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ABSTRACT
Real-world datasets are dirty and contain many errors, such

as violations of integrity constraints and entity duplicates.

Learning over dirty databases may result in inaccurate mod-

els. Data scientists spend most of their time on preparing

and repairing data errors to create clean databases for learn-

ing. Moreover, as the information required to repair these

errors is not often available, there may be numerous possible

clean versions for a dirty database. We propose Dirty Learn,

DLearn, a novel learning system that learns directly over

dirty databases effectively and efficiently without any pre-

processing. DLearn leverages database constraints to learn

accurate relational models over inconsistent and heteroge-

neous data. Its learned models represent patterns over all

possible clean versions of the data in a usable form. Our em-

pirical study indicates that DLearn learns accurate models

over large real-world databases efficiently.
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1 INTRODUCTION
Users often would like to learn interesting relationships over

relational databases [17, 19, 29, 36, 48, 54]. Consider the IMDb

database (imdb.com) that contains information about movies

whose schema fragments are shown in Table 1 (top). Given

this database and some training examples, a user may want
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to learn a new relation highGrossing(title), which indicates

that the movie with a given title is high grossing. Given a

relational database and training examples for a new rela-

tion, relational machine learning (relational learning) algo-
rithms learn (approximate) relational models and definitions

of the target relation in terms of existing relations in the

database [17, 29, 42, 45, 47, 50]. For instance, the user may

provide a set of high grossing movies as positive examples

and a set of low grossing movies as negative examples to a

relational learning algorithm. Given the IMDb database and

these examples, the algorithm may learn:

highGrossing(x) ←movies(y, x, z),mov2genres(y, ‘comedy’),

mov2releasedate(y, ‘May’,u),
which indicates that high grossing movies are often released

in May and their genre is comedy. One may assign weights to

these definitions to describe their prevalence in the data ac-

cording their training accuracy [36, 50]. As opposed to other

machine learning algorithms, relational learning methods

do not require the data points to be statistically independent

and follow the same identical distribution (IID) [19]. Since a

relational database usually contain information about multi-

ple types of entities, the relationships between these entities

often violate the IID assumption. Also, the data about each

type of entities may follow a distinct distribution. This also

holds if one wants to learn over the data gathered frommulti-

ple data sources as each data source may have a distinct data

distribution. Thus, using other learning methods on these

databases results in biased and inaccurate models [19, 36, 48].

Since relational learning algorithms leverage the structure of

the database directly to learn new relations, they do not need

the tedious process of feature engineering. In fact, they are

used to discover features for the downstream non-relational

models [40]. Thus, they have been widely used over rela-

tional data, e.g., building usable query interfaces [3, 35, 41],

information extraction [19, 36], and entity resolution [21].

Real-world databases often contain inconsistencies [10, 15,

18, 23, 24, 28, 53], which may prevent the relational learning

algorithms from finding an accurate definition. In particu-

lar, the information in a domain is sometimes spread across

several databases. For example, IMDb does not contain the
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Table 1: Schema fragments for the IMDb and BOM.
IMDb

movies(id, title, year) mov2countries(id, name)

mov2genres(id, name) mov2releasedate(id, month, year)

BOM

mov2totalGross(title, gross)

highBudgetMovies(title)

information about the budget or total grossing of movies.

This information is available in another database called Box

Office Mojo (BOM) (boxofficemojo.com), for which schema

fragments are shown in Table 1 (bottom). To learn an ac-

curate definition for highGrossing, the user has to collect

data from the BOM database. However, the same entity or

value may be represented in various forms in the original

databases, e.g., the titles of the same movie in IMDb and

BOM have different formats, e.g., the title of the movie Star
Wars: Episode IV is represented in IMDb as Star Wars: Episode
IV - 1977 and in BOM as Star Wars - IV. A single database

may also contain these type of heterogeneity as a relation

may have duplicate tuples for the same entity, e.g., dupli-

cate tuples fo the same movie in BOM. A database may have

other types of inconsistencies that violate the integrity of the

data. For example, a movie in IMDb may have two different

production years [15, 23, 53].

Users have to resolve inconsistencies and learn over the re-

paired database, which is very difficult and time-consuming

for large databases [18, 28]. Repairing inconsistencies usu-

ally leads to numerous clean instances as the information

about the correct fixes is not often available [10, 13, 24]. An

entity may match and be a potential duplicate of multiple

distinct entities in the database. For example, title Star Wars
may match both titles Star Wars: Episode IV - 1977 and Star
Wars: Episode III - 2005. Since we know that the Star Wars:
Episode IV - 1977 and Star Wars: Episode III - 2005 refer to two
different movies, the title StarWarsmust be unified with only

one of them. For each choice, the user ends up with a distinct

database instance. Since a large database may have many pos-

sible matches, the number of clean database instances will

be enormous. Similarly, it is not often clear how to resolve

data integrity violations. For instance, if a movie has multiple

production years, one may not know which year is correct.

Due to the sheer number of volumes, it is not possible to

generate and materialize all clean instances for a large dirty

database [23]. Cleaning systems usually produce a subset of

all clean instances, e.g., the ones that differ minimally with

the original data [23]. This approach still generates many

repaired databases [10, 23, 53]. It is also shown that these

conditions may not produce the correct instances [34]. Thus,

the cleaning process may result in many instances where it

is not clear which one to use for learning. It takes a great

deal of time for users to manage these instances and decide

which one(s) to use for learning. Most data scientists spend

more than 80% of their time on such cleaning tasks [39].

Some systems aim at producing a single probabilistic data-

base that contain information about a subset of possible clean

instances [49]. These systems, however, do not address the

problem of duplicates and value heterogeneities as they as-

sume that there always is a reliable table, akin to a dictionary,

which gives the unique value that should replace each poten-

tial duplicate in the database. However, given that different

values represent the same entity, it is not clear what should
replace the final value in the clean database, e.g., whether

Star War represents Star Wars: Episode IV - 1977 or Star Wars:
Episode III - 2005. They also allow violations of integrity con-

strains to generate the final probabilistic database efficiently,

which may lead to inconsistent repairs. Moreover, to restrict

the set of clean instances, they require attributes to have

finite domains that does not generally hold in practice.

We propose a novel learning method that learns directly

over dirty databases without materializing its clean versions,

thus, it substantially reduces the effort needed to learn over

dirty. The properties of clean data are usually expressed using

declarative data constraints, e.g., functional dependencies,

[1, 2, 7, 13, 14, 22–24, 26, 49]. Our system uses the declarative

constraints during learning. These constraints may be pro-

vided by users or discovered from the data using profiling

techniques [1, 38]. Our contributions are as follows:

• We introduce and formalize the problem of learning

over an inconsistent database (Section 3).

• We propose a novel relational learning algorithm called

DLearn to learn over inconsistent data (Section 4).

• Every learning algorithm chooses the final result based

on its coverage of the training data. We propose an

efficient method to compute the coverage of a definition

directly over the heterogeneous database (Section 4.2).

• We provide an efficient implementation of DLearn over

a relational database system (Section 5).

• We perform an extensive empirical study over real-

world datasets and show that DLearn scales to and

learns efficiently and effectively over large data.

The proof of our theoretical results are in [? ].

2 BACKGROUND
2.1 Relational Learning
In this section, we review the basic concepts of relational

learning over databases without any heterogeneity [17, 29].

We fix two mutually exclusive sets of relation and attribute

symbols. A database schema S is a finite set of relation sym-

bols Ri , 1 ≤ i ≤ n. Each relation Ri is associated with a set of

attribute symbols denoted as Ri (A1, . . . ,Am). We denote the

domain of values for attribute A as dom(A). Each database

instance I of schema S maps a finite set of tuples to every



relation Ri in S. Each tuple t is a function that maps each

attribute symbol in Ri to a value from its domain. We denote

the value of the set of attributes X of tuple t in the database

I by t I [X ] or t[X ] if I is clear from the context. Also, when it

is clear from the context, we refer to an instance of a relation

R simply as R. An atom is a formula in the form of R(u1,
. . . , un), where R is a relation symbol and u1, . . . , un are

terms. Each term is either a variable or a constant, i.e., value.

A ground atom is an atom that only contains constants. A

literal is an atom, or the negation of an atom. A Horn clause
(clause for short) is a finite set of literals that contains ex-

actly one positive literal. A ground clause is a clause that

only contains ground atoms. Horn clauses are also called

Datalog rules (without negation) or conjunctive queries. A

Horn definition is a set of Horn clauses with the same positive

literal, i.e., non-recursive Datalog program or union of con-

junctive queries. Each literal in the body is head-connected
if it has a variable shared with the head literal or another

head-connected literal.

Relational learning algorithms learn first-order logic defi-

nitions from an input relational database and training exam-

ples. Training examples E are usually tuples of a single target
relation, and express positive (E+) or negative (E−) examples.

The input relational database is also called background knowl-
edge. The hypothesis space is the set of all possible first-order
logic definitions that the algorithm can explore. It is usually

restricted to Horn definitions to keep learning efficient. Each

member of the hypothesis space is a hypothesis. Clause C
covers an example e if I ∧C |= e , where |= is the entailment

operator, i.e., if I and C are true, then e is true. Definition

H covers an example e if at least one its clauses covers e .
The goal of a learning algorithm is to find the definition in

the hypothesis space that covers all positive and the fewest

negative examples as possible.

Example 2.1. IMDb contains the tuples movie (10,‘StarWars:
Episode IV - 1977’, 1977), mov2genres(10, ‘comedy’), and
mov2releasedate(10, ‘May’, 1977). Therefore, the definition that
indicates that high grossing movies are often released in May
and their genre is comedy shown in Section 1 covers the positive
example highGrossing(‘Star Wars: Episode IV - 1977’).

Most relational learning algorithms follow a covering ap-

proach illustrated in Algorithm 1 [42, 45–47, 54]. The algo-

rithm constructs one clause at a time using the LearnClause
function. If the clause satisfies a criterion, e.g., covers at least

a certain fraction of the positive examples and does not cover
more than a certain fraction of negative ones, the algorithm

adds the clause to the learned definition and discards the

positive examples covered by the clause. It stops when all

positive examples are covered by the learned definition.

Algorithm 1: Covering approach algorithm.

Input :Database instance I , examples E
Output :Horn definition H

1 H = {}

2 U = E+

3 whileU is not empty do
4 C = LearnClause(I ,U , E−)

5 if C satisfies minimum criterion then
6 H = H ∪C

7 U = U − {e ∈ U |H ∧ I |= e}

8 return H

2.2 Matching Dependencies
Learning over databases with heterogeneity in representing

values may deliver inaccurate answers as the same entities

and values may be represented under different names. Thus,

one must resolve these representational differences to pro-

duce a high-quality database to learn an effective definition.

The database community has proposed declarative match-

ing and resolution rules to express the domain knowledge

about matching and resolution [5, 7, 9, 13, 24, 26, 32, 33, 51].

Matching dependencies (MD) are a popular type of such declar-
ative rules, which provide a powerful method of expressing

domain knowledge on matching values [8, 10, 23, 24, 38].

Let S be the schema of the original database and R1 and

R2 two distinct relations in S. Attributes A1 and A2 from

relations R1 and R2, respectively, are comparable if they

share the dame domain. MD σ is a sentence of the form

R1[A1] ≈dom(A1) R2[B1], . . . , R1[An] ≈dom(An ) R2[Bn] →
R1[C1] ⇌ R2[D1], . . . , R1[Cm] ⇌ R2[Dm], where Ai and

Cj are comparable to Bi and D j , respectively, 1 ≤ i ≤ n,
and 1 ≤ j ≤ m. Operation ≈d is a similarity operator de-

fined over domain d and R1[Cj ] ⇌ R2[D j ],1 ≤ j ≤ m, indi-

cates that the values of R1[Cj ] and R2[D j ] refer to the same

value, i.e., are interchangeable. Intuitively, the aforemen-

tioned MD says that if the values of R1[Ai ] and R2[Bi ] are
sufficiently similar, the values of R1[Cj ] and R2[D j ] are differ-

ent representations of the same value. For example, consider

again the database that contains relations from IMDb and

BOM whose schema fragments are shown in Table 1. Ac-

cording to our discussion in Section 1, one can define the

following MD σ1 : movies[title] ≈ highBudgetMovies[title]
→ movies[title] ⇌ highBudgetMovies[title]. The exact im-

plementation of the similarity operator depends on the un-

derlying domains of attributes. Our results are orthogonal

to the implementation details of the similarity operator. In

the rest of the paper, we use ≈d operation only between

comparable attributes. For brevity, we eliminate the domain

d from ≈d when it is clear from the context or the results

hold for any domain d . We also denote R1[A1] ≈ R2[B1], . . . ,



R1[An] ≈ R2[Bn] in an MD as R1[A1...n] ≈ R2[B1...n]. An MD

R1[A1...n] ≈ R2[B1...n] → R1[C1] ⇌ R2[D1], . . . , R1[Cm] ⇌
R2[Dm] is equivalent to a set of MDs R1[A1...n] ≈ R2[B1...n]

→ R1[C1] ⇌ R2[D1], R1[A1...n] ≈ R2[B1...n] → R1[C2] ⇌
R2[D2], . . . ,→ R1[C1] ⇌ R2[D1] → . . . , R1[Cm] ⇌ R2[Dm].

Thus, for the rest of the paper, we assume that each MD

is in the form of R1[A1...n] ≈ R2[B1...n] → R1[C] ⇌ R2[D],
where C and D are comparable attributes of R1 and R2, re-

spectively. Given a database with MDs, one must enforce the

MDs to generate a high-quality database. Let tuples t1 and t2
belong to R1 and R2 in database I of schema S, respectively,

such that t I
1
[Ai ] ≈ t I

2
[Bi ], 1 ≤ i ≤ n, denoted as t I

1
[A1...n] ≈

t I
2
[B1...n] for brevity. To enforce the MD σ : R1[A1...n] ≈

R2[B1...n] → R1[C]⇌ R2[D] on I , one must make the values

of t I
1
[C] and t I

2
[D] identical as they actually refer to the same

value [10, 24]. For example, if attributes C and D contain

titles of movies, one unifies both values Star Wars - 1977 and
Star Wars - IV to Star Wars Episode IV - 1977 as it deems this

value as the one to which t I
1
[C] and t I

2
[D] refer. The following

definition formalizes the concept of applying an MD to the

tuples t1 and t2 on I .

Definition 2.2. Database I ′ is the immediate result of en-
forcing MD σ on t1 and t2 in I , denoted by (I , I ′)[t1,t2] |= σ
if

(1) t I
1
[A1...n] ≈ t

I
2
[B1...n], but t I1[C] , t I

2
[D];

(2) t I
′

1
[C] = t I

′

2
[D] ; and

(3) I and I ′ agree on every other tuple and attribute value.

One may define a unification function over some domains

to map the values that refer to the same value to the correct

value in the cleaned instance. It is, however, usually difficult

to define such a function due to the lack of knowledge about

the correct value. For example, let C and D in Definition 2.2

contain information about names of people and t I
1
[C] and

t I
2
[D] have values J. Smth and Jn Sm, respectively, which

according to an MD refer to the same actual name, which is

Jon Smith. It is not clear how to compute Jon Smith using

the values of t I
1
[C] and t I

2
[D]. We know that the values of

t I
′

1
[C] and t I

′

2
[D] will be identical after enforcing σ , but we

do not usually know their exact values. Because we aim at

developing learning algorithms that are efficient and effective

over databases from various domains, we do not fix any

matching method in this paper. We assume that matching

every pair of values a and b in the database creates a fresh

value denoted as va,b .
Given the database I with the set of MDs Σ, I ′ is stable if
(I , I ′)[t1,t2] |= σ for all σ ∈ Σ and all tuples t1, t2 ∈ I

′
. In a sta-

ble database instance, all values that represent the same data

item according to the databaseMDs are assigned equal values.

Thus, it does not have any heterogeneities. Given a database

I with set of MDs Σ, one can produce a stable instance for

I by starting from I and iteratively applying each MD in Σ
according to Definition 2.2 finitely many times [10, 24]. Let

I , I1, . . . , Ik denote the sequence of databases produced by

applying MDs according to Definition 2.2 starting from I
such that Ik is stable. We say that (I , Ik ) satisfy Σ and denote

it as (I , Ik ) |= Σ. A database may have many stable instances

depending on the order of MD applications [10, 24].

Example 2.3. Let (10,‘Star Wars: Episode IV - 1977’, 1977)
and (40,‘Star Wars: Episode III - 2005’, 2005) be tuples in relation
movies and (‘Star Wars’) be a tuple in relation highBudget-
Movies whose schemas are shown in Table 1. Consider MD σ1 :
movies[title] ≈ highBudgetMovies[title] → movies[title] ⇌
highBudgetMovies[title]. Let ‘Star Wars: Episode IV - 1977’ ≈
‘Star Wars’ and ‘Star Wars: Episode III - 2005’ ≈ ‘Star Wars’
be true. Since the movies with titles ‘Star Wars: Episode IV -
1977’ and ‘Star Wars: Episode III - 2005’ are different movies
with distinct titles, one can unify the title in the tuple (‘Star
Wars’) in highBudgetMovies with only one of them in each
stable instance. Each alternative leads to a distinct instance.

MDs may not have perfect precision. If two values are

declared similar according to an MD, it does not mean that

they represent the same real-world entities. But, it is more

likely for them to represent the same value than the ones that

do not match an MD. Since it may be cumbersome to develop

complex MDs that are sufficiently accurate, researchers have

proposed systems that automatically discover MDs from the

database content [38].

2.3 Conditional Functional Dependencies
Users usually define integrity constraints (IC) to ensure the

quality of the data. Conditional functional dependencies

(CDF) have been useful in defining quality rules for cleaning

data [15, 22, 23, 30, 53, 53]. They extend functional depen-

dencies, which are arguably the most widely used ICs [27].

Relation R with sets of attributesX andY satisfies FDX → Y
if every pairs of tuples in R that agree on the values of X
will also agree on the values of Y . A CFD ϕ over R is a form

(X → Y , tp ) where X → Y is an FD over R and tp is a tuple

pattern over X ∪ Y . For each attribute A ∈ X ∪ Y , tp [A] is
either a constant in domain of A or an unnamed variable

denoted as ‘-’ that takes values from the domain of A. The
attributes in X and Y are separated by | | in tp . For example,

consider relationmov2locale(title, language, country) in BOM.

The CFD ϕ1: (title, language→ country, (-, English | | -) ) indi-
cates that title uniquely identifies country for tuples whose

language is English. Let ≍ be a predicate over data values

and unnamed variable ‘-’, where a ≍ b if either a = b or a
is a value and b is ‘-’. The predicate ≍ naturally extends to

tuples, e.g., (‘Bait’, English, USA) ≍ (‘Bait’, -, USA). Tuple t1
matches t2 if t1 ≍ t2. Relation R satisfies the CFD (X → Y , tp )
iff for each pair of tuples t1, t2 in the instance if t1[X ] = t2[X ]



≍ tp [X ], then t1[Y ] = t2[Y ] ≍ tp [Y ]. In other words, if t1[X ]
and t2[X ] are equal and match pattern tp [X ], t1[Y ] and t2[Y ]
are equal and match tp [Y ]. A relation satisfies a set of CFDs

Φ, if it satisfies every CFD in Φ. For each set of CFDs Φ, we
can find an equivalent set of CFDs whose members have

a single attribute on their right-hand side [15, 23, 53]. For

the rest of the paper, we assume that each CFD has a single

attribute on its right-hand side.

CFDs may be violated in real-world and heterogeneous

datasets [30, 53]. For example, the pair of tuples r1 :(‘Bait’,
English, USA) and r2 :(‘Bait’, English, Ireland) inmovie2locale
violateϕ1. One can use attribute value modifications to repair

violations of a CFD in a relation and generate a repaired

relation that satisfy the CFD [11, 15, 23, 25, 37, 52, 53]. For

instance, one may repair the violation of ϕ1 in r1 and r2 by
updating the value of title or language in one of the tuples

to value other than Bait or English, respectively. One may

also repair this violation by replacing the countries in these

tuples with the same value. Inserting new tuples do not

repair CFD violations and one may simulate tuple deletion

using value modifications. Moreover, removing tuples leads

to unnecessary loss of information for attributes that do not

participate in the CFD. Modifying attribute values is also

sufficient to resolve CFD violations [15, 53]. Thus, given a

pair of tuples t1 and t2 in R that violate CFD (X → A, tp ),
to resolve the violation, one must either modify t1[A] (resp.
t2[A]) such that t1[A] = t2[A] and t1[A] ≍ tp [A], update t1[X ]
(resp. t2[X ]) such that t1[X ] - tp [X ] (resp. t2[X ] - tp [X ])
or t1[X ] , t2[X ]. Let R be a relation that violates CFD ϕ.
Each updated instance of R that is generated by applying the

aforementioned repair operations and does not contain any

violation of ϕ is a repair of R. As there are multiple fixes for

each violation, there may be many repairs for each relation.

As opposed to FDs, a set of CFDs may be inconsistent,

i.e., there is not any non-empty database that satisfies them

[12, 15, 23, 53]. For example, the CFDs (A→ B,a1 | |b1) and
(B → A,b1 | |a2) over relation R(A,B) cannot be both satisfied

by any non-empty instance of R. The set of CFDs used in

cleaning is consistent [12, 15, 23, 53]. We refer the reader to

[12] for algorithms to detect inconsistent CFDs.

3 SEMANTIC OF LEARNING
3.1 Different Approaches
Let I be an instance of schema S with MDs Σ that violate

some CFDs Φ. A repair of I is a stable instance of I that
satisfy Φ. The values in I are repaired to satisfy Φ using

the method explained in Section 2.3. Given I and a set of

training examples E, we wish to learn a definition for a target
relation T in terms of the relations in S. Obviously, one

may not learn an accurate definition by applying current

learning algorithms over I as the algorithm may consider

different occurrences of the same value to be distinct or learn

patterns that are induced based on tuples that violate CFDs.

One can learn definitions by generating all possible repairs

of I , learning a definition over each repair separately, and

computing a union (disjunction) of all learned definitions.

Since the discrepancies are resolved in repaired instances,

this approach may learn accurate definitions.

However, this method is neither desirable nor feasible for

large databases. As a large database may have numerous

repairs, it takes a great deal of time and storage to compute

and materialize all of them. Moreover, we have to run the

learning algorithm once for each repair, which may take an

extremely long time. More importantly, as the learning has

been done separately over each repair, it is not clear whether
the final definition is sufficiently effective considering the

information of all stable instances. For example, let database

I have two repairs I s
1
and I s

2
over which the aforementioned

approach learns definitions H1 and H2, respectively. H1 and

H2 must cover a relatively small number of negative exam-

ples over I s
1
and I s

2
, respectively. However, H1 and H2 may

cover a lot of negative examples over I s
2
and I s

1
, respectively.

Thus, the disjunction of H1 and H2 will not be effective con-
sidering the information in both I s

1
and I s

2
. Hence, it is not

clear whether the disjunction of H1 and H2 is the definition

that covers all positive and the least negative examples over

I s
2
and I s

1
. Also, it is not clear how to encode usably the final

result as we may end up with numerous definitions.

Another approach is to consider only the information

shared among all repairs for learning. The resulting defini-

tion will cover all positive and the least negative examples

considering the information common among all repaired

instances. This idea has been used in the context of query

answering over inconsistent data, i.e., consistent query an-

swering [6, 10]. However, this approach may lead to ignoring

many positive and negative examples as their connections

to other relations in the database may not be present in all

stable instances. For example, consider the tuples in relations

movies and highBudgetMovies in Example 2.3. The training

example (‘Star Wars’) has different values in different stable

instances of the database, therefore, it will be ignored. It will

also be connected to two distinct movies with vastly different

properties in each instance. Similarly, repairing the instance

to satisfy the violated CFDs may further reduce the amount

of training examples shared among all repairs. The training

examples are usually costly to obtain and the lack of enough

training examples may results in inaccurate learned defini-

tions. Because in a sufficiently heterogeneous database, most

positive and negative examples may not be common among

all repairs, the learning algorithm may learn an inaccurate

or simply an empty definition.

Thus, we hit a middle-ground. We follow the approach

of learning directly over the original database. But, we also



give the language of definitions and semantic of learning

enough flexibility to take advantage of as much (training)

information as possible. Each definition will be a compact

representation of a set of definitions, each of which is suf-

ficiently accurate over some repairs. If one increases the

expressivity of the language, learning and checking cover-

age for each clause may become inefficient [20]. We ensure

that the added capability to the language of definitions is

minimal so learning remains efficient.

3.2 Heterogeneity in Definitions
We represent the heterogeneity of the underlying data in

the language of the learned definitions. Each new definition

encapsulates the definitions learned over the repairs of the

underlying database. Thus, we add the similarity operation,

x ≈ y, to the language of Horn definitions. We also add a set

of new (built-in) relation symbols Vc with arity two called

repair relations to the set of relation symbols used by the

Datalog definitions over schema S. A literal with a repair

relation symbol is a repair literal. Each repair literalVc (x,vx )
in a definition H represents replacing the variable (or con-

stant) x in (other) existing literals in H with variable vx if

condition c holds. Condition c is a conjunction of =, ,, and
≈ relations over the variables and constants in the clause.

Each repair literal reflects a repair operation explained in

Sections 2.2 and 2.3 for an MD or violated CFD over the

underlying database. The condition c is computed accord-

ing to the corresponding MD or CFD. Finally, we add a set

of literals with =, ,, and ≈ relations called restriction liter-
als to establish the relationship between the replacement

variables, e.g, vx , according to the corresponding MDs and

CFDs. Consider again the database created by integrating

IMDb and BOM datasets, whose schema fragments are in Ta-

ble 1, with MD σ1 : movies[title] ≈ highBudgetMovies[title]
→ movies[title] ⇌ highBudgetMovies[title]. We may learn

the following definition for the target relation highGrossing.
highGrossing(x) ←movies(y, t, z),mov2genres(y, ‘comedy’),

highBudgetMovies(x), x ≈ t,Vx≈t(x,vx ),

Vx≈t(t,vt ),vx = vt .

The repair literals Vx≈t(x,vx ) and Vx≈t(t,vt ) represent the
repairs applied to x and t to unify their values to a new one

according to σ1. We add equality literal vx = vt to restrict

the replacements according to the corresponding MD.

We also use repair literals to fix a violation of a CFD in a

clause. These repair literals reflect the operations explained

in Section 2.3 to fix the violation of a CFD in a relation. The

resulting clause represents possible repairs for a violation of

a CFD in the clause. A variable may appear inmultiple literals

in the body of a clause and some repairs may modify only

some of the occurrences of the variable, e.g., the example

on BOM database in Section 2.3. Thus, before adding repair

literals for both MDs and CFDs, we replace each occurrence

of a variable with a fresh one and add equality literals, i.e.,

induced equality literals, to maintain the connection between

their replacements. Similarly, we replace each occurrence of

the constant with a fresh variable and use equality literals to

set the value the variable equal to the constant in the clause.

Example 3.1. Consider the following clause, that may be
a part of a learned clause over the integrated IMDb and BOM
database for highGrossing.

highGrossing(x) ←mov2locale(x, Enдlish, z),

mov2locale(x, Enдlish, t).

This clause reflects a violation of CFD ϕ1 from Section 2.3 in
the underlying database as it indicates that English movies
with the same title are produced in different countries. We
first replace each occurrence of repeated variable x with a new
variable and then add the repair literals. Due to the limited
space, we do not show the repair literals and their conditions
for modifying the values of constant ’English’. Let condition c
be x1 = x2 ∧ z , t .
highGrossing(x1) ← mov2locale(x1, Enдlish, z),

mov2locale(x2, Enдlish, t), x1 = x2,Vc(x1,vx1 ),

Vc(x2,vx2 ),vx1 , x2,vx2 , x1,Vc(z, t),

Vc(t, z),Vc(z,vz ),Vc(t,vt ),vz = vt .

We call a clause (definition) repaired if it does not have any
repair literal. Each clause with repair literals represents a set

of repaired clauses. We convert a clause with repair literals to

a set of repaired clauses by iteratively applying repair literals

to and eliminating them from the clause. To apply a repair

literal Vc (x,vx ) to a clause, we first evaluate c considering
the (restriction) literals in the clause. If c holds, we replace
all occurrences of x with vx in all literals and the conditions

of the other repair literals in the clause and removeVc (x,vx ).
Otherwise, we only eliminate Vc (x,vx ) from the clause. We

progressively apply all repair literals until no repair literal is

left. Finally, we remove all restriction and induced equality

literals that contain at least one variable that does not appear

in any literal with a schema relation symbol. The resulting

set is called the repaired clauses of the input clause.
Example 3.2. Consider the following clause over the movie

database of IMDb and BOM.
highGrossing(x) ←movies(y, t, z),mov2genres(y, ‘comedy’),

highBudgetMovies(x), x ≈ t,Vx≈t(x,vx ),

Vx≈t(t,vt ),vx = vt .

The application of repair literals Vx≈t(x,vx ) and Vx≈t(t,vt )
results in the following clause.
highGrossing(vx ) ←movies(y,vt , z),mov2genres(y, ‘comedy’),

highBudgetMovies(vx ),vx = vt .



Similar to the repair of a database based onMDs and CFDs,

the application of a set of repair literals to a clause may create

multiple repaired clauses depending on the order by which

the repair literals are applied.

Example 3.3. Consider a target relationT (A), an input data-
base with schema {R(B), S(C)}, and MDs ϕ1 :T [A] ≈ R[B] →
T [A]⇌ R[B] and ϕ2 :T [A] ≈ S[C] → T [A]⇌ S[C]. The defi-
nition H : T (x) ← R(y), x ≈ y,Vx≈y (x,vx ), Vx≈y (y,vy ),vx =
vy , S(z), x ≈ z, Vx≈z (x,ux ), Vx≈z (z,vz ),ux = vz . over this
schema has two repaired definitions:H ′

1
:T (vx ) ←R(vy ),vx =

vy , S(z). and H ′
2
: T (ux ) ← R(y), S(vz ),ux = vz . As another

example, the application of each repair literal in the clause of
Example 3.1 results in a distinct repaired clause. For instance,
applying Vc(x1,vx1 ) replaces x1 with vx1 in all literals and
conditions of the repair literals and results in the following.
highGrossing(vx1 ) ← mov2locale(vx1, Enдlish, z),

mov2locale(x2, Enдlish, t),Vc(x2,vx2 ),vx1 , x2.

As Example 3.3 illustrates, repair literals provide a compact

representation of multiple learned clauses where each may

explain the patterns in the training data in some repair of the

input database. Given an input definition H , the repaired def-
initions of H are a set of definitions where each one contains

exactly one repaired clause per each clause in H .

3.3 Coverage Over Heterogeneous Data
A learning algorithm evaluates the score of a definition ac-

cording to the number of its covered positive and negative

examples. One way to measure the score of a definition is to

compute the difference of the number of positive and neg-

ative examples covered by the definition [17, 47, 54]. Each

definition may have multiple repaired definitions each of

which may cover a different number of positive and negative

examples on the repairs of the underlying database. Thus, it

is not clear how to compute the score of a definition.

One approach is to consider that a definition covers a pos-

itive example if at least one of its repaired definitions covers

it in some repaired instances. Given all other conditions are

the same, this approach may lead to learning a definition

with numerous repaired definitions where each may not

cover sufficiently many positive examples. Hence, it is not

clear whether each repaired definition is accurate. A more

restrictive approach is to consider that a definition covers a

positive example if all its repaired definitions cover it. This

method will deliver a definition whose repaired definitions

have high positive coverage over repaired instances. There

are similar alternatives for defining coverage of negative ex-

amples. One may consider that a definition covers a negative

example if all of its repaired definitions cover it. Thus, if

at least one repaired definition does not cover the negative

example, the definition will not cover it. This approach may

lead to learning numerous repaired definitions, which cover

many negative examples. On the other hand, a restrictive

approach may define a negative example covered by a defini-

tion if at least one of its repaired definitions covers it. In this

case, generally speaking, each learned repaired definition

will not cover too many negative examples. We follow a more

restrictive approach.

Definition 3.4. A definition H covers a positive example e
w.r.t. to database I iff every repaired definition of H covers e in
some repairs of I .

Example 3.5. Consider again the schema, MDs, and def-
inition H in Examples 3.3 and the database of this schema
with training example T (a) and tuples {R(b), S(c)}. Assume
that a ≈ b and a ≈ c are true. The database has two stable
instances I ′

1
: {T (va,b ),R(va,b ), S(c)} and I ′

2
: {T (va,c ),R(b),

S(va,c )}. Definition H covers the single training example in
the original database according to Definition 3.4 as its repaired
definitions H ′

1
and H ′

2
cover the training example in repaired

instances I ′
1
and I ′

2
, respectively.

Definition 3.4 provides a more flexible semantic than con-

sidering only the common information between all repaired

instances as described in Section 3.1. The latter semantic

considers that the definitionH covers a positive example if it

covers the example in all repaired instances of a database. As

explained in Section 3.1, this approach may lead to ignoring

many if not all examples.

Definition 3.6. A definition H covers a negative exam-
ple e with regard to database I if at least one of the repaired
definitions of H covers e in some repairs of I .

4 DLEARN
In this section, we propose a learning algorithm calledDLearn
for learning over heterogeneous data efficiently. It follows

the approach used in the bottom-up relational learning algo-

rithms [42, 44–46]. In this approach, the LearnClause func-
tion in Algorithm 1 has two steps. It first builds the most

specific clause in the hypothesis space that covers a given

positive example, called a bottom-clause. Then, it generalizes
the bottom-clause to cover asmost positive and as fewest neg-

ative examples as possible. DLearn extends these algorithms

by integrating the input MDs and CFDs into the learning

process to learn over heterogeneous data.

4.1 Bottom-clause Construction
A bottom-clause Ce associated with an example e is the most

specific clause in the hypothesis space that covers e relative
to the underlying database I . Let I be the input database of
schema S and the set of MDs Σ and CFDs Φ. The bottom-

clause construction algorithm consists of two phases. First,



Table 2: Example movie database.
movies(m1,Superbad (2007),2007) mov2genres(m1,comedy)

movies(m2,Zoolander (2001),2001) mov2genres(m2,comedy)

movies(m3,Orphanage (2007),2007) mov2genres(m3,drama)

mov2countries(m1,c1) countries(c1,USA)

mov2countries(m2,c1) countries(c2,Spain)

mov2countries(m3,c2) englishMovies(m1)

mov2releasedate(m1,August,2007) englishMovies(m2)

mov2releasedate(m2,September,2001) senglishMovies(m3)

it finds all the information in I relevant to e . The informa-

tion relevant to example e is the set of tuples Ie ⊆ I that
are connected to e . A tuple t is connected to e if we can

reach t using a sequence of exact or approximate (similarity)

matching operations, starting from e . Given the information

relevant to e , DLearn creates the bottom-clause Ce .

Example 4.1. Given example highGrossing(Superbad), data-
base in Table 2, andMDσ2 : highGrossing[title] ≈ movies[title]
→ highGrossing[title]⇌ movies[title], DLearn finds the rele-
vant tuples movies(m1, Superbad (2007), 2007), mov2genres(m1,
comedy), mov2countries(m1, c1), englishMovies(m1),
mov2releasedate(m1, August, 2007), and countries(c1, USA). As
the movie title in the training example, e.g., Superbad, does not
exactly match with the movie title in the movies relation, e.g.,
Superbad (2007), the tuple movies(m1, Superbad (2007), 2007) is
obtained through an approximate match and similarity search
according to σ2. We get others via exact matches.

To find the information relevant to e , DLearn uses Algo-

rithm 2. It maintains a setM that contains all seen constants.

Let e = T (a1, . . . ,an) be a training example. First, DLearn

adds a1, . . . ,an toM . These constants are values that appear

in tuples in I . Then, DLearn searches all tuples in I that con-
tain at least one constant inM and adds them to Ie . For exact
search, DLearn uses simple SQL selection queries over the

underlying relational database. For similarity search, DLearn

uses MDs in Σ. If M contains constants in some relation

Ri and given an MD σ ′ ∈ Σ, σ ′ : R1[A1...n] ≈ R2[B1...n]

→ R1[C]⇌ R2[D] DLearn performs a similarity search over

R2[Bj ], 1 ≤ j ≤ n to find relevant tuples in R2, denoted by

ψBi≈M (R2). We store these pairs of tuples that satisfy the

similarity match in Ie in a table in main memory. We will

discuss the details of the implementation of DLearn over

relational database systems in Section 5. For each new tuple

in Ie , the algorithm extracts new constants and adds them to

M . It repeats this process for a fixed number of iterations d .
To create the bottom-clauseCe from Ie , DLearn first maps

each constant in M to a new variable. It creates the head

of the clause by creating a literal for e and replacing the

constants in e with their assigned variables. Then, for each

tuple t ∈ Ie , DLearn creates a literal and adds it to the body

of the clause, replacing each constant in t with its assigned

variable. If there is a variable that appears in more than a

Algorithm 2: DLearn bottom-clause construction

algorithm.

Input :example e , # of iterations d
Output :bottom-clause Ce

1 Ie = {}

2 M = {} //M stores known constants

3 add constants in e toM

4 for i = 1 to d do
5 foreach relation R ∈ I do
6 foreach attribute A in R do
7 // select tuples with constants in M

8 IR = σA∈M (R)

9 if ∃ MD σ ′ ∈ Σ, σ ′ : R1[A1...n] ≈

R2[B1...n] → R1[C]⇌ R2[D] then
10 IR = IR ∪ψBj≈M (R), 1 ≤ j ≤ n

11 foreach tuple t ∈ IR do
12 add t to Ie and constants in t toM

13 Ce = create clause from e and Ie
14 return Ce

single literal, we add the equality literals according to the

method explained in Section 3.2. If t satisfies a similarity

match according to the table of similarity matches with tuple

t ′, we add a similarity literal s per each value match in t
and t ′ to the clause. Let σ be the corresponding MD of this

similarity match. We will also add repair literals Vs (x,vx )
and Vs (y,vy ) and restriction equality literal vx = vy to the

clause according to siдma.

Example 4.2. Given the relevant tuples found in Exam-
ple 4.1, DLearn creates the following bottom-clause:

highGrossing(x) ← movies(y, t, z), x ≈ t,Vx≈t(x,vx ),

Vx≈t(t,vt ),vx = vt ,mov2genres(y, ‘comedy’),

mov2countries(y,u), countries(u, ‘USA’),

englishMovies(y),mov2releasedate(y, ‘August’,w).

Then, we scanCe to find violations of each CFD in Φ and add

their corresponding repair literals. Since each CFD is defined

over a single table, we first group literals inCe based on their

relation symbols. For each group with the relation symbol R
and CFD ϕ on R, our algorithm scans the literals in the group,

finds every pair of literals that violate ϕ, and adds the repair

and restriction literals to the group. We add the repair and

restriction literals corresponding to the repair operations

explained in Section 2.3 to the group and consequently Ce
as illustrated in Example 3.1. The added repair literals will

not induce any new violation of ϕ in the clause [15, 23, 53].

However, repairing a violation of ϕ may induce violations

for anther CFD ϕ ′ over R [23]. For example, consider CFD

ϕ3 : (A → B,− || −) and ϕ4 : (B → C,− || −) on relation



R(A,B,C). Given literals l1 : R(x1,y1, z1) and l2 : R(x1,y1, z2)
that violate ϕ4, our method adds repair literals that replaces

y1 in l1 with a fresh variable. This repair literal produces a re-

paired clause that violates ϕ3. Thus, the algorithm repeatedly

scans the clause and adds repair and restriction literals to it

for all CFDs until there is a repair for every violation of CFDs

both the ones in the original clause and the ones induced

by the repair literals added in the preceding iterations. The

repaired literals for the violations induced by other repair

literals will use the replacement variables from the violating

repair literals as their arguments and conditions.

It may take a long time to generate the clause that contains

all repair literals for all original and induced violations of

every CFD in a large input bottom-clause. Hence, we reduce

the number of repair literals per CFD violation by adding

only the repair literals for the variables of the right-hand

side attribute of the CFD that use current variables in the

violation. For instance, in Example 3.1, the algorithm does

not introduce literals Vc(z,vz ), Vc(t,vt ), and vz = vt and
only uses literals Vc(z, t) and Vc(t, z) to repair the clause in

Example 3.1. The repair literals for the variables correspond-

ing to the left-hand side of the CFD will be used as explained

before. This approach follows the popular minimal repair

semantic for repairing CFDs [11, 15, 23, 25, 37, 52, 53] as

it repairs the violation by modifying fewer variable than

the repair literals that introduce fresh variables to the both

literals of the violation, e.g., one versus two modifications

induced by Vc(z,vz ), Vc(t,vt ) in the repair of the clause in

Example 3.1. Since each CFD is defined over a single relation,

the aforementioned steps are applied separately to literals

of each relation, which are usually a considerably smaller

set than the set of all literals in the bottom-clause. Moreover,

the bottom-clause is significantly smaller than the size of

the whole database. Thus, the bottom-clause construction

algorithm takes significantly less time than producing the

repairs of the underlying database.

Current bottom-clause constructions methods do not in-

duce inequality neq literal between distinct constants in

the database and their corresponding variables and repre-

sent their relationship by replacing them with distinct vari-

ables. If the inequality literal is used, the eventual gener-

alization of the bottom-clause may be too strict and lead

to a learned clause that does not cover sufficiently many

positive examples [17, 43, 45, 46]. For example, let T (x) : −
R(x,y), S(x, z), y , z. be a bottom-clause. This clause will

not cover positive examples such as T (a) for which we have

T (a) : − R(a,b), S(a,b). However, the bottom-clauseT (x) : −
R(x,y), S(x, z) has more generalization power and may cover

both positive examples such asT (a) andT (c) such thatT (c) :
− R(c,b), S(c,d). As the goal of our algorithm is to simulate

relational learning over repaired instances of the original

database, we follow the same approach and remove the in-

equality literals between variables. As our repair operations

ensure that the arguments of inequality literals are distinct

variables, our method exactly emulates bottom-clause con-

struction in relational learning. The inequalities remain in

the condition c of each repair literal Vc and will return true

if the variables are distinct and there is no equality literal

between them in the body of the clause and false otherwise.

They are not used in learning and are used to apply repair

literals on the final clause.

Proposition 4.3. The bottom-clause construction algorithm
for positive example e and database I with MDs Σ and CFD Φ
terminates. Also, the bottom-clause Ce created from Ie using
the algorithm covers e .

4.2 Generalization
After creating the bottom-clause Ce for example e , DLearn
generalizes Ce to produce a clause that is more general than
Ce . Clause C is more general than clause D if and only if C
covers at least all positive examples covered by D. A more

general clause than Ce may cover more positive examples

thanCe . DLearn iteratively applies the generalization to find

a clause that covers the most positive and fewest negative ex-

amples as possible. It extends the algorithm in ProGolem [45]

to produce generalizations ofCe in each step efficiently. This

algorithm is based on the concept of θ -subsumption, which

is widely used in relational learning [17, 43, 45]. We first

review the concept of θ -subsumption for repaired clauses

[17, 45], then, we explain how to extend this concept and its

generalization methods for non-stable clauses.

Repaired clause C θ -subsumes repaired clause D, denoted
byC ⊆θ D, iff there is some substitution θ such thatCθ ⊆ D
[2, 17], i.e., the result of applying substitution θ to literals in

C creates a set of literals that is a subset of or equal to the set

of literals in D. For example, clause C1 : highGrossing(x) ←
movies(x,y, z) θ -subsumesC2 : highGrossing(a)←movies(a,
b, c), mov2genres(b, ‘comedy’) as for substitution θ = {x/a,
y/b, z/c}, we have C1θ ⊆ C2. We call each literal LD in

D where there is a literal LC in C such that LCθ = LD a

mapped literal under θ . For Horn definitions, we have C θ -
subsumes D iffC |= G , i.e.,C logically entails D [2, 17]. Thus,

θ -subsumption is sound for generalization. If clauses C and

D contain equality and similarity literals, the subsumption

checking requires additional testings, which can be done

efficiently [2, 4, 17]. Roughly speaking, current learning al-

gorithms generalize a clause D efficiently by eliminating

some of its literals which produces a clause that θ -subsumes

D. We define θ -subsumption for clauses with repair literals

using its definition for the repaired ones. Given a clause D, a
repair literalVc (x,vx ) in D is connected to a non-repair literal



L in D iff x or vx appear in L or in the arguments of a repair

literal connected to L.

Definition 4.4. LetV (C) denote the set of all repair literals
in C θ -subsumes D, denoted by C ⊆θ D, iff
• there is some substitution θ such that Cθ ⊆ D where
repair literals are treated as normal ones and
• every repair literal connected to a mapped literal in D is
also a mapped literal under θ .

Definition 4.4 ensures that each repair literal that modifies a

mapped one in D has a corresponding repair literal in C . In-
tuitively, this guarantees that there is subsumption mapping

between corresponding repaired versions of C and D. The
next step is to examine whether θ -subsumption provides a

sound bases for generalization of clauses with repair literals.

We first define logical entailment following the semantics of

Definition 3.4.

Definition 4.5. We have C |= D if and only if there is an
onto relation f from the set of repairs ofC to the one of D such
that for each repaired clause of C , Cr , and each Dr ∈ f (Cr ),
we have Cr |= Dr .

According to Definitions 4.5, if one wants to follow the

generalization method used in the current learning algo-

rithm to check whether C generalizes D, one has enumerate

and check θ -subsumption of almost every pair of repaired

clauses of C and D in the worst case. Since both clauses nor-

mally contain many literals and θ -subsumption is NP-hard

[2], this method is not efficient. The problem is more com-

plex if one wants to generalize a given clause D. It may have

to generate all repaired clauses of D and generalize each of

them separately. It is not clear how to unify and represent

all produced repaired clauses in a single non-repaired one. It

quickly explodes the hypothesis space if we cannot represent

them in a single clause as the algorithm may have to keep

track and generalize of almost as many clauses as repairs

of the underlying database. Also, because the learning algo-

rithm performs numerous generalizations and coverage tests,

learning a definition may take an extremely long time. The

following theorem establishes that θ -subsumption is sound

for generalization of clauses with repair literals.

Theorem 4.6. Given clauses C and D, if C θ -subsumes D,
we have C |= D.
To generalize Ce , DLearn randomly picks a subset E+s ⊆ E+

of positive examples. For each example e ′ in E+s , DLearn
generalizes Ce to produce a candidate clause C ′, which is

more general than Ce and covers e ′. Given clause Ce and

positive example e ′ ∈ E+s , DLearn produces a clause that θ -
subsumes Ce and covers e ′ by removing the blocking literals.
It first creates a total order between the relation symbols and

the symbols of repair literals in the schema of the underlying

database, e.g., using a lexicographical order and adding the

condition and argument variables to the symbol of the repair

literals. Thus, it establishes an order in each clause in the

hypothesis space. Let Ce = T ← L1, · · · , Ln be the bottom-

clause. The literal with relation symbol Li is a blocking literal
if and only if i is the least value such that for all substitutions

θ where e ′ = Tθ , (T ← L1, · · · , Li )θ does not cover e ′ [45].

Example 4.7. Consider the bottom-clauseCe in Example 4.2
and positive example e ′ = highGrossing(‘Zoolander’). To gen-
eralize Ce to cover e ′, DLearn drops the literal
mov2releasedates(y, ‘August’,u) because the movie Zoolander
was not released in August.
DLearn removes all blocking literals in Ce to produce the

generalized clause C ′. DLearn also ensures that all literals

in the resulting clause are head-connected. For example, if a

non-repair literal L is dropped so as the repair literals whose

only connection to the head literal is through L. Since C ′

is generated by dropping literals, it θ -subsumes Ce . It also

covers e ′ by construction. DLearn generates one clause per

example in E+s . From the set of generalized clauses, DLearn

selects the highest scoring candidate clause. The score of a

clause is the number of positive minus the number of neg-

ative examples covered by the clause. DLearn then repeats

this with the selected clause until its score is not improved.

During each generalization step, the algorithm should

ensure that the generalization is minimal with respect to

θ -subsumption, i.e., there is not any other clause G such

thatG θ -subsumesCe andC
′ θ -subsumesG [45]. Otherwise,

the algorithm may miss some effective clauses and produce

a clause that is overly general and may cover too many

negative examples. The following proposition states that

DLearn produces a minimal generalization in each step.

Proposition 4.8. Let C be a head-connected and ordered
clause generated from a bottom-clause using DLearn gener-
alization algorithm. Let clause D be the generalization of C
produced in a single generalization step by the algorithm. Given
the clause F that θ -subsumes C , if D θ -subsumes F , then D
and F are equivalent.

4.3 Efficient Coverage Testing
DLearn checks whether a candidate clause covers training

examples in order to find blocking literals in a clause. It also

computes the score of a clause by computing the number

of training examples covered by the clause. Coverage tests

dominate the time for learning [17]. One approach to per-

form a coverage test is to transform the clause into a SQL

query and evaluate it over the input database to determine

the training examples covered by the clause. However, since

bottom-clauses over large databases normally have many lit-

erals, e.g., hundreds of them, the SQL query will involve long

joins, making the evaluation extremely slow. Furthermore, it



is challenging to evaluate clauses using this approach over

heterogeneous data [10]. It is also not clear how to evaluate

clauses with repair literals.

We use the concept of θ -subsumption for clauses with

repair literals and the result of Theorem 4.6 to compute cov-

erage efficiently. To evaluate whether C covers a positive ex-

ample e over database I , we first build a bottom-clauseGe for

e in I called a ground bottom-clause. Then, we check whether
C ∧ I |= e using θ -subsumption. We first check whether

C ⊆θ Ge . Based on Theorem 4.6, if we find a substitution θ
for C such that Cθ ⊆ Ge , and C logically entails Ge , thus, C
covers e . However, if we cannot find such a substitution, it

is not clear whether C logically entails Ge as Theorem 4.6

does not provide the necessity of θ -subsumption for logical

entailment. Fortunately, this is true if we have only repair

literals for MDs in C and Ge .

Theorem 4.9. Given clausesC and D such that every repair
literal in C and D corresponds to an MD, if C |= D, C θ -
subsumes D.
We leverage Theorem 4.9 to check whether C covers e ef-

ficiently as follows. Let Cmd
and Gmd

e be the clauses that

have the same head literal as C and Ge and contain all body

literals in C andGe without any connected repair literal and

the ones where all their connected repair literals correspond

to some MDs, respectively. Thus, if there is no subsumption

betweenC andGe , our algorithm tries to find a subsumption

between Cm
and Gm

e . If there is no subsumption mapping

betweenCm
andGm

e ,C does not cover e . Otherwise, letCcf d

and G
cf d
e be the set of body literals of C and Ge that do not

appear in the body of Cmd
and Gmd

e , respectively. We apply

the repair literals in Ccf d
and G

cf d
e in C and D and perform

subsumption checking for pairs of resulting clauses. If every

obtained clause ofC θ -subsumes at least one resulting clause

of Ge , C covers e . Otherwise, C does not cover e . We note

than the resulting clauses are not repairs ofC andGe as they

sill have the repair literals that correspond to some MD.

We follow a similar method to the one explained in the

preceding paragraph to check whether clauseC covers a neg-

ative example with the difference that we use the semantic

introduced in Definition 3.6 to determine the coverage of

negative examples. Let Ge− be the ground bottom-clause for

the negative example e−. We generate all repaired clauses

of the clause C as described in Section 3. Then, we check

whether each repaired clause of C θ -subsumesGe− the same

way as checking θ -subsumption for C and a ground bottom-

clause for a positive example. C θ -subsumes Ge− as soon as

one repaired clause of C θ -subsumes Ge− .

Proposition 4.10. Given the clause C and ground bottom-
clauseGe− for negative example e− relative to database I , clause
C covers e− iff a repair of C θ -subsumes G−e .

Commutativity of Cleaning & Learning: An interest-

ing question is whether our algorithm produces essentially

the same answer as the one that learns a repaired definition

over each repair of I separately.We show that, roughly speak-

ing, our algorithm delivers the same information as the one

that separately learns over each repaired instance. Thus, our

algorithm learns using the compact representation without

any loss of information. Let RepairedCls(C) denote the set
of all repaired clauses of clause C . Let BC(e , I , Σ, Φ) denote
the bottom-clause generated by applying the bottom-clause

construction algorithm in Section 4.1 using example e over
database I with the set of MDs Σ and CFDs Φ. Also, let BCr (e ,
RepairedInst(I , Σ,Φ)) be the set of repaired clauses generated
by applying the bottom-clause construction to each repair

of I for e .

Theorem 4.11. Given database I with MDs Σ, CFDs Φ and
set of positive examples E+, for every positive example e ∈ E+

BCr (e, RepairedInst(I , Σ,Φ)) = RepairedCls(BC(e, I , Σ)).

Now, assume that Generalize(C, e ′, I , Σ, Φ) denotes the clause
produced by generalizing C to cover example e ′ over data-
base I with the set of MDs Σ and CFDs Φ in a single step of

applying the algorithm in Section 4.2. Give a set of repaired

clauses C, let Generalizer (C, e ′, RepairedInst (I , Σ,Φ)) be the
set of repaired clauses produced by generalizing every re-

paired clause in C to cover example e ′ in some repair of I
using the algorithm in Section 4.2.

Theorem 4.12. Given database I withMDs Σ and set of posi-
tive examplesE+ Generalizer (StableCls(C), e ′, RepairedInst(I ,
Σ,Φ)) = RepairedCls(Generalize(C, I , e ′, Σ,Φ)).

5 IMPLEMENTATION
DLearn is implemented on top of VoltDB, voltdb.com, a main-

memory RDBMS. We use the indexing and query processing

mechanisms of the database system to create the (ground)

bottom-clauses efficiently. The set of tuples Ie that DLearn
gathers to build a bottom-clause may be large if many tu-

ples in I are relevant to e , particularly when learning over

a large database. To overcome this problem, DLearn ran-

domly samples from the tuples in Ie to obtain a smaller tuple

set I se ⊆ Ie and crates the bottom-clause based on the sam-

pled data [45, 46].. To do so, DLearn restricts the number of

literals added to the bottom-clause per relation through a

parameter called sample size. To implement similarity over

strings, DLearn uses the operator defined as the average of

the Smith-Waterman-Gotoh and the Length similarity func-

tions. The Smith-Waterman-Gotoh function [31] measures

the similarity of two strings based on their local sequence

alignments. The Length function computes the similarity

of the length of two strings by dividing the length of the

smaller string by the length of the larger string. To improve

efficiency, we precompute the pairs of similar values.



Table 3: Numbers of relations (#R), tuples (#T), positive ex-
amples (#P), and negative examples (#N) for each dataset.

Name #R #T #P #N

IMDB 9 3.3M

100 200

OMDB 15 4.8M

Walmart 8 19K

77 154

Amazon 13 216K

DBLP 4 15K

500 1000

Google Scholar 4 328K

6 EXPERIMENTS
6.1 Experimental Settings
6.1.1 Datasets. We use databases shown in Table 3.

IMDB + OMDB: The Internet Movie Database (IMDB) and

Open Movie Database (OMDB) contain information about

movies, such as their titles, year and country of production,

genre, directors, and actors [16]. We learn the target relation

dramaRestrictedMovies(imdbId), which contains the imdbId
of movies that are of the drama genre and are rated R. The

imdbId is only contained in the IMDB database, the genre

information is contained in both databases, and the rating

information is only contained in the OMDB database. We

specify an MD that matches movie titles in IMDB with movie

titles in OMDB. We refer to this dataset with one MD as

IMDB + OMDB (one MD). We also create MDs that match

cast members and writer names between the two databases.

We refer to the dataset that contains the three MDs as IMDB
+ OMDB (three MDs).
Walmart + Amazon: The Walmart and Amazon databases

contain information about products, such as their brand,

price, categories, dimensions, and weight [16]. We learn the

target relation upcOfComputersAccessories(upc), which con-

tains the upc of products that are of category Computers
Accessories. The upc is contained in the Walmart database

and the information about categories of products is contained

in the Amazon database. We use an MD that connects the

product names across the datasets.

DBLP + Google Scholar: The DBLP and Google Scholar

databases contain information about academic papers, such

as their titles, authors, and venue and year of publication [16].

The information in the Google Scholar database is not clean,

complete, or consistent, e.g., many tuples aremissing the year

of publication. Therefore, we aim to augment the information

in the Google Scholar database with information from the

DBLP database. We learn the target relation gsPaperYear(gsId,
year), which contains the Google Scholar id gsId and the year
of publication of the paper as indicated in the DBLP database.

We use two MDs that match titles and venues in datasets.

6.1.2 CFDs. We find 4, 6, and 2 CFDs for IMDB+OMDB,

Amazon+Walmart, and DBLP+Google Scholar, respectively,

e.g., id determines title in Google Scholar. To test the perfor-

mance of DLearn on data that contains CFD violations, we

inject each aforementioned dataset with varying proportions

of CFD violations, p, randomly. For example, p of 5% means

that 5% of tuples in each relation violate at least one CFD.

6.1.3 Systems,Metrics, and Environment. We compareDLearn

against three baseline methods to evaluate the handling of

MDs over datasets with only MDs. These methods use Castor,
a state-of-the-art relational learning system [46].

Castor-NoMD: We use Castor to learn over the original

databases. It does not use any information from MDs.

Castor-Exact: We use Castor, but allow the attributes that

appear in an MD to be joined through exact joins. Therefore,

this system uses information from MDs but only considers

exact matches between values.

Castor-Clean: We resolve the heterogeneities between en-

tity names in attributes that appear in an MD by matching

each entity in one database with the most similar entity in

the other database. We use the same similarity function used

by DLearn. Once the entities are resolved, we use Castor to

learn over the unified and clean database.

To evaluate the effectiveness and efficiency of the version

of DLearn that supports both MDs and CFDs, DLearn-CFD
we compare it with a version of DLearn that supports only

MDs and is run over a version of the database whose CFD

violations are repaired, DLearn-Repaired. We obtain this

repair using the minimal repair method, which is popular in

repairing CFDs [23]. This enables us to evaluate our method

for each type of inconsistencies separately. We perform 5-

fold cross validation over all datasets and report the average

F1-score and time over the cross validation. DLearn uses

the parameter sample size to restrict the size of (ground)

bottom-clauses. We fix sample size to 10. All systems use 16

threads to parallelize coverage testing. We use a server with

30 2.3GHz Intel Xeon E5-2670 processors, running CentOS

Linux with 500GB of main memory.

6.2 Empirical Results
6.2.1 Handling MDs. Table 4 shows the results over all

datasets using DLearn and the baseline systems. DLearn

obtains a better F1-score than the baselines for all datasets.

Castor-Exact obtains a competitive F1-score in the IMDB

+ BOM dataset with three MDs. The MDs that match cast

members and writer names between the two databases con-

tain many exact matches. DLearn also learns effective defini-

tions over heterogeneous databases efficiently. Using MDs

enables DLearn to consider more patterns, thus, learn a more

effective definition. For example, Castor-Clean learns the



Table 4: Results of learning over all datasets with MDs. Number of top similar matches denoted by km .

Dataset Metric

Castor- Castor- Castor- DLearn

NoMD Exact Clean km = 2 km = 5 km = 10

IMDB + OMDB F1-score 0.47 0.59 0.86 0.90 0.92 0.92
(one MD) Time (m) 0.12 0.13 0.18 0.26 0.42 0.87

IMDB + OMDB F1-score 0.47 0.82 0.86 0.90 0.93 0.89

(three MDs) Time (m) 0.12 0.48 0.21 0.30 25.87 285.39

Walmart + F1-score 0.39 0.39 0.61 0.61 0.63 0.71
Amazon Time (m) 0.09 0.13 0.13 0.13 0.13 0.17

DBLP + F1-score 0 0.54 0.61 0.67 0.71 0.82
Google Scholar Time (m) 2.5 2.5 3.1 2.7 2.7 2.7

Table 5: Results of learning over all datasets with MDs and CFD violations. p is the percentage of CFD violation.

Dataset Metric

DLearn-CFD DLearn-Repaired

p = 0.05 p = 0.10 p = 0.20 p = 0.05 p = 0.10 p = 0.20

IMDB +

OMDB (three MDs)

F-1 Score 0.79 0.78 0.73 0.76 0.73 0.50

Time (m) 11.15 16.26 26.95 5.70 12.54 22.28

Walmart +

Amazon

F-1 Score 0.64 0.61 0.54 0.49 0.52 0.56
Time (m) 0.17 0.2 0.23 0.18 0.18 0.19

DBLP +

Google Scholar

F-1 Score 0.79 0.68 0.47 0.73 0.55 0.23

Time (m) 5.92 7.04 8.57 2.51 2.6 6.51

Table 6: Learning over the IMDB+OMDB (3 MDs) with CFD violations by increasing positive (#P) and negative (#N) examples.

#P/#N

km = 5 km = 2

100/200 500/1k 1k/2k 2k/4k 100/200 500/1k 1k/2k 2k/4k

F-1 Score 0.78 0.82 0.81 0.82 0.78 0.79 0.81 0.81

Time (m) 16.26 72.16 121.04 317.5 0.34 2.01 2.76 5.19

Figure 1: Learning over the IMDB+OMDB (3 MDs) dataset while increasing the number of positive and negative (#P, #N)
examples (left) and while increasing sample size for km = 2 (middle) and km = 5 (right).

following definition over Walmart + Amazon:

upcComputersAccessories(v0) ← walmart_ids(v1, v2, v0),

walmart_title(v1, v9), v9 = v10,

walmart_groupname(v1, “Electronics − General”),

amazon_title(v11, v10), amazon_listprice(v11, v16).

(positove covered=29, negative covered=11)

upcComputersAccessories(v0) ← walmart_ids(v1, v2, v0),

walmart_title(v1, v6), v6 = v7, amazon_title(v8, v7),

amazon_category(v8, “ComputersAccessories”).

(positove covered=38, negative covered=4)

The definitions learned by DLearn over the same data is:

upcComputersAccessories(v0) ← walmart_ids(v1, v2, v0),

walmart_title(v1, v9), v9 ≈ v10,

amazon_title(v11, v10), amazon_itemweight(v11, v16),

amazon_category(v11, “ComputersAccessories”).

(positove covered=35, negative covered=5)

upcComputersAccessories(v0) ← walmart_ids(v1, v2, v0),

walmart_brand(v1, “Tribeca”).

(positove covered=8, negative covered=0)



Table 7: Results of changing the number of iterations.

Metric

km = 5

d=2 d=3 d=4 d=5

F-1 Score 0.52 0.52 0.78 0.80

Time (m) 1.35 4.35 16.26 37.56

The definition learned by DLearn has higher precision; they

have a similar recall. Castor-Clean first learns a clause that

covers many positive examples but is not the desired clause.

This affects its precision. DLearn first learns the desired

clause and then learns a clause that has high precision.

The effectiveness of the definitions learned by DLearn

depends on the number of matches considered in MDs, de-

noted by km . In the Walmart + Amazon, IMDB + BOM (one

MD), and DBLP + Google Scholar datasets, using a higher km
value results in learning a definition with higher F1-score.

When using multiple MDs or when learning a difficult con-

cept, a high km value affects DLearn’s effectiveness. In these

cases, incorrect matches represent noise that affects DLearn’s

ability to learn an effective definition. Nevertheless, it still

delivers a more effective definition that other methods. As

the value of km increases so does the learning time. This is

because DLearn has to process more information.

Next, we evaluate the effect of sampling on DLearn’s ef-

fectiveness and efficiency. We use the IMDB + OMDB (three

MDs) dataset and fix km = 2 and km = 5. We use 800 positive

and 1600 negative examples for training, and 200 positive

and 400 negative examples for testing. Figure 1 (middle and

right) shows the F1-score and learning time of DLearn with

km = 2 and km = 5, respectively, when varying the sample

size. For both values of km , the F1-score does not change
significantly with different sampling sizes. With km = 2,

the learning time remains almost the same with different

sampling sizes. However, with km = 5, the learning time

increases significantly. Therefore, using a small sample size

is enough for learning an effective definition efficiently.

6.2.2 Handling MDs and CFDs. Table 5 compares DLearn-

Repaired and DLearn-CFD. Over all three datasets DLearn-

CFD performs (almost) equal to or substantially better than

the baseline at all levels of violation injection. Since DLearn-

CFD learns over all possible repairs of violating tuples, it has

more available information and consequently its hypothesis

space is a super-set of the one used by DLearn-Repaired.

In most datasets, the difference is more significant as the

proportion of violations increase. Both methods deliver less

effective results when there are more CFD violations in the

data. However, DLearn-CFD is still able to deliver reasonably

effective definitions. We use km = 10 for DBLP+Google

Scholar and Amazon+Walmart and km = 5 for IMDB+OMDB

as it takes a long time to use km = 5 for the latter.

6.2.3 Impact of Number of Iterations. We have used values

3, 4, and 5 for the number of iterations, d , for DBLP+Google
Scholar, IMDb+OMDB, and Walmart+Amazon datasets, re-

spectively. Table 7 shows data regarding the scalability of

DLearn-CFD over IMDb+OMDB (3 MD + 4 CFD). A higher d-
value increases both the effectiveness as well as the runtime.

We fix the value km at 5. A d-value higher than 4 generates

a very modest increase in effectiveness with a substantial

increase in runtime. This result indicates that for a given

dataset, the learning algorithm can access most relevant tu-

ples for a reasonable value of d .

6.2.4 Scalability of DLearn. We evaluate the effect of the

number of training examples in both DLearn’s effectiveness

and efficiency.We use the IMDB+OMDB (threeMDs) dataset

and fix km = 2. We generate 2100 positive and 4200 negative

examples. From these sets, we use 100 positive and 200 nega-

tive examples for testing. From the remaining examples, we

generate training sets containing 100, 500, 1000, and 2000

positive examples, and double the number of negative exam-

ples. For each training set, we use DLearn with MD support

to learn a definition. Figure 1 (left) shows the F1-scores and

learning times for each training set. With 100 positive and

200 negative examples, DLearn obtains an F1-score of 0.80.

With 500 positive and 1000 negative examples, the F1-score

increases to 0.91. DLearn is able to learn efficiently even

with the largest training set. We also evaluate DLearn with

support for both MDs and CFDs’ violations and report the

results in Table 6. It indicate that DLearn with CFD and MD

support can deliver effective results efficiently over large

number of examples with km = 2.

7 RELATEDWORK
Data cleaning is an important and flourishing area in data-

base research [7, 13, 14, 23, 24]. Most data cleaning systems

leverage declarative constraints to produce clean instances.

ActiveClean gradually cleans a dirty dataset to learn a

convex-loss model, such as Logistic Regression [39]. Its goal

is to clean the underlying dataset such that the learned model

becomes more effective as it receives more cleaned records

potentially from the user. Our objective, however, is to learn

a model over the original data without cleaning it. Further-

more, ActiveClean does not address the problem of having

multiple cleaned instances.

8 CONCLUSION & FUTUREWORK
We investigated the problem of learning directly over het-

erogeneous data and proposed a new method that leverages

constraints in learning to represent inconsistencies. Since

most of these quality problems have been modeled using

declarative constraints, we plan to extend our framework to

address more quality issues.
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