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ABSTRACT
As many users, such as scientists, do not know the schema and/or

content of their databases, they cannot precisely formulate their

information needs using formal query languages, such as SQL. To

help these users, researchers have proposed keyword query inter-

faces over which users can submit their information need using a

set of keywords without the precise knowledge about the schema

or content of the database. Despite their usability, keyword query

interfaces suffer from low effectiveness in answering queries. There-

fore, they may return many non-relevant answers or do not return
many answers related to the input queries. It is well established

that the effectiveness of answering queries decreases as the size of

the dataset grows, given all other conditions are the same. In this

paper, we propose an approach that uses only a relatively small

subset of the database to answer most queries effectively. Since

this subset may not contain the relevant answers to many queries,

we also propose a method that predicts whether a query can be

answered more effectively using this subset or the entire database.

Our comprehensive empirical studies using multiple real-world

databases and query workloads indicate that our approach signifi-

cantly improves both the effectiveness and efficiency of answering

queries.
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information retrieval.
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1 INTRODUCTION
Many users, such as scientists, are not familiar with (formal) query

languages and concepts like schema [22]. Also, they often do not
exactly know the schema and content of their databases. Thus, it

is challenging for them to formulate their information needs over

semi-structured and structured data-sets. To address this problem,

researches have proposed keyword query interfaces (KQIs) over

which a user can express a query simply as a set of keywords

without any need to know any formal query languages and/or

the schema of their databases [9, 12, 20]. As an example, consider

the DBLP (dblp.uni-trier.de) database which contains information

on computer science publications whose fragments are shown in

Figure 1. Suppose that a user wants to find the papers on cluster

data processing by Sanjay Ghemawat. These are the papers with
IDs 01 and 03 in Figure 1. To retrieve these answers, the user may

submit the keyword query q1 : “cluster data processing sanjay” to
retrieve these papers.

Since keyword queries do not generally express users’ exact

information needs, it is challenging for a KQI to satisfy the true

information needs behind these queries [12, 31]. Generally speaking,

the KQI finds the tuples in the database that contain the input

keywords, ranks them according to some ranking function that

measure how well each tuple matches the keywords in the query,

and returns the ranked list to the user. For instance, in our example,

as an answer to q1 over the database in Figure 1, the user may get a

ranked list of papers with IDs 04, 05, 01 and 03, as all these records

contain the keywords in q1. Although all of the returned tuples

contain the keywords in the query, only the last two, i.e., papers

with IDs 01 and 03, are relevant to the input query.

Current KQIs often return too many non-relevant answers and

suffer from low ranking quality over large databases [2, 7, 8, 14, 31].

Therefore, users often cannot find their desired information using

these queries. Empirical evaluations of keyword query answering

systems over semi-structured data indicate that most returned an-

swers including the top-ranked ones are not relevant to the input

query [2, 7, 8]. Similar results have been reported in the empirical

evaluation of the KQIs over relational databases [14]. For example,

in many cases, only 10%-20% of the returned answers are relevant

to the input query [2, 7, 14].

Moreover, as KQIs have to examine a large number of possible

matches and answers to the input keyword query, it takes a long

time for them to answer users’ queries [6, 14]. The query processing

time is particularly time-consuming over relational databases [6].

For queries over relational databases, a KQI has to first find tuples in

the base relations. Since none of the tuples in the base tables may be

sufficiently relevant to the query and have a relatively low score, the

KQI has to compute all possible joins of these tuples across various

https://doi.org/10.1145/3335783.3335794
https://doi.org/10.1145/3335783.3335794
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ID Title Author Year
01 MapReduce: simplified data processing on large clusters Jeff Dean, Sanjay Ghemawat 2008

02 Enabling cross-platform data processing D. Agrawal, Sanjay Chawla 2011

03 MapReduce: a flexible data processing tool Jeff Dean, Sanjay Ghemawat 2010

04 Graph data processing on clusters Sanjay Rakesh 2014

05 Secure data processing in clusters Sanjay Balraj 2015

.
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.
.
.

.

.

.
.
.
.

Figure 1: A Fragment of the DBLP Database

base relations. Empirical studies show that it may take up to 200-400

seconds to process a keyword query over relational databases [6].

Since keyword queries may often be used in an interactive fashion

to explore the database, users need a significantly shorter response

time [1, 12].

It has been long established that in most information systems,

query frequencies and their relevant answers follow a power law dis-

tribution [33, 36]. This assumption is the basis of our key intuition

that there is a small subset of tuples in the database that contains

many relevant answers to most queries. Because this subset has

far fewer tuples than the entire database, the chance of making

a mistake by KQI over this subset, i.e., returning a non-relevant

answer, is less than doing so over the entire database [31]. Thus,

on average, the KQI may return fewer non-relevant answers to

queries than when it processes the queries over the entire database.

Furthermore, since this subset is much smaller than the database,

answering queries over the subset will be potentially much faster.

For example, assume that papers with IDs 01, 03, and 05 are

more popular among users, i.e., they are relevant answers to more

queries than the papers with IDs 02 and 04 in the database shown

in Figure 1. One may run q1 : “cluster data processing sanjay” over

only these records and get a ranked list of papers with IDs 05, 01,

and 03, which contains more relevant answer than the returned

list of tuples over the entire database illustrated in Figure 1. As a

matter of fact, our empirical results over several real-world query

workloads confirm our key intuition.

The first challenge in enhancing the mentioned idea is to find

such an effective subset. If the subset contains too few tuples, it will

not contain the relevant answers of the majority of the queries or it

may contain only a small fraction of the relevant answers of most

queries (small recall). On the other hand, if the subset contains too

many tuples, then it will suffer from the same problems as running

queries over the entire database. Thus, we should address how to

pick an effective subset that contains many relevant answers to

most queries.

Although an effective subset contains relevant answers of many

queries, it will not contain any relevant answers to a small fraction

of queries. Thus, the database system should identify these queries

and use the full database to answer these queries.

In this paper, we open the debate on using an effective subset

of a large database to answer keyword queries over the database

to increase their effectiveness and efficiency. To the best of our

knowledge, this approach has not been examined to improve the

effectiveness of answering keyword queries over datasets. We show

that using an effective subset, the KQI can significantly reduce the

number of non-relevant answers in its results and reduce the query

response time. Moreover, we show that by carefully selecting the

tuples in the effective subset, one can also improve the recall of

answering queries on average. The improvement of the recall is,

in fact, an interesting result as one may expect otherwise. To fur-

ther improve the effectiveness of answering queries, we propose a

method that predicts whether a query can be answered more effec-

tively on the subset or the entire database and forwards the query

accordingly. One may increase the effectiveness and efficiency of

the keyword search by designing new search and ranking algo-

rithms. Our proposed approach is orthogonal to such methods and

can be used with any of the keyword search algorithms to increase

its effectiveness and efficiency. To this end, we make the following

contributions.

• We analyze the impact of using a subset of the entire database

to answer keyword queries both theoretically and empiri-

cally. Our results indicate that there are effective subsets

such that, using only those subsets to answer queries, a KQI

is able to improve the average ranking quality, average recall,

or both for submitted queries (Section 2).

• We show how a KQI can utilize users’ past interactions with

the data to build the aforementioned effective subsets (Sec-

tion 2.3).

• As we discussed, the effective subset may not have all or

some of the relevant answers to many queries. We propose

a novel method to predict whether a query can be answered

more effectively over the effective subset or the entire data-

base. A KQI uses the result of this method to forward each

input query to the effective subset or the entire dataset (Sec-

tion 3).

• We discuss and address the challenges of using our approach

over relational data and address them (Section 4).

• We provide a comprehensive empirical study of our method

over multiple real-world large databases and query logs. Our

results indicate that our approach substantially improves

both precision, recall, and efficiency of answering keyword

queries over large databases. They also show that ourmethod

to find the right subset of the dataset to answer the query sig-

nificantly increases ranking quality and recall of answering

queries (Section 5).

2 IMPACT OF DATABASE SIZE ON THE
SEARCH EFFECTIVENESS

In this section, we analyze the impact of database size on search

effectiveness. We focus on databases with a single relation. This
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can be a relational database with one table or a collection of semi-

structured documents such as XML or JSON documents. We extend

the results of this section to databases with multiple relations in

Section 4.2.

2.1 Theoretical Analysis
Consider a database instance I that contains information on n num-

ber of publications. LetQ be the set of all queries a user can submit

to retrieve any paper. If the relevant answer of a query q ∈ Q is in I ,
then I can potentially answer the query q, otherwise, it returns no
relevant results. Let us build database J by adding more papers to

I . Since J contains information on more papers, it can potentially

answer more queries of Q . Hence, it is commonly believed that

the average effectiveness of J on answering queries of Q is higher

than I . While this belief is true for answering exact queries such as

SQL queries, it does not hold for keyword queries. As shown in the

example of Section 1, keyword queries are not the exact formulation

of users’ information needs, thus, databases may make mistakes in

returning relevant answers of keyword queries. As the size of the

database gets larger, the chance of making a mistake by database

and returning a non-relevant answer increases [34].

On one side, adding more entities to the database increases the

number of queries that can be answered by the database. On the

other side, as the database gets larger, the chance of making a

mistake by the database and returning a non-relevant answer to

a query increases . Thus, it is not clear how does adding more

entities to the database impacts the overall search effectiveness.

To answer this question, we present a theoretical analysis of the

problem. Later in this section, we verify the theoretical results by

conducting empirical studies.

Consider database instance I and random query q over I . Let
Q be the domain of q, Pr (q) be its probability distribution, q(I ) be
the returned results of q over I and rel(q) be the set of its relevant
answers. One of themetrics used tomeasure the search effectiveness

of a top-k retrieval system is Precision-at-k (p@k). Precision-at-k
of a random query q with distribution θ over I and its expected

value is defined as:

p@k(q, I ) =
|q(I ) ∩ rel(q)|

k
,

E[p@k(q, I )] =
∑
q∈Q

Prθ (q)p@k(q, I )

Access count of tuple t is the number of times that tuple has been

accessed by users through queries or any other interactions. Given

tuple t ∈ I , we define the popularity of t , denoted by w(t), as
the probability of t being a relevant answer to some query q. More

precisely, given a random query q and the set of its relevant answers
rel(q),w(t) =

∑
q:t ∈r el (q) Pr (q).We estimatew(t) as the normalized

access count of t over sum of access counts of all tuples. In the

example of Figure 1, each paper is a tuple and its popularity is

computed as the number of times the paper has been accessed

divided by the sum of all access counts. We define I (m) as a subset
of the database I that containsm most popular tuples of I .

In most database systems, access counts to tuples follow a power

low distribution [36]. The following theorem states that, ifw(t) has
a power law distribution then increasing the size of I (m) beyond

a certain point decreases the upper bound of search effectiveness

over I (m).

Theorem 2.1. Consider database I such that for t ∈ I ,w(t) has a
power law distribution. There ism0 such that if |I | > m0, form > m0,
E[p@k(q, I (m))] is bounded above by a decreasing function ofm.

Proof. Consider random query q with distribution θ . Given tu-

ple t , let qt be a random query such that t is one of its relevant
answers. The distribution of qt is denoted by θt . Let I be the indica-
tor function such that I(t ∈ q(I (m))) is one if t ∈ q(I (m)) and zero

otherwise.

E[p@k(q, I (m))] =
∑
q

Prθ (q)
|q(I (m)) ∩ rel(q)|

k

=
1

k

∑
q

Prθ (q)
∑

t :t ∈r el (q)

I(t ∈ q(I (m)))

=
1

k

∑
t ∈I (m)

∑
qt

Prθ (q) I(t ∈ q(I (m)))

Letw(t) =
∑
qt Prθ (qt ), then Prθt (qt ) = Prθ (q)/w (t ) and we have:

E[p@k(q, I (m))] =
1

k

∑
t ∈I (m)

w(t)
∑
qt

(Prθ (qt )/w (t )) I(t ∈ qt (I (m)))

=
1

k

∑
t ∈I (m)

w(t)
∑
qt

Prθt (qt ) I(t ∈ qt (I (m)))

=
1

k

∑
t ∈I (m)

w(t)Eθt [I(t ∈ qt (I (m)))]

In the above equation, I(t ∈ q(I )) is a Bernoulli random variable

and we can replace E[t ∈ qt (I (m))] with Pr (t ∈ qt (I (m))). Let ϵt be
the probability that t is ranked higher than another tuple in q(I (m)),
then Pr (t ∈ q(I (m))), the probability that t is in top-k retrieved

tuples, is equal to ϵm−kt .

E[p@k(q, I (m))] =
1

k

∑
t
w(t)Pr (t ∈ q(I ))

=
1

k

∑
t
w(t)ϵm−kt ≤ max

t
{ϵ
(m−k)
t }

1

k

∑
t
w(t)

Let rt be the rank of tuple t based on its popularityw(t). Given that

the popularities follow a power law distribution we have w(t) =
1

Hα
1

rαt
where α is a real number greater than 1 and Hα is themth

generalized harmonic number that is used for normalization of

the probabilities. We can compute an upper bound for

∑
t w(t) by

integrating over values of rt as follows:

m∑
rt=1

1

rαt
≤ 1 +

∫ m−1

1

1

xα
dx =

2(m − 1)α−1 − 1

(m − 1)α−1

Using the above simplification we have:

E[p@k(q, I (m))] ≤ max

t
{ϵ
(m−k)
t }

1

k

1

Hα

2(m − 1)α−1 − 1

(m − 1)α−1

Let ϵ = maxt {ϵt }. We compute the derivative of the above formula

and factor out the constants:

∂ E

∂m
=

ϵm−k ln (ϵ)m

m + 1
+
ϵm−k

m + 1
−

ϵm−km

(m + 1)2
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This derivative has a positive root at:

m0 =

√
ln
2 (ϵ) − 4 ln (ϵ) − ln (ϵ)

2 ln (ϵ)

Form > m0, the derivative has a negative value which entails that

form > m0 the function is strictly decreasing. Thus, if |I | > m0,

then for m > m0, E[p@k(q, I (m))] is bounded by a decreasing

function ofm. □

This result shows that, if a database is sufficiently large, there is

a subset of the database such that the highest achievable expected

P@K over this subset is larger than the full database. This is because

the mentioned subset is able to deliver higher effectiveness for

tuples that are queried very often in the price of sacrificing the

tuples that are not frequently queried.

Next, we investigate the impact of database size on recall. Recall

of query q over database I , denoted by rec(q, I ), is the fraction of

relevant answers returned by the database system:

rec(q, I ) =
|q(I ) ∩ rel(q)|

|rel(q)|

E[rec(q, I )] =
∑
q

Prθ (q)rec(q, I )

Following theorem extends the results of Theorem 2.1 to the recall

of answering queries over a database.

Theorem 2.2. Consider database I such that for t ∈ I ,w(t) has a
power law distribution. There is thresholdm1 such that if |I | > m1, for
m > m1, E[rec(q, I (m))] is bounded above by a decreasing function
ofm.

Proof. Similar to the previous proof:

E[rec(q, I (m))] =
∑
q

Prθ (q)
|q(I (m)) ∩ rel(q)|

|rel(q)|

=
∑
q

Prθ (q)
1

|rel(q)|

∑
t ∈r el (q)

I(t ∈ q(I (m)))

Assuming that each tuple in the database gets at least one query

and at most k ′ queries then 1

k ′ ≤
1

|r el (q) | ≤ 1. Thus we have:

E[rec(q(I ))] ≤
∑
q

Prθ (q)
∑

t ∈r el (q)

I(t ∈ q(I (m)))

The rest of the proof is similar to the proof of Theorem 2.1. □

This result shows that, if a database is sufficiently large, there is

a subset of the database such that the highest achievable expected

recall over this subset is larger than the full database. Note that

the thresholdm1, which is used in this theorem, can be different

than the thresholdm0 of Theorem 2.1. In fact, in most cases,m1

is expected to have a larger value thanm0. We will discuss this in

more detail in Section 2.2.

The last metric we examine is reciprocal-rank. Reciprocal rank

(R-Rank) of query q over I is calculated as
1

r where r refers to the

rank position of the first relevant answer in q(I ). Mean reciprocal

rank (MRR) of queries Q over a database I is defined as the average

of the reciprocal ranks of the queries in Q . Since the queries in our

problem have different probabilities, we use the expected value of

the R-Ranks of the queries to compute MRR:

MRR =
∑
q

Pr (q)R-Rank(q, I )

This metric is useful when the queries have a single relevant answer.

Using a similar approach to Theorem 2.1 and 2.2, it is easy to show

similar results for MRR. The general idea here is to expand the

R-Rank using the probabilistic approach presented in the proof of

Theorem 2.1. For top-k results, the R-Rank can be expanded as:

R − Rank(q) =
k∑
i=1

ϵm−k+i
1

i
≤ kϵm−k

Using this expansion, one can show that, if a database is sufficiently

large, there is a subset of the database such that the highest achiev-

able MRR over this subset is larger than the full database.

One of the factors that impacts the value ofm0 of Theorem 2.1

andm1 of Theorem 2.2 is the similarity of the tuples in the database.

If the tuples in a database are not similar, then the probability of

making a mistake by retrieval system (i.e. returning a non-relevant

tuple as an answer) decreases. In its extreme case, if the similarity

between tuples is minimum, then the database system returns the

correct answers with a very high probability and the value of ϵ
will be very close to 1. In this casem0 = |I | and there is no subset

with strictly better effectiveness than the database. In contrast to

this scenario, if tuples of a database are highly similar, ϵ becomes

small and the value ofm0 becomes very small which means a small

subset of the database will deliver higher search effectiveness than

the full database.

2.2 Empirical Study
The presented theoretical results in the previous section, establish

an upper bound for the search effectiveness based on the database

size. However, it remains an open question whether the provided

bounds are tight enough to be used in practice. In this section,

we answer this question by conducting extensive experiments on

real-world datasets and query logs.

2.2.1 Datasets and Query Workloads. We conduct the empirical

study using two datasets from Wikipedia and StackOverflow. The

Wikipedia dataset contains the information on 11.2millionWikipedia

articles
1
. Each article has a title and a body field. This dataset also

contains users’ access count for each article that is collected over a

period of 3 months
2
and we use them to compute data item popu-

larities. For this dataset, we carry out the experiments on two query

workloads with different characteristics. The first query workload

is obtained from INEX Adhoc Track [8]. It is formed of 150 keyword

queries and their relevant answers over Wikipedia. For each query,

the number of relevant answers varies between 1 and 134. The

second query workload is a sample of queries submitted to the Bing

search engine. It contains more than 6000 keyword queries, most of

which have a single relevant answer in Wikipedia. Note that these

two query workloads and the access count of Wikipedia articles are

collected independently. This is important because otherwise the

1
Available at: http://inex.mmci.uni-saarland.de/tracks/lod/2013/index.html

2
Available at http://dumps.wikimedia.org/other/analytics

http://inex.mmci.uni-saarland.de/tracks/lod/2013/index.html
http://dumps.wikimedia.org/other/analytics
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data items that are relevant to a query in our query log will have a

high popularity which will introduce a bias into the final results.

The StackOverflow dataset contains the information of Stack-

Overflow questions and answers
3
. Each post in the StackOverflow

website has a question and may have zero or one accepted an-

swer. Using the questions and their accepted answer, we build a

query workload for StackOverflow dataset. We pick the questions

that have accepted answers in the dataset and use the title of the

question as a keyword query. The final query workload contains 1

million queries and 1 million relevant answers. Furthermore, each

post in StackOverflow has a view count that is the number of times

a post has been viewed. We use this number to compute data item

popularities and query frequencies. More precisely, if a question

(or an accepted answer) has been visited a certain amount of time,

we set the frequency of the query (or the popularity of the ac-

cepted answer) to this number. We divide the view counts into two

independent sets, one for queries and the other for the answers.

2.2.2 Implementation. We have implemented the experiments us-

ing Apache Lucene 6.5
4
with BM25 scoring method [31]. For the

Wikipedia dataset where each article has a title and a body, we

compute the relevance score of the document as a weighted sum of

scores of its attributes. We find the optimal values of the weights

using grid search. For each query, we retrieve the top k relevant

tuples. We set the k = 20 for p@20 and MRR and k = 100 for re-

call. Some search engines use the access count of a web page as

a feature in their scoring function to increase the effectiveness of

the retrieval. This approach is called score boosting. We have tried

boosting the retrieval system in our experiments and it did not have

a significant improvement. Thus, we report the results of retrieval

without any boosting techniques[31].

2.2.3 Experimental Environment. We run the experiments on a

Linux server with 30 Intel(R) Xeon(R) 2.30GHz cores, 500GB of

memory, 100 TB of disk space and CentOS 7 operating system.

We have implemented the experiments using Java 1.8 and Python

3.6.4. For efficiency experiments, we do not use any multi-threading

feature of the mentioned languages.

2.2.4 Building The Subset of The Database. We evaluate the effec-

tiveness of query answering over subsets with different sizes. We

build subsets of different sizes and compute the effectiveness using

each subset. Given database I , let Ik be the subset of I that contains
the top k% of the most popular tuples in the database. We build

a sequence of subsets of I as {I1 . . . I100}. Given tuple t ∈ I , we
denote the popularity of t asw(t). The sequence of the subsets has
the following characteristics:

(1) Ii ⊂ Ii+1
(2) ∀t ∈ Ii ,∀t ′ ∈ Ii+1 : w(t) ≥ w(t ′)

We submit queries of the different query workloads to each subset

and report the results of each dataset.

2.2.5 Results of The Wikipedia Experiment. Figure 2 shows the

effectiveness of answering INEX queries over subsets I1 . . . I100 of
Wiki-pedia. The x axis shows the size of the subset as a fraction

of the whole database and the y axis shows the average p@20

3
Available at: https://archive.org/download/stackexchange

4
https://lucene.apache.org/

Figure 2: Effectiveness of answering INEX queries

Figure 3: MRR of answering INEX, Bing and StackOverflow

and recall of the queries. For very small subsets, the system has a

low p@20 because these subsets do not contain enough relevant

answers. As the size of the subset gets larger, p@20 increases until

a certain point. After this point, even though increasing the size,

adds more relevant answers to the subset, it increases the chance

of making mistakes by the database and we see a decrease in the

p@20. The same analysis holds for recall.

Figure 3 shows a similar experiment on Wikipedia using Bing

queries. Most of these queries have a single relevant answer. Thus,

we use the mean reciprocal rank of the results to measure the

effectiveness of the search. For this query workload, I2 has the

highest MRR and for subsets larger than I2, MRR has a decreasing

trend.

2.2.6 Results of The StackOverflow Experiment. Figure 3 shows

the effectiveness of query answering over different subsets of the

StackOverflow dataset. The subset with 18% of the data has the

highest effectiveness. For larger subsets, the effectiveness gradually

decreases. In this experiment, there is a one-to-one mapping be-

tween the queries and their answers. Thus, excluding one answer

from a subset will result in zero relevant answers for its corre-

sponding query. More precisely, the effective subset with 18% of

the data only contains the relevant answers of 18% of the queries.

However, these queries are submitted so frequently that on average,

the subset achieves higher effectiveness than the full collection.

https://archive.org/download/stackexchange
https://lucene.apache.org/
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These experiments show that the theoretical results presented in

Section 2.1 holds true in practice. More precisely, the results show

that, given a database, if the size of the database grows larger than

a threshold, the effectiveness of query answering will drop. As the

database gets larger, the decrease in effectiveness becomes more

significant. In the next section, we use these results to build a subset

of the database that delivers significantly higher effectiveness in

answering queries.

2.3 The Effective Subset of A Database
In the previous section, we showed that under certain conditions,

there are subsets of a database that, on average, deliver higher

search effectiveness than the full database. We call such a subset

the effective subset. An exhaustive search of subset space to find

the subset with the highest effectiveness requires exponential time

computations. However, based on the results of section 2.2, one can

find an approximation of the subset with the highest effectiveness

using a greedy search technique. The algorithm to build an effective

subset starts with an empty set and iteratively adds batches of

tuples to it. The algorithm scans the tuples from most popular to

list popular. After every iteration, it checks the effectiveness of

answering sample queries and stops as soon as the effectiveness

starts decreasing.

The effectiveness can be measured using Precision@K, recall,

MRR or any other user-defined metric. By setting the effectiveness

to any of these metrics, the algorithm tries to build a subset that

maximizes the given metric over Q . The specified metric impacts

the final size of the effective subset. For example, an effective subset

for precision-at-k might not deliver a higher recall compared to

the full database. As an example, for INEX experiment, the subset

with 10% of the popular tuples has the best p@20 and the one with

22% has the best recall. Beside optimizing a subset for a single

metric, it is possible to pick the subset that maximizes a metric

and guarantees a minimum value for a second metric. For example,

one may want to pick a subset that has the highest p@20 and also

does not have a worse recall than the full database. The dashed line

in Figure 2 specifies all the subsets that have a better recall than the

full database. One may pick the best subset among these subsets

to reach the highest p@20 while preserving the recall of the full

database with similar technique explained above.

Since the size of the effective subset is usually much smaller than

the full database, using this subset potentially delivers the results

in a shorter time and it should be more efficient than using the full

database. We will investigate the efficiency of using the effective

subset in Section 5.

Asmentioned in the Introduction, the effective subset may return

zero relevant results for queries with unpopular relevant answers.

Assume database I and a set of queries Q such that the average

precision-at-k of the queries in Q over I is µ. Consider an effec-

tive subset that increases the p@k of 80% of the queries by δ and

decreases the p@k of the rest by the same amount. Overall, the

average p@k will be 0.8(µ + δ ) + 0.2(µ − δ ) = µ + 0.6δ which is

larger than its original value and is considered an improvement

in the search effectiveness. However, using the subset increases

the search effectiveness by sacrificing the p@k of a small fraction

of them. These are the queries that their relevant answers are not

popular and are excluded from the subset. We name these as infre-

quent queries. Although infrequent queries form a smaller ratio of

the whole query workload (20% in this example), a robust retrieval

system should be able to handle them properly. In the next section,

we present a method to addresses the issue of infrequent queries.

3 IMPROVING THE EFFECTIVENESS OF
ANSWERING INFREQUENT QUERIES

In this section, we present two approaches to improve the search

effectiveness of the infrequent queries. We develop two methods

that, given the subset and full database, predict which one of these

data sources deliver a higher search effectiveness. If the models

predict that the full database has a higher search effectiveness, then

the query is classified/labeled as infrequent. The queries that are

labeled as infrequent, are submitted to the full database rather than

the subset.

3.1 Detecting Infrequent Queries using Query
Likelihood Model

Query likelihood model has been used in distributed information

retrieval systems [35] to select the data source that contains more

relevant answers to a given query. It measures the likelihood of a

data source given a query [31]. Consider the data source I . I can be

the database or any subset of it. The language model of I is defined
as the multi-set of all terms that appear in I and is denoted by L. For
a given query q, P(L|q) denotes the likelihood of L being relevant to

q. If P(L|q) has a high value, it means that data source I has a higher
chance in effectively answering query q. For a given L, P(L|q) is
computed using Bayes rule as follows:

P(L|q) =
P(q |L)P(L)

P(q)

For a given query, its probability (P(q)) is independent of L and is

the same for all data sources. The prior probability of a data source

P(L) can be computed based on different criteria. We consider a

uniform prior over all data sources. Using these simplifications,

one can use P(q |L) to score each data source. Let query q consist of

terms q1, . . . ,qn . P(q |L) =
∏n

i=1 P(qi |L) The probability of a term

given a data source, P(qi |L), can be computed as the frequency of

qi in L over the size of L. If one of the terms does not appear in

L, then P(q |L) will be zero. To avoid zero probabilities, different

smoothing techniques can be applied. We use linear interpolation as

discussed in [31]. The final value of P(q |L) is used as the relevance

score of data source L to query q. Given the effective subset and

full database with language models Ls and Lf , the source with a

higher score has a better chance in effectively answering q. Thus,
if P(q |Ls ) ≤ P(q |Lf ), then q is labeled as infrequent and should

be submitted to the database. An experimental evaluation of this

method is presented in Section 5.

3.2 Detecting Infrequent Queries using
Machine Learning

In this section, we present a method to train a logistic regression

classifier that predicts if a query is infrequent or not. Each query is

represented by a feature vector. We extract the features over the

subset and the rest of the database i.e. database excluding the subset.
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We present three sets of features that are used in our system and

explain why each group is useful for building the classifier.

3.2.1 Content-Based Features. Content-based features are based on
the probability distribution of words in the given database. Query

likelihood score explained in the previous section is one of the

content-based features. Some other examples of these features are

as follows:

Covered term ratio: is the fraction of the terms in the query that

appear in a data source. If a query has a higher covered term ratio

over the subset compared to the rest of the database, answering

this query over the subset will return relevant results with a higher

likelihood. For example, consider a user that is looking for Michael

Stonebraker’s paper on VoltDB and submits query stonebraker
voltDB. If the subset contains the VoltDB paper, the subset has cov-

ered term ratio = 1. Now, if the rest of the database contains other

papers of Stonebraker which are not about VoltDB, the covered

term ratio of the rest of the database for the given query will be

1

2
. In this case, the subset has a better coverage than the rest of

the database which means the query is not likely to be infrequent.

However, if the VoltDB paper is included in the rest of the database,

the feature will have a higher value over the rest of the database

compared to the subset and with a higher chance, the query is

infrequent.

Tuple Frequency: is the number of the tuples that a term appears

in. Assume a user who is looking for papers of Stonebraker and

submits the query Stonebraker. Let’s assume the subset contains

50 papers by Stonebraker and the rest of the database contains 5. In

this case, Tuple Frequency can be a good signal that the database

should use the subset to answer the query. For queries with more

than one term, the aggregate tuple frequency of the terms is used as

the final value of the feature. We use different aggregate functions

such as average tuple frequency of terms of the query.

Most of the content-based features are defined based on the

terms of the query. We extract the same features for bi-words of

the query as well. For example, given query data processing and
feature Tuple Frequency, we extract the tuple frequency of the term

data, processing and also the tuple frequency of the bi-word data
processing.

3.2.2 Popularity-Based Features. One of the major distinguishing

factors of the subset from the rest of the database is the popularity

of the tuples in them. More precisely, any tuple that has a higher

popularity than a certain threshold is included in the subset. We use

this characteristic of the subset to design a second set of features

which reflects the popularity of the relevant answers of a query.

Inspired by the language model approach, we design a popularity

model which is a statistical model of the popularity of the terms in a

database. For each term in the database, we compute two popularity

statistics: 1) The average popularity of the tuples containing that

term. 2) The minimum popularity of the tuples containing that term.

We use these two statistics to estimate the popularity of terms of a

query. Then we aggregate the popularities of all query terms into a

single value that estimates the popularity of the relevant answers

of that query. For aggregation, we use minimum and average func-

tions. Consider a user that is looking for papers on data processing

using MapReduce and submits map-reduce framework. The term
framework can happen in tuples with different popularities thus

its popularity is 0.45 whereas the term MapReduce happens in the

tuples with high popularity and it’s popularity is 0.85. The average

popularity of these two terms is 0.65 which is an indicator that most

of the relevant answers of this query can be popular, thus query

is not likely to be infrequent. Similar to content-based features,

we extract popularity features for terms as well as bi-words of the

query.

3.2.3 Query Difficulty Based Features. IR researchers have devel-

oped query difficulty metrics to predict the quality of the search

results of a query [11]. Given a query and a data source, these meth-

ods compute a number that indicates the hardness of a query. These

metrics can be applied to our problem to extract further features.

Let us say the user submits query q where its difficulty metric over

the full database is a value close to zero. This is an indicator that

answering this query over the full database is easy and will result

in high search effectiveness. In this case, it is reasonable to use

the full database rather than the subset. However, if the estimated

query difficulty is high over the full database, it means the quality

of the search over the full database is likely to be low and one

may consider submitting it to the subset. We use different difficulty

metrics such as Clarity Score, Collection Query Similarity, etc [11].

We only include the difficulty metrics that can be computed for

a query without actually conducting the search. There are other

difficulty metrics that are computed based on the search results,

however, using those metrics in our system would be inefficient

as it doubles the search time. More precisely, to use those features,

one should conduct the search twice, once to compute the metric

and classify the query and second time to conduct the search on

the subset or full database based on the results of the classifier.

3.2.4 Training The Infrequent Query Classifier. We use the logistic

regression method to train our classifier. Logistic regression is a

good fit for this problem because of the following reasons. First, it

has higher interpretability and it is easier to see which features have

a higher impact on the classification decision. Second, when the

signal-to-noise ratio is low, logistic regression usually outperforms

other methods. To train the classifier, we use a sample of the query

workload. To build the training data, we submit each query in the

sample once to the subset and once to the full database. If the search

effectiveness over the full database is larger than the subset, we

label the query as infrequent. Otherwise, it is labeled as a popular

query. We extract 36 features per each field of the database. Most

of the features mentioned above are extracted once over the subset

as fs and once over the rest of the database as fr . A comparison

of these two features can be an indicator of the class of the query.

Since logistic regression is a linear model, it does not consider

the non-linear comparison of these features. To include non-linear

comparison of these features, we add division of them defined as

fs
fr
. These extra features represent the multitude of the difference

between features.

The final classifier is trained using the extracted features and

their non-linear combinations. Using this classifier, we are able

to predict the type of query prior to the search and submit the

infrequent queries to the full database.We evaluate the effectiveness

of this system in Section 5. Furthermore, we show the overhead

of using a classifier prior to search is negligible compared to the
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Figure 4: System Architecture

search time. This is because the features are extracted using the

pre-built indexes on the database. Also applying logistic regression

classifier to a feature vector is very fast. The detailed performance

evaluation of this system is presented in Section 5.

4 AN EFFECTIVE AND EFFICIENT KEYWORD
QUERY SEARCH SYSTEM

In this section, we present a keyword query search system over

relational databases that utilizes the effective subset of Section 2

and infrequent query detection method introduced in Section 3 to

improve the effectiveness and efficiency of keyword search over

large databases. Figure 4 depicts the architecture of the system with

the following components:

The Off-line Processes (bottom layer) consists of two components.

1) Subset Builder finds the effective subset of the database. We

explained how to build an effective subset of a single relation in

Section 2.3. In Section 4.2, we present an approach to build a subset

of a database with multiple relations. The output of the Subset

Builder is stored in the storage layer. 2) Logistic Regression compo-

nent trains the classifier that is used to detect infrequent queries.

This module runs periodically to reflect the changes in users’ in-

teractions history. The trained model is stored and used by Query

Classifier component.

The Data Store (middle layer) is where the system keeps the full

database and its effective subset. Each database can have multi-

ple tables. Each table has an inverted index from terms to tuples.

The index also contains the statistics used to compute features for

queries.

The Query Interface (top layer) is in charge of executing the query.
Upon receiving a query, it uses the Query Classifier, explained in

Section 3, to detect if the query is infrequent or not and submits it

to the subset or full database based on this information. Next, we

will explain the top-k retrieval method used in this paper.

4.1 Keyword Query Search over Relational
Databases

We use the current architecture of schema-based keyword query

search techniques over relational databases to retrieve the top-k

answers of a given query [12]. We provide a brief overview of

these techniques. We refer the interested reader to [12, 21] for more

detailed explanations.

Given a keyword query, a schema-based system first selects a

set of tuples (a.k.a tuple-sets) from each relation that are related

to the submitted query. To find these tuple-sets and compute tuple

scores, the DBMS uses an inverted index. For instance, consider

a fragment of the DBLP database with relations papers(pid, title,
aid) and author(aid, name). Given query stonebraker voltdb, the
DBMS returns a tuple-set from papers and a tuple-set from authors
that match at least one term in the query. Then, it scores each tuple

in the tuple sets using an IR relevance function. Next, the DBMS

generates candidate networks of relations that are join expressions

connecting tuple-sets via primary key foreign key relationship.

Using each candidate network, the DBMS can join tuples from

different tuple-sets to produce a single candidate result for the query.

As an example, one candidate network in the mentioned example

is paper ▷◁ author. To connect the tuple-sets, a candidate network

may contain base relations whose tuples may not contain any term

in the query. The candidate networks are generated based on the

schema of the database. For efficiency reasons, the DBMS limits the

number and size of generated candidate networks. After obtaining

these candidate networks, the DBMS runs many SQL queries on

each of them and returns its results to the user. Each final result

is a joining tree of tuples. The score of a joining tree is usually

computed as the sum of scores of its tuples divided by the number

of relations in the network to penalize the long joins. One of the

notable examples of schema-based keyword search methods, called

efficient IR-Style search, is introduced in [21]. According to [13],

IRStyle Search and Cover Density Search are the most effective and

efficient search techniques among schema basedmethods. Although

Cover Density has a higher effectiveness than IRStyle, it is designed

and efficient for short keyword queries. Since we aim at improving

general keyword queries, we use a similar technique to IRStyle

method [21] in our system.

Besides schema based systems, there is a second category of

keyword search systems that are based on the data graph. These

graph-based methods convert the database into a data graph. Con-

verting a database with millions of records into a graph is memory

consuming. Furthermore, how to find a meaningful sub-graph is a

challenging problem [24]. For these reasons, we do not address the

graph-based methods in the current paper and leave it as future

work.

4.2 Building Effective Subsets over Multiple
Relations

In section 2.3, we have presented an algorithm that builds the

effective subset over a single table. In this section, we will extend

that algorithm to handle databases with multiple tables. A naive

approach is to run the algorithm on each relation R and store the

subset of the relation R′. The problem with this approach is that

it scans each relation independently, however, in a database with

multiple relations, the answer of most of the queries is a joining

tree of tuples rather than a single tuple. Thus, the subset building

algorithm should take this into account. More precisely, instead

of iterating over single tuples, a better approach is to iterate over

joining trees of tuples. To do this, one needs the access count of
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Algorithm 1:Multi Table Subset Builder

Data: Set of relations R = R1 . . .Rn , sample queries Q with

answers, effectiveness function e
Result: Set of subset relations S = S1, . . . , Sn such that

Si ⊆ Ri
P ← batch size,M ← 0

for i in (1, . . . ,n) do
Si ← {}
Sort Ri by its popularity in descending order

Let iti be an iterator on Ri
end
m ← argmaxi iti .popularity(), t ← itm
while t is not null do

Scan next P tuples from itm and add them to Sm
eff ← e(Q, S)
if eff > M then

updateM
else

break;

end
end

tuples and join trees. However, database systems usually store the

access count of individual tuples and rarely store the access count

of the join trees. The reason for this is that the number of the joins

will grow exponentially as the size of the relations increases. Thus,

even for databases with a moderate size, it is not feasible to store

the join access count. To alleviate this problem, we use the access

count of tuples participating in a join and estimate the access count

of the join based on access count of the participating tuples.

Consider relations R with tuple r such that access count of r
isw(r ). Anytime a user accesses a join that includes r , the access
count of r is increased by one. This means the access count of

any join tree including tuple r will be less than or equal to w(r ).
Thus, scanning the whole database ordered by access count of

tuples is an approximation of scanning the database based on access

count of join trees and tuples. Based on this heuristic, we propose

Algorithm 1 to build the effective subsets of a database with more

than one relation. This algorithm takes a set of relations, a sample

of query workload and an effectiveness metric as the input and

builds the effective subset of each relation.

To build the final subset database, one can run this algorithm on

tables with text attributes or the attributes that will be searched

and use them to build the subset of the relation tables. As an exam-

ple, consider paper(pid, title), paper-author(pid,aid) and
author(aid, name). In this case, tables paper and author will be

the input of the algorithm. Once their subsets are built, the subset

of relation table paper-author is computed as all the tuples that

join tuples in the subset of paper to their corresponding tuples

in the author table. The processes of building the subset can be

repeated periodically to reflect the changes in users’ interactions

and tastes over time. The output of this step is stored in the Effective

Subset database in Figure 4. In the next section, we evaluate the

effectiveness of the subsets built by Subset Estimator and compare

it with the full database.

Table 1: Dataset Information

Dataset #Tuples #Relations Size (GB)

Wikipedia 130M 5 35

StackOverflow 304M 5 2.3

Table 2: Evaluating the built subset against full database

Experiment

Effectiveness Time (s)

Subset DB Subset DB

INEX-p@20 0.33 0.22 0.70 1.20

INEX-rec 0.29 0.22 0.70 1.20

Bing 0.51 0.08 0.37 12.80

StackOverflow 0.51 0.38 0.41 6.63

5 EXPERIMENTS
In this section, first, we evaluate the effectiveness of the subsets

that are built using Algorithm 1 presented in Section 4.2. Then,

we evaluate the effectiveness and efficiency of query answering

using our system. Furthermore, we evaluate the accuracy of the

infrequent query detection method presented in Section 3.

5.1 Experiment Setting
We use the normalized forms of Wikipedia and StackOverflow

databases introduced in Section 2.2. The details of these datasets

are shown in Table 1. The Wikipedia database contains 5 tables:

article, article-link, link, article-image and image stored in a MySQL

database. The indexed text attributes used for search are article.body,
image.caption and link.url. This dataset contains access counts for
articles, images, and links. The StackOverflow dataset contains the

information of StackOverflow posts with the following tables: posts,
post-comment, comments, post-tag, tags and their access counts.

The attributes used for search are posts.text, tags.tag_names and
comments.body. We store these databases in a MySQL 5.1 engine.

The query workloads used in this section are the same as Section 2.2.

We use IRStyle method mentioned in Section 4 over the full

database as the baseline. To create the tuple sets with relevance

score we use Apache Lucene and BM25 scoring technique [31].

We limit the size of the generated tuple sets based on a fraction

of their max score. For example, if the highest score in a tuple set

is s , we remove all the tuples with a score less than
s
2
from the

tuple set. This helps the IRStyle method to process the queries a

reasonable time. For the experiment on p@20 and MRR, we retrieve

the top 20 tuples and for the recall we retrieve the top 100 tuples.

The experiment environment is similar to Section 2.2.

5.2 Evaluation of The Effective Subset
In this section, we evaluate the effectiveness of our subset estimator

method. Given a database and a query workload, we randomly

select 20% of the queries as training queries and keep the rest for

testing. Then, we run Algorithm 1 using training queries on the

given database and build a subset of its tables. For INEX queries,

we run the experiment once to maximize the p@20 and once to
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maximize the recall. For Bing and StackOverflow we run the algo-

rithm with MRR as the effectiveness function. We execute the test

queries using IRStyle search method explained above once over the

full database as the baseline and once over the effective subsets. For

INEX experiment we report precision-at-20 (p@20) and recall as

the effectiveness metrics and for Wikipedia-Bing and StackOver-

flow, we report MRR (as the queries of these experiments have one

relevant answer).

The results of this experiment are shown in table 2. The rows

are associated with experiments and the columns are the results of

that experiment. As shown in the table, the subset delivers higher

effectiveness than the baseline in all four experiments. The highest

gain happens in the Bing experiment. This is because for the Bing

experiment, the effective subset is much smaller (2%) and as dis-

cussed in Section 2, a smaller subset results in much fewer search

mistakes by the database system. Furthermore, the effective subset

for the recall has the largest size as explained in Section 2.

The second evaluation criteria for our system is the efficiency

(running time) of the system. As it is shown in Table 2, the running

time of the queries on the subset is much shorter than the full data-

base. There are two major reasons for this: 1) The text index on the

subset is smaller than the database, thus, looking up the keywords

and creating the tuple sets takes less time on the subset compared

to the database; 2) The size of the tuple sets are smaller for the sub-

set. Thus, IRStyle Search spends less time querying these sets and

submits less join queries. As it is shown in Table 2, StackOverflow

queries take longer than the other queries because these queries

contain 8.6 keywords per query on average and are longer than

the other two query workloads. For the recall experiment (INEX-

rec), we only measure the system’s response time to retrieve top 20

results as most systems do not show all the possible results at the

first run. That is why INEX-p@20 and INEX-rec experiments have

the same running times.

5.3 Evaluating The Infrequent Query Detection
In this section, we evaluate the query type prediction method. The

objective of query type prediction is to detect the infrequent queries

and improve their results while maintaining high average effective-

ness for all queries. We present the effectiveness of query answering

using the two infrequent query detection methods and compare

it with the cases that we do not use this approach. Following is a

list of different settings used for evaluating the infrequent query

detection method:

• Subset: Using the effective subset to answer all queries

• Database: Using the database to answer all queries

• QL: Using the query likelihood model to predict infrequent

queries and reroute them to the database

• ML: Using the logistic regression model to predict infrequent

queries and reroute them to the database

• Best: Using an Oracle that knows the exact type of the query

and routes the infrequent queries to the full database

To simulate the Oracle, we submit the query to both database and

the subset and pick the results with higher effectiveness. The result

of using the Oracle shows the best possible effectiveness that one

can achieve. We carry out the evaluations on different datasets as

before.

Table 3: Results of answering Bing Queries

Experiment

MRR

Time(s)

Popular Infrequent All

Subset 0.53 0.03 0.51 0.37

Database 0.07 0.51 0.08 12.80

QL 0.48 0.22 0.47 2.23

ML 0.48 0.28 0.50 2.23

Best 0.53 0.51 0.53 6.50

Table 4: Results of answering StackOverflow queries

Experiment

MRR

Time(s)

Popular Infrequent All

Subset 0.56 0.01 0.51 0.41

Database 0.36 0.50 0.38 6.63

QL 0.50 0.22 0.48 1.77

ML 0.55 0.29 0.49 1.79

Best 0.56 0.50 0.55 3.81

In the first experiment, the effective subset is built overWikipedia

using Bing train queries, and we train the logistic regression model

as explained in Section 3. The accuracy of this model is 0.83. Then

we use the test queries to evaluate the machine learning based

infrequent query detection method. The result of this experiment

is shown in Table 3. The columns of the table show the search

effectiveness (MRR) of popular queries, infrequent queries, and all

queries as well as the average running time of all queries in seconds.

The rows indicate different settings related to each system. For all

queries, the subset outperforms all other methods. However, it has

a very low MRR of 0.03 for infrequent queries. The ML method has

high effectiveness for all queries (0.50) and it increases the MRR of

infrequent queries from 0.03 on subset to 0.28.

Next, we evaluate our system using the StackOverflow dataset

using a similar approach as above. The results of this experiment

are shown in Table 4. Similar to the previous experiment, the system

that only uses the subset achieves the highest MRR for all queries.

However, it suffers from low MRR on bad queries. The system that

uses the full database has an opposite performance and finally the

machine learning based infrequent query detection method is able

to increase the effectiveness of infrequent queries from 0.01 to 0.29

while maintaining a high MRR for all queries.

In the last experiment, we evaluate our system against INEX

queries. We carry out the experiment once for maximizing P@20

and once for recall. The results of this experiment are presented

in Tables 5 and 6. These results follow the same trend as the previ-

ous two experiments. INEX query workload has only 145 queries

compared to 6000 Bing queries and 1000000 StackOverflow queries.

Because of the low number of queries, in this case, the machine

learning method can not learn a very accurate model. Thus, it

can not outperform the query likelihood method. These results

show that, if a database system originally does not have a query

workload, our system can be used with only QL infrequent query

detection method and once enough queries have been logged, the
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Table 5: P@20 of INEX Queries

Experiment

P@20

Time(s)

Popular Infrequent All

Subset 0.44 0.11 0.33 0.70

Database 0.17 0.31 0.22 1.20

QL 0.36 0.15 0.29 0.88

ML 0.32 0.25 0.29 0.90

Best 0.44 0.31 0.40 0.90

Table 6: Recall of INEX Queries

Experiment

Recall

Time(s)

Popular Infrequent All

Subset 0.30 0.21 0.29 0.70

Database 0.21 0.30 0.22 1.20

QL 0.29 0.21 0.29 0.73

ML 0.28 0.22 0.28 0.79

Best 0.30 0.30 0.30 0.85

system can be switched to ML mode which will deliver even higher

effectiveness than the QL method.

6 RELATEDWORKS
Existing approaches to keyword search over relational data-bases

fall into two categories: graph-based systems and schema-based

systems. Graph based methods convert the database into a data

graph and perform the search on it [9, 16, 19, 23]. Schema based

approaches consider the schema as a graph and directly search the

relational database by generating and executing SQL queries [20, 21,

27, 30]. We refer the reader to [12] for a survey of keyword search

approaches. Although the mentioned methods have high effective-

ness and efficiency on small and medium size databases, most of

them do not scale well to larger databases [13, 14]. Our proposed

approach can be coupled with these search methods to increase the

efficiency and effectiveness of search over large databases.

In [6], the authors propose a keyword search method where the

system quickly returns some answers to the user by scanning a part

of the database, and generates forms to allow the user to explore

the rest. Our approach is different because we aim to answer the

queries in one shot without the need for further interactions.

Hawkin et al. [18] have studied the impact of collection size on

information retrieval effectiveness. Their hypothesis states that

precision@20 on a sample of a collection is less than precision@20

on the whole collection. This is because, in their experiment, the

number of relevant answers over the sampled collection is less than

the original collection. They provide a theoretical framework as

well as experimental results to justify this hypothesis and examine

the causes of the drop in the search effectiveness. Furthermore, they

state Document Frequency feature used in most retrieval methods

varies over sample and original collection. In their experiments,

they pick the subsets randomly, however, we pick the subsets based

on user interaction history.

Search engines store large inverted indexes to answer users’

queries. To reduce the inverted index size and query time, search

engines prune their inverted index. The main objective of prun-

ing is to reduce the size of the index as much as possible without

changing the top ranked query results. Pruning techniques fall into

two classes: keyword pruning and document pruning. In the first

method, each term in the inverted index is assigned a score. The

score can be computed based on IR scoring functions, access counts

and information in the query log. Then, the keywords with low

scores and their relevant postings are removed from the index. In

the second approach, documents of each keyword are assigned a

score and for each keyword, the documents with low scores are

pruned [32]. Our approach is different than pruning in that its objec-

tive is to increases the search effectiveness and efficiency whereas

the pruning methods only focus on improving search efficiency

while maintaining the search effectiveness. In fact, most of the prun-

ing techniques sacrifice search effectiveness for its efficiency [4].

Furthermore, some IR systems use a two-tier index in which the

first tier consists of a pruned index and the second tier is the original

index. When a query is submitted to the system, the first batch of

answers is computed based on the first tier of the index and the rest

is computed based on the second tier. While this approach increases

the efficiency of the search, it leads to a degradation of the effec-

tiveness [32]. In contrast, our system only uses one source and it

does not combine the results of queries from different tiers/sources.

Caching techniques have been used in search engines [5, 10],

database management systems and multi-tier client-server web-

based applications [3, 15, 26, 29]. Our proposed framework has

three major differences with a cache: 1) The goal of caching is

solely to improve the efficiency of the search but the main objective

of our framework is to increase the search effectiveness. 2) Size of

a traditional cache is fixed and determined based on the available

resources however the size of the effective subset does not depend

on the available resources. In fact, finding the right size for the

effective subset is one of the main challenges of using such systems.

3) A larger cache has a better overall performance but a larger

subset does not always perform better than a smaller one.

Volume and velocity of big data makes its handling and analytical

processing a costly process. To cope with these problems, a radical

approach is to let the database semi-autonomously remove some of

its data. Kersten et al. [25] have proposed a database with amnesia

where tuples get forgotten based on different strategies. Their goal

is to fix an upper bound for the database and yet be able to answer

the submitted aggregate queries. Their work is different than ours

as they are focused on numerical data and they do not intend to

increase the accuracy of answering the queries.

Machine learning based ranking methods (a.k.a learn to rank

methods) use prior probabilities as a feature to train their ranking

models [28]. These prior probabilities are independent of any spe-

cific query and may be computed based on the previous interactions

with users or side information, e.g., PageRank scores. Our approach

is different as we ignore the items with lower prior access count

when searching for relevant answers of popular queries instead of

using the access counts for ranking candidate answers.

Dong et al. [17] have studied the problem of picking a subset

of data sources to optimize data fusion accuracy. Their problem is

similar to ours as both of them are trying to discard a part of the
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data to achieve higher effectiveness or accuracy but there are fun-

damental differences between the two. In their setting, adding data

sources is costly and data sources may have common information.

But in our setting, adding data does not have a cost and the added

data does not have any tuples in common with the existing data.

7 CONCLUSION
The objective of this paper was to demonstrate the limitations of

current keyword query systems over large databases and propose a

method to improve these boundaries. Our main idea is to enhance

user interaction information to identify a hot subset of the database,

build a system based on this subset and use machine learning to

utilize it in a keyword query system. Experimental results of evalu-

ating this approach indicates that it is successful in increasing the

effectiveness and efficiency of the keyword search systems. In the

future, we would like to expand our framework beyond keyword

queries to other types of imprecise queries and support dynamic

changes in the users’ interaction history.
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