete example x𝑗 .

However, finding the minimum and maximum values for the

arc-cosine kernel function in the presence of missing data is also

challenging due to the non-convex nature of the problem. Nonethe-

less, when each incomplete example x𝑖 has only one missing value

𝑥𝑖𝑧 , the problem significantly simplifies. In the following proof, we

show that any stationary point is a global minimum under this

assumption. Therefore, our analysis focuses on training sets with

one missing value per example. The investigation of scenarios with

multiple missing values per example is left for future work.

Following Theorem 6.3, we formalize this idea in Theorem 7.1.

Theorem 7.1. For arc-cos kernel, the maximum and the minimum
kernel function values between an incomplete example (x𝑟

𝑖
) and a

complete example (x𝑗) are as follows:

max

x𝑟
𝑖
∈x𝑅

𝑖

𝑘𝑎𝑟𝑐𝑐𝑜𝑠 (x𝑟𝑖 , x𝑗) = 𝜋 −𝑀𝐴𝑋 [𝑐𝑜𝑠−1 (𝑎
𝑐
), 𝑐𝑜𝑠−1 (−𝑎

𝑐
)]

min

x𝑟
𝑖
∈x𝑅

𝑖

𝑘𝑎𝑟𝑐𝑐𝑜𝑠 (x𝑟𝑖 , x𝑗) = 𝜋 − 𝑐𝑜𝑠−1 (𝑎2 · 𝑑 + 𝑏2

𝑐 ·
√
𝑎2 · 𝑑2 + 𝑏2 · 𝑑

)

Suppose 𝑥𝑖𝑧 = null. To simplify notations, we define 𝑎 = 𝑥 𝑗𝑧 , 𝑏 =∑
𝑥𝑖𝑝≠null 𝑥𝑖𝑝 · 𝑥 𝑗𝑝 , 𝑐 = | |x𝑗 | |, and 𝑑 =

∑
𝑥𝑖𝑝≠null 𝑥

2

𝑖𝑝
.

Proof. Consider the arc-cosine term of the kernel function,

𝑐𝑜𝑠−1 (x𝑟
𝑖
·x𝑗

| |x𝑟
𝑖
| | · | |x𝑗 | |). Based on the property of the arc-cos function:

𝑎𝑟𝑔 max

x𝑟
𝑖
∈x𝑅

𝑖

𝑐𝑜𝑠−1 (
x𝑟
𝑖
· x𝑗

| |x𝑟
𝑖
| | · | |x𝑗 | |

) = 𝑎𝑟𝑔 min

x𝑟
𝑖
∈x𝑅

𝑖

x𝑟
𝑖
· x𝑗

| |x𝑟
𝑖
| | · | |x𝑗 | |

And vice versa. So we define a function

𝑓 (𝑥𝑟𝑖𝑧) =
𝑎 · 𝑥𝑟

𝑖𝑧
+ 𝑏

𝑐 ·
√︃
(𝑥𝑟

𝑖𝑧
)2 + 𝑑

Taking the derivative of the 𝑓 (𝑥𝑟
𝑖𝑧
) with respect to the repair 𝑥𝑟

𝑖𝑧
:

𝑓 (𝑥𝑟𝑖𝑧)
′ =

𝑎

𝑐 ·
√︃
(𝑥𝑟

𝑖𝑧
)2 + 𝑑

−
𝑎 · (𝑥𝑟

𝑖𝑧
)2 + 𝑏 · 𝑥𝑟

𝑖𝑧

𝑐 ·
√︃
[(𝑥𝑟

𝑖𝑧
)2 + 𝑑]3

Through some simple derivation, one can find 𝑓 ′ (𝑥𝑟
𝑖𝑧
) ≥ 0 when

𝑥𝑟
𝑖𝑧
≤ 𝑎 ·𝑑

𝑏
, and 𝑓 ′ (𝑥𝑟

𝑖𝑧
) ≤ 0 when 𝑥𝑟

𝑖𝑧
≥ 𝑎 ·𝑑

𝑏
. This means that

𝑥𝑟
𝑖𝑧

= 𝑎·𝑑
𝑏

is the only stationary point that gives us the global

minimum of 𝑓 (𝑥𝑟
𝑖𝑧
). And the maximum is reached at either 𝑥𝑟

𝑖𝑧
=

−∞ or 𝑥𝑟
𝑖𝑧

= +∞. Finally, bringing these maximum and minimum

for 𝑓 (𝑥𝑟
𝑖𝑧
) to the kernel function, we find min

x𝑟
𝑖
∈x𝑅

𝑖

𝑘𝑎𝑟𝑐𝑐𝑜𝑠 (x𝑟𝑖 , x𝑗) and

max

x𝑟
𝑖
∈x𝑅

𝑖

𝑘𝑎𝑟𝑐𝑐𝑜𝑠 (x𝑟𝑖 , x𝑗) as outlined in Theorem 8.1. ■

Theorem 7.1 shows that the maximum and minimum values

for the arc-cos kernel can be efficiently computed without mate-

rializing repairs. Further, plugging these values in Lemma 6.2, we

approximate a certain model condition for DNN that says a certain

model exists if Inequality 13 holds.

8 APPROXIMATELY CERTAIN MODELS
The conditions for having certain models might be too restrictive

for many datasets as it requires a single model to be optimal for all

repairs of a dataset. In practice, however, users are usually satisfied

with a model that is sufficiently close to the optimal one. In this sec-

tion, we leverage this fact and propose the concept of approximately

SIGMOD ’24, June 06, 2024, Santiago, Chile Zhen and Aryal, et al.

certain model, which relaxes the conditions on certain models. An

approximately certain model is within a given threshold from every

optimal model for each repair of the input dataset. If there is an

approximately certain model for a training task, users can learn

over incomplete data and skip data cleaning. We also propose novel

and efficient algorithms for finding approximately certain models

for linear regression and SVM.

8.1 Formal Definition
Definition 3. (Approximately CertainModel) Given a user-defined

threshold 𝑒 ≥ 0, the model w≈ is an approximately certain model
(ACM) if the following condition holds:

∀X𝑟 ∈ X𝑅, 𝐿(𝑓 (X𝑟 ,w≈), y) − min

w∈W
𝐿(𝑓 (X𝑟 ,w), y) ≤ 𝑒 (14)

where X𝑟 is a possible repair, X𝑅 is the set of all possible repairs and
𝐿(𝑓 (X𝑟 ,w), y) is the loss function.
Definition 3 ensures that the training losses of ACMs are close

to the minimal training loss for all repairs. Therefore, when 𝑒 is

sufficiently small, ACMs are accurate for all repairs. In this scenario,

data imputation is unnecessary and users can proceed with an

ACM without compromising the model’s performance significantly.

Certain models are special cases of ACMs by setting 𝑒 = 0.

8.2 Learning ACMs Efficiently
The condition in Definition 3 is equivalent to 𝑔(w′) ≤ 𝑒 where

𝑔(w′) = sup

X𝑟 ∈X𝑅

ℎ(w′,X𝑟) (15)

and

ℎ(w′,X𝑟) = 𝐿(𝑓 (X𝑟 ,w′), y) − min

w∈W
𝐿(𝑓 (X𝑟 ,w), y)

If there is a model w′ ∈ W that satisfies this condition, it is an

ACM. Hence, to find an ACM, we can check every w′ ∈ W for the

condition in 15. This is equivalent to checking minw′∈W 𝑔(w′) ≤ 𝑒 .

Lemma 8.1. The problemminw′∈W 𝑔(w′) ≤ 𝑒 is convex for every
model whose loss function 𝐿(𝑓 (X,w), y) is convex with respect to w.

Proof. Denote

ℎ(w′,X𝑟) = 𝐿(𝑓 (X𝑟 ,w′), y) − min

w∈W
𝐿(𝑓 (X𝑟 ,w), y) (16)

ℎ(w′,X𝑟) is convex with respect tow′ for everyX𝑟 ∈ X𝑅
. There-

fore, 𝑔(w′) = supX𝑟 ∈X𝑅 ℎ(w′,X𝑟) is convex as point-wise supre-

mum preserves convexity. ■

The loss functions of many types of models including linear

regression and SVM are convex with respect tow. Thus, Lemma 8.1

reduces the problem of finding ACMs to a convex optimization

problem for many types of models. Nonetheless, this problem is

still challenging to solve via common techniques, e.g., gradient

descent, because computing ∇𝑔(w) involves finding the supremum

over a large set of possible repairs X𝑅
. We can reduce the search for

finding the supremum to a significantly smaller subset of repairs.

Definition 4. (Edge Repair) Assume each missing value 𝑥𝑖 𝑗 in X
is bounded by an interval such that 𝑥𝑚𝑖𝑛

𝑖 𝑗
≤ 𝑥𝑖 𝑗 ≤ 𝑥𝑚𝑎𝑥

𝑖 𝑗
. A repair X𝑒

is an edge repair if 𝑥𝑒
𝑖 𝑗

= 𝑥𝑚𝑖𝑛
𝑖 𝑗

or 𝑥𝑚𝑖𝑛
𝑖 𝑗

for all missing values 𝑥𝑖 𝑗 . X𝐸

denotes the set of all possible edge repairs X𝑒 .

Theorem 8.2. For linear regression and SVM, we have

𝑔(w′) = sup

X𝑒 ∈X𝐸

ℎ(w′,X𝑒)

Proof. To prove by contradiction, assume 1) X𝑟
is not an edge

repair because at least one element of X𝑟
is not at the edge of the

interval (i.e., 𝑥𝑚𝑖𝑛
𝑖 𝑗

< 𝑥𝑟
𝑖 𝑗

< 𝑥𝑚𝑎𝑥
𝑖 𝑗

), and 2) the repair X𝑟
corresponds

to the supremum in 𝑔(w′):
𝑔(w′) = ℎ(w′,X𝑟) (17)

Our goal is to show that there is an edge repair X𝑒
such that

ℎ(w′,X𝑒) > ℎ(w′,X𝑟)
contradicting to Equation 17, the initial assumption.

To start, we recall two parts of ℎ(w′,X𝑟) in Equation 16. For

Expanding the first part for linear regression:

𝐿(𝑓 (X𝑟 ,w′), y) =
𝑛∑︁
𝑖=1

(w′𝑇 x𝑟𝑖 − 𝑦𝑖)
2

And for SVM:

𝐿(𝑓 (X𝑟 ,w′), y) = 1

2

| |w′ | |2
2
+𝐶

𝑛∑︁
𝑖=1

𝑚𝑎𝑥{0, 1 − 𝑦𝑖w′𝑇 x𝑖 }

One can see that 𝐿(𝑓 (X𝑟 ,w′), y) increases quadratically and be-

comes unbounded when 𝑥𝑖 𝑗 moves from 𝑥𝑟
𝑖 𝑗
to an edge of the in-

terval (𝑥𝑚𝑖𝑛
𝑖 𝑗

or 𝑥𝑚𝑎𝑥
𝑖 𝑗

), given that we have assumed intervals are

sufficiently wide.

On the contrary, the second part of ℎ(w′,X𝑟) is bounded by a

deterministic value for linear regression when 𝑥𝑖 𝑗 moves from 𝑥𝑟
𝑖 𝑗

to an edge of the interval:

sup

X𝑟 ∈X𝑅

[min

w∈W
𝐿(𝑓 (X𝑟 ,w), y)] ≤ min

w∈W
𝐿(𝑓 (X𝑐 ,w), y)

This upper bound is the regression residue with complete sub-

matrix X𝑐
, defined in Section 4.1 of the paper. X𝑐

is a submatrix of

X created by removing all incomplete columns. The legitimacy of

this upper bound is based on an interpretation of linear regression:

projecting the label vector onto the column space of feature matrix.

Adding column vectors to X𝑐
never shrinks the column space, and

thus never reduces the regression residue upon projection.

Therefore, when 𝑥𝑖 𝑗 moves from 𝑥𝑟
𝑖 𝑗
to 𝑥𝑒

𝑖 𝑗
, the first part becomes

dominant and increases quadratically, leading to:

ℎ(w′,X𝑒) > ℎ(w′,X𝑟)
The dominance of the first part also exists for SVM at some edge

repairs. As a result, this contradicts to the original assumptions.

■

Based on Theorem 8.2, we can compute 𝑔(w′) by finding the

supremum of ℎ(w′,X𝑟) only from edge repairs. This approach is

efficient for dataset with relatively small number of missing values.

However, it may take long for datasets with many missing values

because the number of edge repairs is 2
𝑛 (𝑀𝑉)

where 𝑛(𝑀𝑉) is the
number of missing values in X.

To accelerate finding ACMs for linear regression and SVM, Algo-

rithm 4 randomly samples edge repairs and estimates the supremum

of ℎ(w′,X𝑟). This estimation is reasonable when the number of

Certain and Approximately Certain Models for Statistical Learning SIGMOD ’24, June 06, 2024, Santiago, Chile

samples 𝑠 is large. The algorithm’s time complexity is O(𝑘 ·𝑑 ·𝑛 · 𝑠),
where 𝑘 stands for the number of iterations in gradient descent.

Algorithm 4 Learning ACM

𝑠 ← the number of edge repairs to sample

𝑒 ← user-defined threshold for approximate optimality

X𝐸
𝑠𝑎𝑚𝑝𝑙𝑒

← 𝑟𝑎𝑛𝑑𝑜𝑚.𝑠𝑎𝑚𝑝𝑙𝑒 (X𝐸 , 𝑠)
⊲ randomly add 𝑠 edge repairs to the sample set

for X𝑒 ∈ X𝐸
𝑠𝑎𝑚𝑝𝑙𝑒

do
ℎ(w′,X𝑒) ← 𝐿(𝑓 (X𝑒 ,w′), y) −minw∈W 𝐿(𝑓 (X𝑒 ,w), y)

end for
w≈ ← 𝑎𝑟𝑔minw∈W supX𝑒 ∈X𝐸

𝑠𝑎𝑚𝑝𝑙𝑒
ℎ(w′,X𝑒)

⊲ This optimization is solved by existing algorithms

if 𝑔(w≈) ≤ 𝑒 then
return𝑤≈

else
return "Approximately certain models do not exist"

end if

8.3 ACMs for Regression With Guarantees
For linear regression, if some conditions hold in the dataset, we

can decompose the computation of the supremum for ℎ(w′,X𝑒) in
Theorem 8.2 to each example and compute ACMs in linear time.

Theorem 8.3. For linear regression, if

∀𝑖 ∈ [1, ..., 𝑛],∀x𝑒𝑖 ≠ x𝑒∗𝑖 , 𝐿(𝑓 (x𝑒∗𝑖 ,w′), yi) − 𝐿(𝑓 (x𝑒𝑖 ,w
′), yi) ≥

min

w∈W
𝐿(𝑓 (xi𝑐 ,w), y)

where 𝑥𝑖𝑐 is created by ignoring features with missing values in
𝑥𝑖 , then

𝑔(w′) = 𝐿(𝑓 (X𝑒∗,w′), y) − min

w∈W
𝐿(𝑓 (X𝑒∗,w), y)

where

∀𝑖 ∈ [1, ..., 𝑛], x𝑒∗𝑖 = 𝑎𝑟𝑔 max

x𝑒
𝑖
∈x𝐸

𝑖

(w′𝑇 x𝑒𝑖 − 𝑦𝑖)
2

and x𝐸
𝑖
is the set of edge repairs for 𝑥𝑖 .

Proof. Firstly, given a model w′, the training loss with any

repair X𝑟 ∈ X𝑅
is bigger than minw∈W 𝐿(𝑓 (X𝑐 ,w), y). This is be-

cause the training a linear regression model is projecting the label

vector onto the column space, and adding any columns to X𝑐 never

increases the training loss compared to minw∈W 𝐿(𝑓 (X𝑐 ,w), y).
Further, each training example in the repair X𝑒∗

must maximize

the training loss with respect to the corresponding because the

total training loss is the summation of training losses from inde-

pendent training examples. Therefore, X𝑒∗
is computed by finding

x𝑒∗
𝑖

separately. ■

Because training examples are independent, X𝑒∗
maximizes the

overall training loss if and only if each training example inX𝑒∗
max-

imizes the squared error for the example. Further, when the latter

condition in the theorem holds, ℎ(w′,X𝑒∗) is also the supremum of

ℎ(w′,X𝑒). It is because this condition ensures that the training loss

term is absolutely dominant in ℎ(w′,X𝑒). This allows us to find the
supremum edge repair for each training example individually.

Algorithm 5 uses this result to efficiently compute ACMs for

linear regression. It uses the common gradient descent algorithm

as 𝑔(w) is convex. Its time complexity is O(𝑘 · 𝑑 · 𝑛). The latter
condition in Theorem 8.3 is checked in linear time.

Algorithm 5 Learning ACMs for Linear Regression

w(0) ← w𝑖𝑛𝑖𝑡

𝑡 ← 0

𝑛 ← the number of training examples

𝑒 ← user-defined threshold for approximate optimality

while | |∇𝑔(w(𝑡)) | | > 𝜖 do
𝑡 ← 𝑡 + 1
for 𝑖 = 1, 2, ..., 𝑛 do

xe*
𝑖
← argmaxxe

𝑖
| |w(𝑡−1)𝑇 xe

𝑖
− 𝑦𝑖 | |2

2

end for
∇𝑔(w(𝑡−1)) ← ∇𝐿(𝑓 (X𝑒∗,w(𝑡−1))
w(𝑡) ← w(𝑡−1) − 𝜂∇𝑔(w(𝑡−1))

end while
if 𝑔(w(𝑡)) ≤ 𝑒 then

return𝑤 (𝑡)

else
return "Approximately certain models do not exist"

end if

ACM for kernel SVM. Many properties in linear regression and

linear SVM, such as the linearity that is used to prove Theorem

8.2, do not hold for kernel SVM. Therefore, it is very challenging

to efficiently compute 𝑔(w′) and check ACM for kernel SVM. We

plan to put this line of research as the future work.

9 EXPERIMENTAL EVALUATION
We conduct experiments on a diverse set of real-world datasets

and compare our algorithms with two natural baselines, a KNN

imputation method, a deep learning-based imputation algorithm,

and a benchmark method, ActiveClean. Our findings illustrate sub-

stantial savings in data cleaning costs and program running times

when certain and approximately certain models exist. Moreover, our

study highlights the minimal computational overhead incurred by

our algorithms when verifying certain and approximately certain

model conditions, even when these models do not exist.

9.1 Experimental Setup
9.1.1 Hardware and Platform. We experiment on a configuration

with two tasks, each utilizing two CPUs, and running on a cluster

partition equipped with one 11GB GPU. The underlying hardware

consists of Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz machines.

9.1.2 Real-world Datasets with randomly generated missing values.
In our certain model experiments with linear SVM, polynomial

SVM, and DNN(arcosine SVM) we utilize three real-world datasets.

These datasets originally do not contain any missing values, but we

introduce corruption by randomly injecting missing values at miss-

ing factors of 0.1%, 1%, 5%, and 10%. Wheremissing factor (MF)
represents the ratio of incomplete examples (examples with

SIGMOD ’24, June 06, 2024, Santiago, Chile Zhen and Aryal, et al.

Table 2: Details of Real World Dataset containing missing values

Data Set Task Features Training Examples Missing Factor

Breast Cancer Classification 10 559 1.97%

Intel-Sensor Classification 11 1850945 4.05%

NFL Regression 34 34302 9.04%

Water-Potability Classification 9 2620 39.00%

Online Education Classification 36 7026 35.48%

COVID Regression 188 60229 53.67%

Air-Quality Regression 12 7192 90.99%

Communities Regression 1954 1595 93.67%

Table 3: Linear SVM: Comparing Performance on Randomly Corrupted Real-World Datasets
(a) Data Sets Where Certain Models Exist

Data Set MF

Examples Cleaned Time (Sec) Accuracy (%)

AC MI/KI/DI AC CM DI KI MI NI AC DI KI MI CM/NI

Gisette

0.1% 6.07 14 17.48 2.14 N/A 4.21 1.43 0.90 97.94 N/A 96.60 97.60 97.40

1% 60.40 135 20.32 2.18 N/A 17.88 1.42 0.88 97.89 N/A 97.60 97.60 97.33

Malware

0.1% 1.0 2 4.56 0.73 N/A 0.96 0.74 0.34 96.09 N/A 96.24 96.24 96.24
1% 14.3 20 3.93 0.86 N/A 1.56 0.73 0.44 96.10 N/A 96.24 96.24 96.24
5% 44.93 200 3.17 0.78 N/A 3.99 0.72 0.36 96.54 N/A 96.24 96.24 96.57

Tuandromd

0.1% 3 5 3.71 0.04 62.17 0.17 0.05 0.04 98.73 98.86 98.09 98.09 98.76

1% 30.9 45 3.72 0.03 78.81 0.29 0.04 0.03 98.88 98.92 98.80 98.76 98.58

(b) Data Set Where Certain Models Do Not Exist but Approximately Certain Models Exist

Data Set MF

Examples Cleaned Time (Sec) Accuracy (%)

AC MI/KI/DI AC CM ACM DI KI MI NI AC DI KI MI NI ACM

Gisette

5% 248.93 675 17.62 1.82 10.37 N/A 53.97 1.45 0.71 97.03 N/A 97.60 97.43 97.30 97.35

10% 393.33 1350 1.73 1.73 12.94 N/A 97.01 1.40 0.65 99.93 N/A 97.00 97.53 97.07 97.60

Tuandromd 5% 91.40 223 2.41 0.04 4.31 74.21 0.44 0.05 0.04 98.08 98.76 98.36 98.36 98.21 98.18

(c) Data Set Where Neither Certain Nor Approximately Certain Models Exist

Data Set MF

Examples Cleaned Time (Sec) Accuracy (%)

AC MI/KI/DI AC CM ACM DI KI MI NI AC DI KI MI NI

Malware 10% 66.0 200 1.97 0.70 7.16 N/A 6.78 0.73 0.33 88.05 N/A 96.24 96.24 83.95

Tuandromd 10% 121.33 446 1.64 0.04 4.98 82.45 0.74 0.05 0.04 97.36 98.76 98.76 98.20 98.54

at least 1 missing value) to the total number of examples. It is
important to note that certain models do not exist in all versions of

the corrupted datasets. Therefore, we present experimental results

for both scenarios, when certain models exist and when they do not.
For each dataset and each missing factor, we present the average

results based on three randomly corrupted versions of the dataset

in which certain models exist. This is to reduce the variability in

algorithm performance resulting from the randomness of missing

value injection.

Malware Dataset. The Malware dataset aims to distinguish be-

tween malware and benign software through the analysis of JAR

files [27]. It comprises 6825 features and 1996 training examples.

Gisette Dataset. The Gisette dataset addresses the problem of

handwritten digit recognition, with a specific focus on distinguish-

ing between the easily confused digits 4 and 9 [14]. It consists of

13500 training examples and 5000 features.

TUANDROMD Dataset. The TUANDROMD dataset is designed

for the detection of Android malware software in contrast to benign

or "goodware" applications [4]. It comprises 4464 training examples

and incorporates 241 distinct features.

9.1.3 Real-world Datasets originally containing missing values. We

also conduct experiments on 8 real-world datasets originally con-

taining missing values. Our selection includes datasets from diverse

domains and missing factors (Section 9.1.2). Table 2 presents a sum-

mary of the datasets. For preprocessing the dataset if the label is

missing we drop all corresponding examples and utilize sklearns
OneHotEncoder to featurize the categorical attributes.

Intel Sensor. This dataset contains temperature, humidity, and

light readings collected from sensors deployed in the Intel Berkeley

Research lab [3, 17]. The classification task is to predict whether

the readings came from a particular sensor (sensor 49).

Certain and Approximately Certain Models for Statistical Learning SIGMOD ’24, June 06, 2024, Santiago, Chile

Table 4: p-SVM: Comparing Performance on Randomly Corrupted Real-World Datasets
(a) Data Sets Where Certain Models Exist

Data Set MF

Examples Cleaned Time (Sec) Accuracy (%)

MI/KI/DI CM DI KI MI NI DI KI MI CM/NI

Gisette 0.1% 14 55.69 N/A 56.61 56.01 55.27 N/A 96.70 96.70 96.70
Malware 0.1% 2 4.98 N/A 4.95 5.01 4.66 N/A 92.98 92.98 92.98

Tuandromd 0.1% 5 0.20 49.24 0.21 0.21 0.20 98.54 98.54 98.54 98.54

(b) Data Set Where Certain Models Do Not Exist

Data Set MF

Examples Cleaned Time (Sec) Accuracy (%)

MI/KI/DI CM DI KI MI NI DI KI MI CM/NI

Gisette

0.1% 14 43.79 N/A 52.33 51.69 51.32 N/A 96.80 96.70 96.70

1% 135 42.84 N/A 60.04 51.20 50.04 N/A 96.70 96.70 96.70
5% 675 36.15 N/A 85.98 42.95 37.12 N/A 96.75 96.70 96.80
10% 1350 36.94 N/A 115.80 45.27 41.63 N/A 96.70 96.70 97.00

Malware

0.1% 2 4.35 N/A 5.64 5.18 4.35 N/A 92.87 92.87 92.75

1% 20 4.13 N/A 6.76 4.80 4.53 N/A 92.98 92.98 92.98
5% 100 4.84 N/A 7.90 4.81 4.14 N/A 92.98 92.98 92.98
10% 200 4.60 N/A 9.79 5.81 4.84 N/A 92.98 92.74 92.98

Tuandromd

0.1% 5 0.20 70.22 0.21 0.21 0.19 98.54 98.54 98.54 98.54
1% 45 0.18 44.81 0.30 0.21 0.19 98.54 98.54 98.54 98.54
5% 223 0.18 42.39 0.54 0.20 0.17 98.54 98.54 98.54 98.31

10% 446 0.19 42.45 0.75 0.21 0.16 98.54 98.79 98.54 98.54

Water Potability . The dataset contains information about the

properties and substances (sulfate, pH) in freshwater sources, the

classification task is to predict if the water is potable or not [15].

COVID . This U.S. Department of Health and Human Services

dataset provides data for hospital utilization dating back to January

1, 2020 [1]. The regression task is to predict the number of hospitals

anticipating critical staffing shortages.

Air Quality. The dataset contains instances of hourly averaged

responses from an array of chemical sensors embedded in an Air

Quality Chemical Multisensor Device [32]. Given air-composition

measurements, the regression task is to predict hourly Temperature.

NFL. This dataset contains play-by-play logs from US Football

games. Given a play, the regression objective is to predict the score

difference between the two teams [13]. We use a numeric version

of this dataset since encoding string-valued attributes inflates the

feature dimension by 80 times.

Breast Cancer. The dataset contains information about charac-

teristics of potential cancerous tissue and the classification task is

to predict if it is benign or malignant [34].

Online Education. This dataset contains responses to a survey on
online education. The classification objective is to predict whether

students prefer cellphones or laptops for online courses [31].

Communities-Crimes. The data contains socio-economic and

crime data from the US Census and FBI. The regression task is to

predict the total number of violent crimes per 100K population [26].

9.1.4 Algorithms for Comparison. In our experiments, we include

two natural imputation baselines, a deep learning-based imputation

algorithm, and a benchmark algorithm for comparison.

Active Clean(AC): ActiveClean [18, 19] aims at minimizing the

number of repaired examples to achieve an accurate model. We use

ActiveClean for linear regression and linear SVM, but not for ker-

nel SVM because ActiveClean’s implementation relies on sklearn’s

SGDClassifier module, which does not support non-linear models

such as kernel SVM [19]. Simply switching to sklearn’s Support Vec-

tor Classification (SVC) module cannot resolve the issue since SVC

does not support ‘partial fit’, an essential function in ActiveClean.

KNN-Imputer(KI): This method predicts the values of missing

items based on observed examples using a KNN classifier [23, 29].

Deep-learning based Imputation (DI):We utilize MIWAE [23]

as a sophisticated state-of-the-art imputation algorithm for com-

parison. This approach uses deep latent variable models to predict

the values of missing data items based on the value of observed

examples. Specifically, MIWAE adapts the objective of importance-

weighted autoencoders [5] and maximizes a potentially tight lower

bound of the log-likelihood of the observed data.

Mean Imputation(MI): MI is a widely used method for handling

missing values in practice. Each missing feature value is imputed

with the mean value of that feature [23].

No Imputation(NI): NI naively drops all missing values and trains

the model on the complete training set [18]. When certain model
exists the model trained with NI is equivalent to Certain Model

algorithms.

9.1.5 Metrics. We evaluate all algorithms on a held-out test set

with complete examples. We use accuracy as a metric for classifica-

tion tasks. Accuracy reflects the percentage of total correct class

predictions therefore higher accuracy is preferred. For regression

SIGMOD ’24, June 06, 2024, Santiago, Chile Zhen and Aryal, et al.

tasks, we use mean squared error (MSE). MSE measures the average

squared difference between actual and predicted values. Therefore,

a lower MSE is preferred. We also study the algorithms’ data clean-

ing efforts in terms of program execution time and the number of

examples cleaned.

9.2 Results on Real-world Datasets with
Random Corruption

In this section, we present results for all scenarios, when certain
models exist, when certain models do not exist but approximately
certain models exist, and when neither exists for 3 datasets with

different degrees of random corruption (Section 9.1.2).

When certain models exist : We begin by focusing on scenarios

where certain models are known to exist. Tables 3a and 4a present

a performance comparison between certain model algorithms and

baselines for linear SVM and p-SVM, respectively. We observe that

certain models exist when the missing factor is small. This is be-

cause certain SVMmodels require that incomplete examples should

not be support vectors in any repair (Section 5). When the missing

factor is small, the number of incomplete examples is also small.

Therefore, the likelihood of such examples being support vectors is

also small. Since certain models exist, certain model algorithms by

definition (Section 3) clean zero missing data. In contrast, baseline

methods spend substantial effort on data cleaning, represented by

examples cleaned column in Tables 3a and 4a. In terms of program

execution time, certain model (CM) algorithms are slower than sim-

ple methods such as Mean Imputation (MI) and No Imputation (NI).

However, MI and NI are both heuristics without any guarantees of

the optimality of the trained model. Moreover, to find the appropri-

ate imputation method for a specific incomplete dataset, users may

want to check missing data mechanisms, which often take longer

time than implementing certain model algorithms. Also, MI still
requires a large number of imputations. Compared with ActiveClean

(AC) and the advanced imputation methods, Deep-learning based

Imputer (DI) and KNN-Imputer (KI), certain model algorithms run

much faster and also guarantee an optimal model. In the tables,

DI has "N/A" results for some datasets in this section when it runs

for more than one hour but fails to return a result. To emphasize,

when certain models exist, we do not need to check for approximately
certain models since they exist by definition (Section 8).

When certain models do not exist but approximately certain
models exist: When certain models do not exist, we may resort to

approximately certain models (ACM). Table 3b shows the datasets

where certain models do not exist due to the strict conditions, but

approximately certain models exist and clean zero missing data.

The prediction accuracy of approximately certain models is very

close to the results from all baseline methods. This is because when

approximately certain models exist, their approximate optimality

is guaranteed. In terms of program execution time, approximately

certain model algorithms run faster than DI and KI, but slower

than AC, MI, and NI. However still in this scenario, checking and

learning approximately certain models saves imputation costs with

minimal compromise on the model’s accuracy.

When neither certain nor approximately certain models ex-
ist: Sometimes, neither certain nor approximately certain model

may exist, as shown in Table 3c for linear SVM with relatively large

missing factor. Since approximately certain model algorithms are

not available for kernel SVMs, in Tables 4b and 5 we present the

datasets where certain models do not exist for polynomial SVM

(p-SVM), and our DNN approximation with arccosine SVM, respec-

tively. However, even if our algorithms do not find certain models

for DNN, certain models may still exist. This is because the related
theorem for DNN is necessary but not sufficient as described in Sec-

tion 7. We also investigate certain model existence for RBF-SVM.

We observe similar patterns and results to that of arccos-SVM. Due

to the limited space, we exclude the results for RBF-SVM from the

paper. In scenarios when neither certain model nor approximately

certain model exists, checking for them incurs some computational

overhead. Nonetheless, paying for this overhead is worthwhile for
two reasons. First, substantial data-cleaning savings are realized

when certain models exist (as we discuss in the previous para-

graphs). Second, the time costs associated with checking certain

models are minimal (confirmed by the small program running times

in Tables 3c, 4b, and 5).

9.3 Results on Real-world Dataset with
Inherent Missingness

In our certainmodel experiments with linear regression, linear SVM,

and SVM with kernels, we utilize 8 real-world datasets (Section

9.1.3). These datasets originally contain missing values.

When certainmodels exist:We present the result for the first sce-

nario in Table 6a. Certain models exist for NFL and COVID datasets.

By checking and learning certain models with zero imputation, we

save substantial energy in data cleaning compared to all 4 baselines.

This imputation cost saving also comes with guarantees on the opti-

mal model, experimentally proved by almost the same performance

between certain models and the models from baseline methods.

There is one exception in the COVID dataset where ActiveClean

has a regression error slightly different from other baselines. This

may be because partial-fit is used to proxy a complete-fit in Active-

Clean’s implementation [19], which in some cases may converge

early but with errors. We further investigate the data scenarios that

entail certain models and verify that features irrelevant to the label

are the ones with missing values. For instance, the COVID dataset

receives regular data updates from 3 different sources. We observe

that the newly added features are the ones with missing values.

When certain models do not exist but approximately certain
models exist: Table 6b and 7a present the results for linear regres-

sion and linear SVM, respectively. Two datasets (Communities and

Intel-Sensor) do not have certain models but have approximately

certain models. Approximately certain models result in similar

MSE/accuracy compared to all baseline methods, supported by the

theoretical guarantee from approximately certain models (Section

8). In this scenario, checking and learning approximately certain

models also eliminates the need for any form of data imputations.

In terms of program execution time, we observe similar patterns

as the results of randomly corrupted datasets. To understand the

influence of data characteristics on certain model existence, we study
the results for both certain models (CM and ACM). We find that

certain and approximately certain models are more likely to ex-

ist in regression tasks when the number of features is large (e.g.,

Communities and COVID), and in classification tasks when the

number of examples is large (e.g., Intel-Sensor). This is because the

Certain and Approximately Certain Models for Statistical Learning SIGMOD ’24, June 06, 2024, Santiago, Chile

Table 5: DNN: Comparing Performance on Randomly Corrupted Real-World Datasets: CMs are not found

Data Set MF

Examples Cleaned Time (Sec) Accuracy (%)

MI/KI/DI CM DI KI MI NI DI KI MI NI

Gisette

0.1% 14 31.27 N/A 40.79 40.62 39.67 N/A 52.30 52.30 52.10

1% 135 35.46 N/A 40.69 40.63 39.57 N/A 52.30 52.30 52.10

5% 675 33.28 N/A 39.91 39.67 36.06 N/A 52.30 52.30 52.00

10% 1350 29.98 N/A 39.94 39.84 34.10 N/A 52.30 52.30 51.70

Malware

0.1% 2 3.27 N/A 6.02 6.06 5.93 N/A 48.37 48.37 48.37

1% 20 3.15 N/A 5.99 6.78 5.76 N/A 48.37 48.37 48.37

5% 100 4.03 N/A 5.98 6.00 5.39 N/A 48.37 48.37 48.37

10% 200 4.12 N/A 5.98 5.96 4.92 N/A 48.37 48.37 34.09

Tuandromd

0.1% 5 0.22 47.56 0.21 0.28 0.20 61.81 61.81 61.81 61.81

1% 45 0.25 69.24 0.21 0.20 0.20 61.81 61.81 61.81 61.81

5% 223 0.20 67.94 0.22 0.21 0.18 61.81 61.81 61.81 61.81

10% 446 0.18 70.13 0.25 0.26 0.17 61.81 61.81 61.81 66.52

Table 6: Linear Regression: Performance Comparison on Real-World Datasets with Missing Values
(a) Data Sets Where Certain Models Exist

Data Set

Examples Cleaned Time (Sec) MSE

AC MI/KI/DI AC CM DI KI MI NI AC DI KI MI CM/NI

NFL 12.0 3101 49.91 7.11 394.18 12.96 0.14 0.13 0.02 0.00 0.00 0.00 0.00
COVID 33.6 32325 100.59 438.79 1944.10 587.87 0.68 0.28 2.07 0.00 0.00 0.00 0.00

(b) Data Set Where Certain Models Do Not Exist but Approximately Certain Models Exist

Data Set

Examples Cleaned Time (Sec) MSE

AC MI/KI/DI AC CM ACM5 ACM6 DI KI MI NI AC DI KI MI NI ACM

Communities 319.6 1494 2.10 1.45 4.15 3.74 4088.46 15.82 1.39 0.08 0.06 0.35 0.63 1.30 2.30 0.03

(c) Data Set Where Neither Certain Nor Approximately Certain Models Exist

Data Set

Examples Cleaned Time (Sec) MSE

AC MI/KI/DI AC CM ACM5 ACM6 DI KI MI NI AC DI KI MI NI

Air-Quality 48.80 6544 0.87 0.01 4.62 N/A 111.08 3.67 0.02 0.01 28.22 2.11 3.05 1.07 3.47

Table 7: Linear SVM: Performance Comparison on Real-World Datasets with Missing Values
(a) Data Set Where Certain Models Do Not Exist but Approximately Certain Models Exist

Data Set

Examples Cleaned Time (Sec) Accuracy (%)

AC MI/KI/DI AC CM ACM DI KI MI NI AC DI KI MI NI ACM

Intel 30.0 75080 355.58 276.01 2428.76 N/A 13775.93 275.49 273.24 98.80 N/A 98.90 97.50 98.39 98.43

(b) Data Set Where Neither Certain Nor Approximately Certain Models Exist

Data Set

Examples Cleaned Time (Sec) Accuracy(%)

AC MI/KI/DI AC CM ACM DI KI MI NI AC DI KI MI NI

Water Potability 29.0 1022 0.34 0.01 0.69 56.14 0.30 0.04 0.01 49.15 56.33 39.95 39.70 41.89

Online Education 16.4 2493 3.88 0.03 5.03 88.87 2.09 0.14 0.02 63.06 63.85 62.85 61.37 36.33

Breast Cancer 9.8 14 0.06 0.01 0.15 7.37 0.33 0.01 0.00 50.44 65.94 65.94 65.94 34.05

uncertainty from incomplete features and examples is diluted in

model training when the number of features and examples is large.

When neither certain nor approximately certain models ex-
ist: Tables 6c, 7b, 8, and 9 show the cases where neither a CM nor

an ACM exists (or is not found) for linear regression, linear SVM,

p-SVM, and DNN, respectively. We report DNN’s result (Table 9)

only on two out of four classification datasets because the DNN’s

theorem in Section 7 only applies to datasets where each example

has at most one missing value. For p-SVM and DNN, the prediction

accuracy is almost the same from different baseline imputations,

which often empirically suggests the existence of certain or ap-

proximately certain models. However, certain models do not exist

SIGMOD ’24, June 06, 2024, Santiago, Chile Zhen and Aryal, et al.

Table 8: p-SVM: Performance Comparison on Real-World Datasets with Missing Values-CMs do not exist

Data Set

Number of Examples Cleaned Time (Sec) Accuracy(%)

MI/KI/DI CM DI KI MI NI DI KI MI NI

Intel Sensor 1022 3321.85 N/A 3498.51 3128.54 3007.65 N/A 53.78 58.37 51.98

Water Potability 1022 0.05 41.27 1.03 0.16 0.06 63.94 62.17 62.96 61.19

Online Education 354 0.18 57.13 0.98 0.22 0.20 97.13 95.52 97.26 93.29

Breast Cancer 11 0.01 42.35 0.25 0.01 0.01 71.24 70.86 70.71 69.63

Table 9: DNN: Performance Comparison on Real-World Datasets with Missing Values-CMs do not exist

Data Set

Number of Examples Cleaned Time (Sec) Accuracy(%)

MI/KI/DI CM DI KI MI NI DI KI MI NI

Online Education 354 0.16 51.37 0.79 0.22 0.20 42.75 40.96 41.04 41.06

Breast Cancer 11 0.02 48.96 0.02 0.01 0.01 65.20 64.26 67.86 66.67

(or are not found). To explain, when certain models do not exist,

different imputations may lead to different models. Nonetheless,

different models sometimes can still make identical predictions on

the testing set. e. In terms of program execution time, checking

certain and approximately certain models is worthwhile even if we

do not find any upon checking, based on the same reasons discussed

in Section 9.2.

10 RELATEDWORK
Stochastic andRobust Optimization. Researchers have proposed
stochastic optimization to find a model by optimizing the expected
loss function over the probability distributions of missing data items in
the training examples [11]. This approach avoids imputing missing

values by redefining the loss function to include the uncertainty

due to missing values in the training data. Similarly, in robust op-

timization, researchers minimize the loss function of a model for

the worst-case repair to an incomplete dataset, i.e., the repair that

brings the highest training loss, given distributions of the missing

values. However, the distributions of missing data items are not

often available. Thus, users may spend significant time and effort

to discover or train these distributions. Additionally, for a given

type of model, users must solve various and possibly challenging

optimization problems for many possible (combinations of) dis-

tributions of missing values. In our approach, users do not need

to find the probability distribution of the missing data. Moreover,

our algorithm for each type of model generalizes for all types and

distributions of missing values in the training data.

Subset Selection over Incomplete Data. To save data cleaning
costs, researchers propose to select a representative subset of train-

ing data and impute the missing values in the subset [6, 33]. Then, a

model is trained with the clean version of this subset. This approach

still cleans data items. One still needs to spend time constructing

a model to select a proper subset. Also, the trained model is often

not the same as the model trained with the whole dataset.

ML Poisoning Attacks. Researchers have proposed methods to

build ML models that are robust to malicious modifications of train-

ing data to induce unwanted behavior in themodel [9].We, however,

focus on robustness against missing values in the data.

11 CONCLUSION
In this paper, we present the conditions where data repair is not

needed for training optimal and approximately optimal models over

incomplete data, i.e., certain or approximately certain models exist.

We also offer efficient algorithms for checking and learning certain

and approximately models for linear regression, linear SVM, and

kernel SVMs. Our experiments with real-world datsets demonstrate

significant cost savings in data cleaning compared to five popular

benchmark methods, without introducing significant overhead to

the running time.

REFERENCES
[1] 2023. COVID-19 Reported Patient Impact and Hospital Capacity.

https://catalog.data.gov/dataset/covid-19-reported-patient-impact-and-

hospital-capacity-by-state-timeseries-cf58c. Accessed on 01-01-2024.

[2] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma,

J. Santamaría, M. A. Fadhel, M. Al-Amidie, and L. Farhan. 2021. Review of

Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future

Directions. Journal of Big Data 8, 1 (2021), 53. https://doi.org/10.1186/s40537-

021-00444-8

[3] Peter Bodik, Wei Hong, Carlos Guestrin, Sam Madden, Mark Paskin, and Romain

Thibaux. 2004. Intel Berkley Research Lab Data. https://db.csail.mit.edu/labdata/

labdata.html

[4] Parthajit Borah, DK Bhattacharyya, and JK Kalita. 2020. Malware Dataset Gener-

ation and Evaluation. In 2020 IEEE 4th Conference on Information Communication
Technology (CICT). IEEE, 1–6.

[5] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. 2016. Importance Weighted

Autoencoders. arXiv:1509.00519 [cs.LG]

[6] Chengliang Chai, Jiabin Liu, Nan Tang, Ju Fan, Dongjing Miao, Jiayi Wang, Yuyu

Luo, and Guoliang Li. 2023. GoodCore: Data-effective and Data-efficient Machine

Learning through Coreset Selection over Incomplete Data. Proceedings of the
ACM on Management of Data 1, 2 (2023), 1–27.

[7] Youngmin Cho and Lawrence Saul. 2009. Kernel methods for deep learning.

Advances in neural information processing systems 22 (2009).
[8] Youngmin Cho and Lawrence K Saul. 2011. Analysis and extension of arc-cosine

kernels for large margin classification. arXiv preprint arXiv:1112.3712 (2011).
[9] Samuel Drews, Aws Albarghouthi, and Loris D’Antoni. 2020. Proving data-

poisoning robustness in decision trees. In Proceedings of the 41st ACM SIGPLAN
International Conference on Programming Language Design and Implementation,
PLDI 2020, London, UK, June 15-20, 2020, Alastair F. Donaldson and Emina Torlak

(Eds.). ACM, 1083–1097. https://doi.org/10.1145/3385412.3385975

[10] Austen Z. Fan and Paraschos Koutris. 2022. Certifiable Robustness for Nearest

Neighbor Classifiers. In 25th International Conference on Database Theory, ICDT
2022, March 29 to April 1, 2022, Edinburgh, UK (Virtual Conference) (LIPIcs, Vol. 220),
Dan Olteanu and Nils Vortmeier (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 6:1–6:20. https://doi.org/10.4230/LIPICS.ICDT.2022.6

[11] Ravi Ganti and Rebecca M Willett. 2015. Sparse Linear regression with missing

data. arXiv preprint arXiv:1503.08348 (2015).
[12] Claudio Gentile andManfred K. KWarmuth. 1998. Linear Hinge Loss and Average

Margin. In Advances in Neural Information Processing Systems, M. Kearns, S. Solla,

and D. Cohn (Eds.), Vol. 11. MIT Press.

https://catalog.data.gov/dataset/covid-19-reported-patient-impact-and-hospital-capacity-by-state-timeseries-cf58c
https://catalog.data.gov/dataset/covid-19-reported-patient-impact-and-hospital-capacity-by-state-timeseries-cf58c
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1186/s40537-021-00444-8
https://db.csail.mit.edu/labdata/labdata.html
https://db.csail.mit.edu/labdata/labdata.html
https://arxiv.org/abs/1509.00519
https://doi.org/10.1145/3385412.3385975
https://doi.org/10.4230/LIPICS.ICDT.2022.6

Certain and Approximately Certain Models for Statistical Learning SIGMOD ’24, June 06, 2024, Santiago, Chile

[13] Max Horowitz. 2015. Detailed NFL Play-by-Play Data 2015. Kaggle. https:

//www.kaggle.com/datasets/maxhorowitz/nflplaybyplay2015

[14] Isabelle Guyon, Steve Gunn, Asa Ben-Hur, Gideon Dror. 2003. Gisette. https:

//doi.org/10.24432/C5HP5B

[15] Aditya Kadiwal. 2021. Water Potability. Kaggle. https://www.kaggle.com/

datasets/adityakadiwal/water-potability

[16] Bojan Karlaš, Peng Li, Renzhi Wu, Nezihe Merve Gürel, Xu Chu, Wentao Wu, and

Ce Zhang. 2020. Nearest neighbor classifiers over incomplete information: From

certain answers to certain predictions. arXiv preprint arXiv:2005.05117 (2020).

[17] Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, and Eugene Wu. 2017.

BoostClean: Automated Error Detection and Repair for Machine Learning.

arXiv:1711.01299 [cs.DB]

[18] Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J Franklin, and Ken Gold-

berg. 2016. Activeclean: Interactive data cleaning for statistical modeling. Pro-
ceedings of the VLDB Endowment 9, 12 (2016), 948–959.

[19] Krishnan, Sanjay andWang, Jiannan andWu, Eugene and Franklin, Michael J and

Goldberg, Ken. 2018. Cleaning for Data Science. https://activeclean.github.io/

[20] Marine Le Morvan, Julie Josse, Erwan Scornet, and Gael Varoquaux. 2021.

What’s a good imputation to predict with missing values?. In Advances in Neu-
ral Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin,

P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran Associates,

Inc., 11530–11540. https://proceedings.neurips.cc/paper_files/paper/2021/file/

5fe8fdc79ce292c39c5f209d734b7206-Paper.pdf

[21] R.J.A. Little and D.B. Rubin. 2002. Statistical analysis with missing data. Wiley.

http://books.google.com/books?id=aYPwAAAAMAAJ

[22] Tongyu Liu, Ju Fan, Yinqing Luo, Nan Tang, Guoliang Li, and Xiaoyong Du. 2021.

Adaptive Data Augmentation for Supervised Learning over Missing Data. Proc.
VLDB Endow. 14, 7 (mar 2021), 1202–1214. https://doi.org/10.14778/3450980.

3450989

[23] Pierre-Alexandre Mattei and Jes Frellsen. 2019. MIWAE: Deep Generative Mod-

elling and Imputation of Incomplete Data Sets. In Proceedings of the 36th Interna-
tional Conference on Machine Learning (Proceedings of Machine Learning Research,

Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 4413–4423.

https://proceedings.mlr.press/v97/mattei19a.html

[24] Felix Neutatz, Binger Chen, Ziawasch Abedjan, and Eugene Wu. 2021. From

Cleaning before ML to Cleaning for ML. IEEE Data Eng. Bull. 44, 1 (2021), 24–41.
[25] Jose Picado, John Davis, Arash Termehchy, and Ga Young Lee. 2020. Learning over

dirty data without cleaning. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 1301–1316.

[26] Michael Redmond. 2009. Communities and Crime. UCI Machine Learning

Repository.

[27] Ricardo P Pinheiro, Sidney M. L. Lima, Sérgio M. M. Fernandes, E. D. Q. Albu-

querque, S. Medeiros, Danilo Souza, T. Monteiro, Petrônio Lopes, Rafael Lima,

Jemerson Oliveira, Sthéfano Silva. 2019. REJAFADA. https://doi.org/10.24432/

C5HG8D

[28] DONALD B. RUBIN. 1976. Inference and missing data. Biometrika
63, 3 (12 1976), 581–592. https://doi.org/10.1093/biomet/63.3.581

arXiv:https://academic.oup.com/biomet/article-pdf/63/3/581/756166/63-3-

581.pdf

[29] Olga Troyanskaya, Mike Cantor, Gavin Sherlock, Trevor Hastie, Rob Tibshirani,

David Botstein, and Russ Altman. 2001. Missing Value Estimation Methods for

DNA Microarrays. Bioinformatics 17 (07 2001), 520–525. https://doi.org/10.1093/

bioinformatics/17.6.520

[30] Stef Van Buuren. 2018. Flexible imputation of missing data. CRC press.

[31] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. 2013. OpenML:

Networked Science inMachine Learning. SIGKDD Explorations 15, 2 (2013), 49–60.
https://doi.org/10.1145/2641190.2641198

[32] Saverio Vito. 2016. Air Quality. UCI Machine Learning Repository.

[33] Yining Wang and Aarti Singh. 2015. Column subset selection with missing data

via active sampling. In Artificial Intelligence and Statistics. PMLR, 1033–1041.

[34] William Wolberg. 1992. Breast Cancer Wisconsin (Original). UCI Machine

Learning Repository.

https://www.kaggle.com/datasets/maxhorowitz/nflplaybyplay2015
https://www.kaggle.com/datasets/maxhorowitz/nflplaybyplay2015
https://doi.org/10.24432/C5HP5B
https://doi.org/10.24432/C5HP5B
https://www.kaggle.com/datasets/adityakadiwal/water-potability
https://www.kaggle.com/datasets/adityakadiwal/water-potability
https://arxiv.org/abs/1711.01299
https://activeclean.github.io/
https://proceedings.neurips.cc/paper_files/paper/2021/file/5fe8fdc79ce292c39c5f209d734b7206-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/5fe8fdc79ce292c39c5f209d734b7206-Paper.pdf
http://books.google.com/books?id=aYPwAAAAMAAJ
https://doi.org/10.14778/3450980.3450989
https://doi.org/10.14778/3450980.3450989
https://proceedings.mlr.press/v97/mattei19a.html
https://doi.org/10.24432/C5HG8D
https://doi.org/10.24432/C5HG8D
https://doi.org/10.1093/biomet/63.3.581
https://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/63/3/581/756166/63-3-581.pdf
https://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/63/3/581/756166/63-3-581.pdf
https://doi.org/10.1093/bioinformatics/17.6.520
https://doi.org/10.1093/bioinformatics/17.6.520
https://doi.org/10.1145/2641190.2641198

	Abstract
	1 Introduction
	2 Background
	2.1 Supervised Learning
	2.2 Missing Values and Repairs

	3 Certain Models
	4 Certain Models for Linear Regression
	4.1 Conditions For Having Certain Models
	4.2 Checking and Learning Certain Models

	5 Certain Models for SVM
	5.1 Conditions For Having Certain Models
	5.2 Checking and Learning Certain Models

	6 Certain Models for Kernel SVM
	6.1 Conditions For Having Certain Models
	6.2 Polynomial kernel
	6.3 RBF kernel

	7 Certain Models for DNN
	8 Approximately Certain Models
	8.1 Formal Definition
	8.2 Learning ACMs Efficiently
	8.3 ACMs for Regression With Guarantees

	9 Experimental Evaluation
	9.1 Experimental Setup
	9.2 Results on Real-world Datasets with Random Corruption
	9.3 Results on Real-world Dataset with Inherent Missingness

	10 Related Work
	11 Conclusion
	References

