
Structurally Robust Similarity Search

Yodsawalai
Chodpathumwan

∗

TGGS, KMUTNB
Bangkok, Thailand

yodsawalai.c@tggs.kmutnb.ac.th

Arash Termehchy
Oregon State University

Corvallis, OR, USA
termehca@oregonstate.edu

Steven Ramsey
Oregon State University

Corvallis, OR, USA
ramsey@oregonstate.edu

Aayam Shresta
Oregon State University

Corvallis, OR, USA
shrestaa@oregonstate.edu

ABSTRACT
Graph similarity search algorithms usually leverage the struc-
tural properties of a database. Hence, these algorithms are
effective only on some structural variations of the data and
are ineffective on other forms, which makes them hard to
use. Ideally, one would like to design a data analytics algo-
rithm that is structurally robust, i.e., it returns essentially
the same accurate results over all possible structural varia-
tions of a dataset. We propose a novel approach to create
a structurally robust similarity search algorithm over graph
databases. We leverage the classic insight in the database
literature that schematic variations are caused by having
constraints in the database. We then present RelSim al-
gorithm which is provably structurally robust under these
variations. Our empirical studies show that our proposed
algorithms are structurally robust while being efficient and
as effective as or more effective than the state-of-the-art sim-
ilarity search algorithms.

PVLDB Reference Format:
Y. Chodpathumwan, and A. Termehchy. Structurally Robust
Similarity Search. PVLDB, 12(xxx): xxxx-yyyy, 2019.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

1. INTRODUCTION
Data variety is ubiquitous in data management as dif-

ferent data sources may represent the same information in
different forms [15, 31, 16, 25, 1]. A key goal of data man-
agement is to devise query interfaces that can hide schematic
variations from users so that they do not have to reformu-
late their queries over schematic variations to get the same
results [11, 1]. Recently, researchers have noticed that the

∗Worked done at University of Illinois at Urbana-
Champaign, Urbana, IL, USA

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. xxx
ISSN 2150-8097.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

results of unsupervised and supervised machine learning al-
gorithms over structured data also depend on the schema
and structure of the underlying database [36, 41, 9].

As an example, consider two bibliographic datasets from
DBLP (dblp.uni-trier.de) and SIGMOD Record (sigmod.org/
publications) whose fragments are shown in Figure 1. Intu-
itively, these databases represent essentially the same set of
relationships between the same set of paper, conference, and
research area entities. But, each dataset has its own way
of organizing these entities and their relationships. For ex-
ample, DBLP connects each paper to its research areas and
conferences. Given that all papers in a conference share the
same set of research areas, one can also choose the struc-
ture in Figure 1(b) for this information and connects re-
search areas directly to conferences instead of papers. As-
sume that a user wants to find the most similar research area
to Data Mining according to their conferences and publica-
tions. SimRank [26] is a well-known similarity search algo-
rithm over graphs that finds two node, i.e. two entities, to
be (structurally) similar if they both are similar to another
node in the graph. It implements this idea using random
walks over the graph. It finds Data Mining to be more sim-
ilar to Info Retrieval than to Databases in Figure 1(a). In
Figure 1(b), however, it declares Data Mining more similar
to Databases than to Info Retrieval.

Hence, to use a data analytics algorithm, the user has to
restructure the database to find the structure over which the
algorithm delivers accurate results. Since there is not any
clear guideline on how to find such a desirable structure for
the algorithm, one has to do this through trial and error,
which takes a great deal of time and effort. Bioinformatics
experts frequently use graph databases. In our consulta-
tion with them, we have observed interesting cases in which
these experts modify the structure of their graph databases
to meet certain efficiency-oriented or data quality goals, but
these modifications changes the results of answering similar-
ity queries over these databases. For example, if two nodes
are far apart in the data and are often queried together in
some lookup queries, the experts add new edges that connect
these entities directly. This will help them to rewrite their
lookup queries and run them faster. This modification does
not add any new information to the database as the new
edge can be inferred from the current (long) path between
the corresponding entities.However, it undesirably changes

1

Databases

Data Mining

Info Retrieval

PathSim

SimRank

Similarity Mining

VLDB

SIGKDD

area

area

area

area
area

area

published-in

publ
ishe

d-in

published-in

(a) Fragments of DBLP

Databases

Data Mining

Info Retrieval

PathSim

SimRank

Similarity Mining

VLDB

SIGKDD

field

field

fiel
d

field

published-in

published-in

published-in

(b) Fragments of SIGMOD Record
Figure 1: Example of two bibliography databases.
The nodes on the left, middle, and right are research
areas, papers, and conferences, respectively.
the results of some similarity queries over the transformed
database and make them less effective.

Ideally, one should design an algorithm that returns essen-
tially the same accurate results over all possible schematic
variations of a dataset. There are robust algorithms over
certain types of schematic variations [33, 36, 41, 9]. They,
however, have two major shortcomings. First, they are ro-
bust only over a subset of frequently occurring schematic
variations. Because they leverage the properties special to
the variation over which they are robust, it is not clear how
to generalize these algorithms to be robust against other
schematic variations. Second, current schematically robust
systems generally either propose new algorithms [41], or
make significant and/or complex modifications to the cur-
rent ones [33]. However, current algorithms have been widely
adapted and it is costly to replace them with new ones.
Hence, one should aim at making current algorithms robust
to schematic variations using simple modifications. More-
over, current algorithms are shown to be effective over some
data representations. Thus, a robust version of them will be
effective over more representations.

In this paper, we propose a novel approach to the prob-
lem of similarity search over graph databases that realizes
the aforementioned goals. Similarity search is both a pop-
ular type of queries over graphs and an important building
block of other graph analytics tasks, such as pattern query
matching and community detection [38, 39, 26, 49]. To find
and explore structural variations of a graph database, we
leverage and extend a results in database literature [43, 12,
25], which state that constraints on a relational database
give rise to its schematic variations. We extend this result
for graph databases. For example, the variation in Figure 1
will not preserve the information in the database in Fig-
ure 1(a) unless all papers in a conference share the same
set of research areas. Otherwise, it is not clear what re-
search areas must connect to a conference in Figure 1(b).
We show that given some mild assumptions, the constraints
that induce structural variations over graph databases are
in the form of tuple-generating dependencies (tgd), which
are a well-known family of constrains over databases [1, 7].
In particular, we make the following contributions.
• We formalize invertible structural variations in graph data-

bases, and define structural robustness of a similarity search
algorithm (Section 3).
• We show that existing similarity search algorithms are not

robust because of the limited types of relationships they
use to measure the degree of similarity. Thus, we propose

a robust algorithm called RelSim, which extends some
well-known similarity search algorithm (PathSim [35, 34])
to use a sufficiently expressive set of patterns.
• RelSim requires users to specify the relationship between

nodes that is used to compute similarity score between
the nodes, which may be relatively complex and hard for
users to provide them. We propose an algorithm that
leverages some simple guidelines from the user to compute
structurally robust similarity scores efficiently (Section 5).
• We report the results of our extensive empirical stud-

ies over large graph databases, which indicate that our
proposed algorithms are structurally robust and improves
the effectiveness of its original similarity search algorithm
(Section 6). Our empirical studies also show that our al-
gorithm is efficient over large databases.

2. GRAPH DATA AND CONSTRAINTS
We fix a countably infinite set of node ids denoted by
V. Let L be a finite set of labels. A database D over L is
a directed graph (V,E) in which V is a finite subset of V
and E ⊆ V × L × V . This definition of graph databases is
frequently used in the graph data management literature [5,
46, 17]. We denote an edge from node u to node v whose
label is a as (u, a, v). We say that (u, a, v) ∈ D whenever
(u, a, v) ∈ E. Similarly, we say that v ∈ D whenever v ∈ V .

Database constraints restrict the instances of a schema.
They are usually expressed as logical formulas over schemas
[7, 6, 1]. Two widely used type of constraints are tuple-
generating and equality-generating dependencies [7, 6]. A
tuple-generating dependency (tgd for short) over schema L
is in the form of ∀x̄(φ(x̄)→ ∃ȳψ(x̄, ȳ)) where x̄ and ȳ are sets
of variables, and φ and ψ are logical formulas in a query lan-
guage over L. A full tgd does not have any existential vari-
able in its conclusion. An equality-generating dependency
(egd for short) over schema L is in the form of ∀x̄(φ(x̄) →
x1 = x2) where x̄ is a set of variables, x1, x2 ∈ x̄, and φ is
logical formulas in a query language over L.

Example 1. Database shown in Figure 1(a) contains a
constraint (x1, area, x3)∧(x3, published-in, x4)∧(x2, published
-in, x4)→ (x1, area, x2).

Tgds and egds are arguably the most popular and fre-
quently used types of database constraints and generalize
popular constraints, such as function and multi-valued de-
pendencies [1].

A commonly studied query language over graph databases
is conjunctive regular path queries (conjunctive RPQ), which
is used to express tgd and egd constraints over graph data-
bases [18, 10, 46, 5]. The RPQ p over schema L is defined
by the following grammar.

p := ε | a (a ∈ L) | a− (a ∈ L) | p · p | p+ p | p∗

in which ε is an empty label, − is a reverse traversal of
an edge, · is a concatenation, + is a disjunction, and ∗ is
a Kleene star. To avoid parentheses and ambiguity, it is
assumed that the reverse traversal has the highest priority,
then Kleene star, then concatenation and then disjunction.
Example of an RPQ over a schema of a database shown in
Figure 1(b) is field · published-in−. The RPQ p defines
a binary relation over database nodes. More precisely, the
result of evaluating p on database D is a set of pairs of
nodes in D such that there is a path defined by p between

2

the two nodes. We denote the result of evaluating p over D
as [[p]]D. For example, given label a in the schema of D,
the result of [[a]]D is a set of pairs of nodes {(u, v)} where
there is an edge with label a from u to v. Let x̄ = (x1,
. . . , xn) and ȳ = (y1, . . . , ym) be tuples of distinct variables.
A conjunctive RPQ is a formula φ(x̄) of the form ∃ȳ((z1,
p1, z

′
1) ∧ ... ∧ (zk, pk, z

′
k)) where pi is an RPQ and zi, z

′
i ∈

{x1, . . . , xn, y1, . . . , ym}, 1 ≤ i ≤ k [46, 5]. We call (zi, pi, z
′
i)

an atom of φ(x̄).
A schema S is a pair (L,ΓS) in which L is a (finite) set of

labels and ΓS is a finite set of constraints. By the abuse of
notation, we say that a label l ∈ S if l ∈ L and a constraint
γ ∈ S if γ ∈ ΓS . Each database of schema S = (L,ΣS) is a
database over L such that all constraints in ΣS holds. We
denote the set of all databases of schema S as Inst(S). A
similarity query q over database I(VI , EI) ∈ Inst(S) is a
node id in VI [35, 48, 40, 26, 50, 27, 21, 2, 34]. The answers
to a similarity query q over I is a ranked list of node ids in
I that are not equal to q.

3. STRUCTURAL ROBUSTNESS AND VARI-
ATIONS

3.1 Structural Robustness
Intuitively, a structurally-robust query answering algo-

rithm should return essentially the same answers for the
same query across databases that contain the same infor-
mation content. Researchers use the concept of invertible
transformation to formalize the equivalence of information
stored in different databases [25, 16]. A transformation
from schema S to schema T is a function from Inst(S) to
Inst(T), which maps each database of S to a database of T
[25, 16]. We denote a transformation from S to T as ΣST .
For example, consider a transformation Σ1a,1b from schema
of the database in Figure 1(a) to the schema of the one in
Figure 1(b), which changes the structure of the database in
Figure 1(a) such that the research areas associated to a pa-
per become connected to the paper via the conference of the
paper and produces the database in Figure 1(b).

This definition of transformations may not be sufficiently
powerful to capture structural variations. Assume that the
schema of the database in Figure 1(b) contains an additional
type of relationship called keyword-of that connects each pa-
per published in a conference to nodes, which store keywords
of the paper. Consider an updated version of the database
in Figure 1(b) in which each paper is connected to some ad-
ditional nodes via relationship keyword-of. Intuitively, the
updated database has more information than the one in Fig-
ure 1(a). Let us define transformation Σ1a,1c between the
schema in Figure 1(b) and the updated schema such that it
modifies relationships between research areas, conferences,
and papers similar to Σ1a,1b and adds some keywords to each
paper. This transformation maps each database in the orig-
inal schema to multiple databases under the transformed
schema where each database may have different (number
of) keywords for the same paper. Thus, we use a definition
of transformation between schemas S and T in which the
transformation ΣST establishes a relation between Inst(S)
and Inst(T) to cover the aforementioned cases [15, 5]. It
maps each database I ∈ Inst(S) to at least one database
J ∈ Inst(T) and it is not a function. One denotes the fact
that J is a transformation I under ΣST as (I, J) |= ΣST [15,

5]. For brevity and by the abuse of notation, we show the
transformed databases of I under ΣST as ΣST (I).

The transformation ΣST is invertible if there is a trans-
formation ΣTS from T to S such that, for each database
I ∈ Inst(S), ΣTS maps every database ΣST (I) to I and
only I, i.e., ΣTS(ΣST (I)) = I. In other words, the com-
position of ΣST (I) and ΣTS(I), shown as ΣST (I)◦ ΣTS is
equivalent to the identity transformation id that maps each
database only to itself. In this case, we call ΣTS the in-
verse of ΣTS and denote it as Σ−1

ST . If there is an invertible
transformation from schema S to T , one can reconstruct
exactly the information in each database I from the infor-
mation available in ΣST (I). In other words, each database
in ΣST (I) contains sufficient information to rebuild the I
and has at least the same amount of information as I. As
ΣST maps each database of schema S to a database with at
least the same amount of information in schema T , schema
T has at least the same information capacity as S. In this
case, we say that S has at least as much information as T

and denote their relationship as S
ΣST
� T or simply S � T if

ΣST is clear from the context.

Example 2. Consider a transformation Σ1a,1b from schema
of the database in Figure 1(a) to the schema of the one in
Figure 1(b). Because of the constraint described in Exam-
ple 1, this transformation is invertible. Intuitively, this con-
straint over Figure 1(a) implies that papers published in the
same conference are related to the same set of research areas.
Hence, one may change the structure shown in Figure 1(a)
such that the research areas associated to a paper connect to
the paper via the conference of the paper and get the data-
base fragment shown in Figure 1(b). One can recover the
information in the original database using the information
in Figure 1(b). One can find the exact set of research areas
directly connected to each paper in Figure 1(a) by check-
ing the research areas directly connected to the conference of
that paper. Similarly, Σ1a,1c is also invertible as one still
have the amount of information needed to recover the infor-
mation of the database in Figure 1(a) from the transformed
databases. We will formally explain the relationship between
the constrain on the database in Figure 1(a) and invertibility
of Σ1a,1b and Σ1a,1c in Section 3.2.2.

Our definition of inverse extends the notion of Fagin-
inverse used in the context of relational data exchange [12].
It, however, is slightly different from the notion of Fagin-
inverse due to the fact that we have a different objective
than the ones in data exchange. In a Fagin-inverse, a trans-
formation may map multiple databases from schema S to
multiples ones under schema T and its inverse maps multi-
ple databases under T back to multiple ones under S. Our
goal is to compare the results of an algorithm over a single
database and all its structural variations. The answers to a
similarity query in different databases of S may be different.
Thus, we are interested in the transformations that map a
single database under a schema to multiple ones under the
transformed schema. Consequently, the inverse of such a
transformation maps multiple databases under the trans-
formed schema only to the original database. Therefore, for
the rest of this paper, we assume that each transformation
maps a single database to multiple ones and its inverse maps
multiple databases back only to the original database.

Next, we present the definition of a structurally robust
(robust for short) algorithm. Roughly speaking, a robust

3

algorithm must return the same results for the same in-
put query over a database and its invertible transformation.
Two (ranked) list of node ids are equivalent if they contain
exactly the same node ids at the same positions. Two empty
lists of answers are equivalent.

Definition 1. Given schemas S and T such that S
ΣST
�

T , an algorithm is robust under ΣST if it returns equivalent
answers for every input query q over every database I ∈
Inst(S) and every database in ΣST (I) ∈ Inst(T).

An algorithm is robust under a set of transformations if it
is robust under all members of the set.

3.2 Structural Variations

3.2.1 Expressing Transformations
Definition 1 does not specify the language of invertible

transformations. To characterize the structural variations
of a schema, one needs to express invertible transforma-
tions in some language. Researchers usually use declarative
(schema) mappings to express schematic variations in graph
and relational databases [15, 12, 5]. Roughly speaking, a
transformation between schemas S and T is expressed as
a set of first order logical formulas φS(x̄) → ψT (ȳ) where
φS(x̄) and ψT (ȳ) are queries over schemas S and T , respec-
tively. More precisely, transformation ΣST between graph
schemas S and T is a finite set of rules φS(x̄)→ ψT (ȳ) such
that x̄ ⊆ ȳ and φS(x̄), i.e., premise, and ψT (ȳ), i.e., conclu-
sion, are conjunctive RPQs over S and T , respectively [5].
In each rule φS(x̄) → ψT (ȳ), every variable in x̄ is univer-
sally quantified and every one in the set of ȳ either belongs
to x̄ or is existentially quantified.

Example 3. Consider a transformation Σ1a,1b from schema
of the database in Figure 1(a) to the one in Figure 1(b). It
adds an edge field for every path area·published-in and
keeps existing edges of label published-in. It is expressed
as mapping with two rules of (x1, published-in, x2)→ (x1,
published-in, x2) and (x1, area · published-in, x2)→ (x1,
field, x2). The inverse of Σ1a,1b can also be expressed as
the set of following rules: (x1, field·published-in−, x2)→
(x1, area, x2) and (x1, published-in, x2) → (x1, published
-in, x2). The transformation Σ1a,1c that maps databases
under the schema in Figure 1(a) to the one shown in Fig-
ure 1(b) with some keyword nodes connected to each paper
published in a conference can be expressed using the afore-
mentioned rules plus rule (x1, published-in, x2)→ (y1, keyword-of,
x1), where y1 is an existential variable that represents the
nodes that contain keywords of the paper x1. The inverse
of Σ1a,1c is the same as the inverse of Σ1a,1b as it does not
require the information about keywords to reconstructs the
original database.

Transformation ΣST maps each database I ∈ Inst(S) to
J ∈ Inst(T) if for each rule φS(x̄)→ ψT (ȳ) in ΣST , we have
ū ∈ [[ψT (x̄)]]J if ū ∈ [[φS(ȳ)]]I [5]. We use the closed world
semantic for schema mappings [23]. That is, transformation
ΣST maps I ∈ Inst(S) to only databases whose nodes and
edges are constructed using the mapping rules. The alterna-
tive semantic is the open world semantic in which the trans-
formations of I ∈ Inst(S) under ΣST may contain nodes
and edges that are not created as the result of the schema
mapping rules [15, 12, 5]. A consequence of this semantic is

that the inverse of transformation ΣST will map each data-
base ΣST (I) to other databases in addition to I, e.g., all
databases in S that include the information of I [12]. Our
goal, however, is to compare the results of similarity queries
over the original database I and its variations. Thus, we use
the closed world semantic for schema mappings.

3.2.2 Characterizing Structural Variations
Next, we present the full characterization of schemas that

have structural variations. It helps us to identify the set
of all invertible transformations of a schema, which we use
to design robust algorithms. Consider transformation ΣST
from schemas S to T and ΣTR from schemas T to R. The
composition of ΣST and ΣTR, denoted as ΣST ◦ ΣTR, is a
transformation from S to R such that if J = ΣST (I) and
K = ΣTR(J), then K = (ΣTR ◦ ΣST)(I).

Given transformations ΣST from schema S to T , its in-
verse Σ−1

ST is a transformation from T back to S. Thus, the
composition Σ−1

ST ◦ ΣST will map the database I ∈ Inst(S)
to itself. In other words, the composition of ΣST ◦ Σ−1

ST are a
set of rules, i.e., constraints, over S. We have the following
proposition by applying the definitions of the inverse and
composition of transformations.

Proposition 1. Given schemas S and T such that S
ΣST
�

T , for all databases I ∈ Inst(S) we have I |= Σ−1
ST ◦ ΣST .

Proposition 1 extends the results on the lossless decomposi-
tion of a relational schema [43] and the ones on the inverse
of a relational schema mapping in [12]. According to Propo-
sition 1, if there is not any constraint on a graph schema, it
will not have any invertible structural variations. In other
words, the constraints on schema S determines its structural
variations. Also, based on this proposition, the constraints
on S that gives rise to invertible structural variations are in
form of tgds.

Example 4. The composition Σ1a,1b ◦ Σ−1
1a,1b in Exam-

ple 3 results in a constraint (x1, area, x4) ∧ (x4, published
-in, x3) ∧ (x2, published-in, x3) → (x1, area, x2) which is
equivalent to the constraint of the database shown in Fig-
ure 1(a) as described in Example 1.

We should note that the composition of two transfor-
mations may not be expressible using first order schema
mapping formulas [13, 5]. Roughly speaking, each rule in
ΣST ◦ ΣTR is created by replacing an atom (x, exp, y) in the
premise of a rule in ΣTR by the premise of a rule in ΣST
whose conclusion matches (x, exp, y) [13, 5, 7]. Assume that
the conclusion of a rule in ΣST contains an atom (x, exp, y)
with an existentially quantified variable. Also, assume that
there is an atom in the premise of Σ−1

ST that matches (x, exp,
y). In this case, one needs second-order logic to express this
composition [13]. To the best of our knowledge, there has
not been any work on database constraints over graph (or
relational) databases that are in languages more expressive
than the first order logic, e.g., second order logic, and the
database constraints in the first order logic are by far more
widely used than the ones expressed in higher order logics [7,
1]. Thus, in this paper, we focus our attention to the first
order constraints as explained in Section 2. Existentially
quantified variables are also introduced in an atom (x, exp,
y) by using concatenation, Kleene star, or disjunction, i.e.,
+, in exp.

4

If the atoms in the premise of Σ−1
ST match the atoms with

only universally quantified variables in the conclusion of
ΣST , their compositions can be expressed using the (first
order) tgds as defined in Section 2 [13, 5]. For instance,
as shown in Example 4, the composition of transformation
Σ1a,1b and its inverse and transformation Σ1a,1c and its in-
verse can be expressed as such tgd constrains . In this case
the shared atoms between the premises of rules in Σ−1

ST and
the conclusions of rules in ΣST will be in form of (x, l, y) or
(x, l−1, y) where l is a label in schema T . In this case, each
rule in ΣST ◦ Σ−1

ST is created by replacing an atom (x, l, y)
in the premise of a rule in Σ−1

ST by the premise of each rule
in ΣST whose conclusion matches (x, l, y) (or (x, l−1, y) by
exchanging the positions of x and y). This method natu-
rally extends to the atoms of form (x, l−1, y) in the premise
of rules in Σ−1

ST .
Consider a transformation ΣST from S to T where the

conclusions of a rule α in ΣST contain an existentially quan-
tified variable z. Given I ∈ Inst(S), the nodes in databases
ΣST (I) created as the result of applying α to I and corre-
spond to z do not have any fixed ID (or value if applicable)
as they do not correspond to any node in I. Thus, ΣST (I)
will contain more than a single database. Since a transfor-
mation maps a database to multiple ones, its inverse must
map multiple databases to a single one. Thus, the inverse
can be expressed using a set of rules without any existen-
tially quantified variable in their conclusions. Similar results
have been shown for structure of similar types of inverse of
schema mappings over relational databases [12]. Thus, the
composition of ΣST and Σ−1

ST is a set of rules where the
premise of each rule is a conjunctive RPQ and its conclu-
sion is a single RPQ atom in form of (x, exp, y) where exp
is either l or l− where l is a label in S. Hence, ΣST ◦ Σ−1

ST is
a set of full tgds over S.

The set of tgds introduced by Proposition 1 is necessary
to have invertible transformations for schema S, but it is
not sufficient. We show that S must satisfy an additional
group of tgds to have invertible variations. Let σ denote
the set of tgd constraints in Σ−1

ST ◦ΣST . Given σ, we create
another group of tgd constraints over S, denoted as σ∗, as
follows. For each tgd constraint in σ whose conclusion is in
the form of χ1(x, y)→ (x, l−, y), we replace it with constrain
χ1(y, x) → (y, l, x). Then, for all tgds with the same atom
in their conclusions, i.e., χ1(x, y) → (x, l, y), ..., χm(x, y) →
(x, l, y) in σ, we construct the constraint (x, l, y) → χ1(x,
y) ∨ ... ∨ χm(x, y). For each label l′ in LS that does not
appear in a conclusion of any constraint in σ, we create the
constraint (x, l′, y)→ FALSE, which means that there is not
any database in Inst(S) with any edge whose label is l′.

Proposition 2. Given transformations ΣST from S to
T and ΣTS from T to S, let σ denote ΣST ◦ ΣTS. ΣST is
invertible with inverse ΣTS if and only if, for every database
I ∈ Inst(S), we have I |= σ ∧ σ∗.

In the rest of this paper, we refer to an invertible transfor-
mation simply as a transformation. Table 1 summarizes
the notations used in our framework.

3.2.3 Identifying Inverses
Over relational databases, there has been numerous works

on identifying and computing (somewhat) inverses of a trans-
formation [12, 14, 4]. Relational transformation, however,
lacks the notion of recursion. Hence, we cannot use the

Table 1: Summary of the notations.
Notation Definition
Inst(S) Databases of schema S
ΣST Transformation from schema S to T
ΣST (I) Transformations of I based on ΣST
Σ−1
ST The inverse of ΣST

ΣST ◦ ΣTR The composition of transformations

proposed methods to compute the inverse of any transfor-
mation written using navigation language such as RPQ. To
adopt existing methods, we reduce the RPQ as described in
Section 2 to the following grammar.

p := ε | a (a ∈ L) | a− (a ∈ L) | p · p | pn

where n is some constant natural number. We called this
query language as reduced-RPQ. That is, the Kleene-star no-
tion is replaced by a path with finite length of n, and the dis-
junction is not allowed. In this case, given a transformation
whose set of logical formulas are written in reduced-RPQ,
we can rewrite the transformation to be similar to that of
relational. For instance, the reduced-RPQ (x, l1 · l2, y) can
be rewritten as l1(x, z)∧ l2(z, y), by adding additional node
variable z to the formula. Following the method proposed
in [12] that define a canonical S-inverse, which is an inverse
of a transformation T (if there is) over a schema S whose
set of constraint is Γ. We must note that the set of tgds in
Γ must also be weakly acyclic for Γ to be finite chasable.

Let IR be a one-tuple instance containing only the fact
R(x̄) where R is a label in S, and IΓ

R be a finite result of
chasing IR with Γ. Let JΓ

R be a finite result of chasing
IγR with T . The inverse is a set of full tgds whose L.H.S.
contains fact from JΓ

R and R.H.S. contains fact from IΓ
R.

Consider that Γ consists of relations of two variables. The
chase results in both JΓ

R and IΓ
R also contain relations of two

variables. Since each formulas in the inverse is full tgd and
each atom is a relation of two variables, e.g., R(x, y), then
we can convert these tgds to the one written in conjunctive
reduced-RPQ. Nevertheless, computing an inverse is not a
subject of this paper, and is open for future work.

4. ROBUST SIMILARITY SEARCH

4.1 Robustness of Current Methods
To the best of our knowledge, frequently used structural-

based similarity search algorithms are based on random walk,
e.g., RWR [39], pairwise random walk, e.g., SimRank [26]
and P-Rank [50], or path-constrained framework, e.g., Path-
Sim, [35, 34]. There are other similarity search algorithms
that extend the aforementioned algorithms such as common
neighbors, Katzβ measure, commute time, and sampled set
of random paths/walks between nodes [29, 49].

Similarity score computed by algorithms that use random
walks and pairwise random walks are largely influenced by
the topology of the graph. Because some information pre-
serving transformations may modify the topological struc-
ture of a database, a structural-based similarity search al-
gorithms such as RWR and SimRank are not robust under
these variations as shown in our empirical studies in Sec-
tion 6. Similar to these algorithms, there are algorithm that
leverage the idea of random walks by randomly picking some
walks or paths between two nodes and randomly traversing
certain number steps on each walk [49]. The more similar

5

two nodes are, the more likely it is for one to reach to one
of them by starting from another one using the aforemen-
tioned method. As they use similar core ideas to RWR and
SimRank to measure the similarity between two nodes, their
results are similarly influenced by the invertible transforma-
tions that modify the topology of the database. Invertible
transformation may change the length and number of paths
and walks between two nodes. For example, the length of
the path between nodes SIGKDD and Data Mining is one
in the database in Figure 1(a) and is two in its variation
in Figure 1(b). One may significantly reduce or increase
the length of paths between two entities in a database and
its invertible transformations using the same type of varia-
tions. Thus, these methods may deliver a different similarity
scores for the same pairs of nodes over a a database and its
invertible transformations.

Two entities may be related via multiple paths in a data-
base where each path may represent a different type of rela-
tionship. The degree of similarity between two entities may
largely depend on the type of relationship between them.
For instance, consider again Figure 1. A user may be in-
terested in finding similar papers based on the conferences
in which they are published rather than their common re-
search areas. As another example, consider a database with
researchers, conferences in which they publish, and their af-
filiations. Some users may want to find similar researchers
from the point of view of their affiliations and other users
may like to find similar ones based on their shared confer-
ences. Thus, one often has to consider the type of relation-
ship between two entities to define an effective similarity
metric with a clear semantic. Path-constrained similarity
search algorithms, such as PathSim, follow this approach
[35, 34]. They allow users to supply a path template, called
meta-path, that specifies the type of relationship between
entities in their queries. A meta-path in Figure 1 is m1 :
published-in · published-in−, which reflects the relation-
ship between two papers through the conference in which
they are both published. Each instance of a meta-path in
database D is a path in D whose sequence of edge labels
match the sequence of labels in the meta-path. For example,
Similarity Mining·published-in·SIGKDD·published-in−·
SimRank is an instance of m1 in Figure 1(b). The PathSim
score of entities u and v in a database D given a meta-path
p is

simp(u, v,D) =
2× |u p v|

|u p u|+ |v p v|
(1)

where |u p v|, |u p u| and |v p v| denote the numbers
of (u, p, v), (u, p, u) and (v, p, v) path instances in D, respec-
tively. The robustness of PathSim or other path-constrained
similarity search methods largely depends on the represen-
tation of the underlying relationships.

Example 5. Consider two representations of bibliographic
data in Figure 1. Suppose a user wants to find similar re-
search areas to Data Mining based on their shared confer-
ences. In Figure 1(a), the user uses the meta-path p1 : area
· published-in · published-in− · area− to represent the
relationship and compute similarity scores between research
areas. PathSim then finds Data Mining more similar to
Info Retrieval than to Databases. However, in Figure 1(b),
the same user may use the meta-path p2 : field· field−
to compute similarity scores between research areas. This

meta-path finds that both Info Retrieval and Databases are
equally similar to Data Mining.

4.2 Achieving Robustness
Example 5 illustrates that there may not be any meta-

path over some representations of a dataset to express a
desired relationship. If a user wants to find the similarity
of research areas based on their shared conferences, she can
use p2 over the representation in Figure 1(b), but she can-
not find any meta-path in Figure 1(a) that expresses such a
relationship. A candidate could be p1 but it has additional
information of the set of papers published in the conferences.
On the other hand, the user may like to measure the simi-
larities of research areas based on their shared conferences
and the papers published in those conferences; therefore,
she uses meta-path p1 in Figure 1(a). Nevertheless, there
is not any meta-path in Figure 1(b) that exactly expresses
that relationship. The user should use the expression that
also includes information about publications, and the repre-
sented relationship should be based on shared conferences.

One may solve this problem by using a language that is
more expressive than the set of meta-paths to express rela-
tionships between entities in a database.

Example 6. Following Example 5, one can create an equiv-
alent relationship to the one expressed by p2 in Figure 1(a)
by modifying p1 to treat the set of all paths through some
papers from a conference to a research area as a single path,
i.e, skip details of entities visited along those paths.

The resulting pattern from Example 6 considers only the
existence of a connection between a research area and a con-
ference in the database as opposed to p1 that takes into
account all papers that connect a research area to a con-
ference. This pattern intuitively represents an equivalent
relationship over Figure 1(a) to the one conveyed by p2 over
Figure 1(b). Hence, one has to define and add an operation
that implements the aforementioned skipping behavior to
the language that describes relationships between entities.

Example 7. Following Example 5, one can modify p2 to
be able to visit the publications of conference while visit-
ing a conference. This way, we will get a relationship be-
tween two research areas that takes into consideration both
the conferences and publications shared between the them in
Figure 1(b). The resulting pattern in Figure 1(b) expresses
an equivalent relationship to what p1 represents over Fig-
ure 1(a).

Following this approach, one should be careful not to in-
crease the expressivity of the relationship language too much
as it takes a long time to find all instances of a complex pat-
tern and compute its similarity score in a large database.

We present a new relationship language that is expressive
enough to represent equivalent relationships across various
representations of the same dataset. We also show that us-
ing this relationship language, there is a similarity algorithm
that returns equal similarity scores between every pair of
corresponding entities over different representations of the
same information. More precisely, an algorithm that com-
putes a similarity score using Equation 1 where p is written
in our proposed language is structurally robust.

To implement the solution presented in Example 7, one
may use the idea of nested operation in the nested regular

6

expression (NRE) language [5]. Let [p] denote a nested path
of p where a path (u, [p], u) exists if and only if there exists
a node v such that a path (u, p, v) exists. To achieve same
results as p1 over Figure 1(a), the user should use the pattern
p4 : field· [published-in−] · [published-in−] · field−
to compute similarity score between research areas. That
is, similar research areas are based on shared conferences,
and the strength of this relation is based on the number of
publications published in that conferences.

We define the extension to NRE namely rich-relationship
expression (RRE), over schema S as

p := ε | a (a ∈ S) | p− | p · p | p+ p | [p] | ddpcc

where [] denotes a nested operation and dd cc denotes a skip
operation.

Since Equation 1 used the number of instances of a spec-
ified relationship pattern when calculating the similarity
score, we define an instance of an RRE as follows. An in-
stance of some RRE in a graph database D is a ternary
relation (u, v, s) representing a graph traversal over D from
node u to node v whose actual traversal are recorded in a
sequence s. Each entry in the recorded sequence s is either a
node id, an edge label or a string of pattern. Equivalence be-
tween two RRE instances is defined naturally by entry-wise
comparison.

Given a sequence s = 〈s1, ..., sm〉 and t = 〈t1, ..., tn〉 of m
and n entries, respectively, let s • t = 〈s1, ..., sm, t2, ..., tn〉
which is defined only if sm = t1; and let s̄ = 〈s̀m, ..., s̀1〉
where, for each i = 1...m, s̀i = si if si represents a node
and s̀i = s−i otherwise. A set of instances of an RRE p in
a database D in schema S, denoted by ID(p), is defined as
follows. For a given label a ∈ S, arbitrary RREs p, p1 and
p2 over S, we have

ID(ε) = {(u, u, 〈u〉) | u is a node in D}
ID(a) = {(u, v, 〈u, a, v〉) | (u, a, v) ∈ D}
ID(p−) = {(v, u, s̄) | (u, v, s) ∈ ID(p)}

ID(p1 · p2) = {(u, v, s1 • s2) | ∀w, (u,w, s1) ∈ ID(p1)

and (w, v, s2) ∈ ID(p2)}
ID(p1 + p2) = {(u, v, s) | (u, v, s) ∈ ID(p1) ∪ ID(p2)}

ID(p∗) = {(u, v, s) | (u, v, s) ∈ ID(ε) ∪ ID(p) ∪ ID(p2) ∪ ...}
ID(ddpcc) = {(u, v, 〈u, p̃, v〉) | ∃s, (u, v, s) ∈ ID(p)}
ID([p]) = {(u, u, s • 〈v, u〉) | ∀v, (u, v, s) ∈ ID(p)}

where pn is a concatenation of n p’s, and p̃ is a string of a

copy of p with all dd cc removed, e.g., ˜dda · bcc = a · b. We
define the definition of instances of an RRE for a particular
pair of nodes u and v in database D such that

Iu,vD (p) = {(u, v, s) | ∀s, (u, v, s) ∈ ID(p)}.

Further, if a database D is clear from context, we may write
Iu,vD (p) and ID(p) simply as Iu,v(p) and Iu,v(p), respec-
tively. For the remaining of this paper, we assume all rela-
tionships are RREs.

Given a transformation γ : φ(x̄) → (x1, a, x2), one can
construct an undirected graph Gγ = (V,E) such that V =
{x̄} and E is a set of an edge (xi, p, xj) where (xi, p, xj) is
an atom in φ(x̄). We say that γ is acyclic if Gγ contains no
cycle. In the following theorem, we assume that the premise
of every transformations are acyclic.

Theorem 1. Given schemas S and T , for every trans-
formation ΣST and every pattern p over S, there exists a
pattern p′ over T such that, for every database D ∈ Inst(S)
and J ∈ ΣST (D) ∀u, v ∈ D, |Iu,vD (p)| = |Iu,vJ (p′)|.

First, we prove the following proposition.

Proposition 3. Given a schema S, a ∈ S, p, p1 and p2

are arbitrary RREs over S, and a database D ∈ Inst(S)
where nodes u and v are in D, the following properties hold.

(1) If Iu,vD (p) 6= ∅, then |Iu,vD (ddpcc)| = 1.
Otherwise, |Iu,vD (ddpcc)| = 0.

(2) Iu,vD (ddacc) = Iu,vD (a)
(3) |Iu,vD (p1 · p2)| =

∑
w∈D |I

u,w
D (p1)||Iw,vD (p2)|

(4) If (u, p1, v) ∈ D iff (u, p2, v) ∈ D, then |Iu,vD (ddp1cc)|
= |Iu,vD (ddp2cc)|.

(5) |Iu,uD ([p])| = |Iu,uD (p · ddp−cc)|
Proof. For (1) and (2), the statements hold directly

from definitions of path instances. For (3), proofs are done
by counting. For (4), assume ∃(u, p1, v) ∈ D. We have
(u, p1, v) ∈ D iff (u, p2, v) ∈ D, and so Iu,vD (p1) 6= ∅ iff
Iu,vD (p2) 6= ∅. That is, |Iu,vD (ddp1cc)| = 1 iff |Iu,vD (ddp2cc)| =
1. Otherwise, Iu,vD (p1) = Iu,vD (p2) = ∅, and so |Iu,vD (ddp1cc)|
= |Iu,vD (ddp2cc)| = 0. For (5), by definitions, (u, p, v) ∈
D iff (u, p̃, v) iff (v, p̃−, u). Hence, |Iu,uD ([p])| = |{(u, u,
s • 〈v, u〉) | ∀v, (u, v, s) ∈ ID(p)}| = |{(u, u, s • 〈v, p̃−, u〉
) | ∀v, (u, v, s) ∈ ID(p)}| = |{(u, u, s • 〈v, p̃−, u〉) | ∀v, (u, v,
s) ∈ ID(p) and (v, u, 〈v, p̃−, u〉) ∈ ID(ddp−cc)}| = |Iu,uD (p ·
ddp−cc)|.

Then, we prove the theorem.

Proof. If every label in the pattern p exists in both
schemas S and T , we have that, for each label a ∈ S appear-
ing in p, ∀u′, v′ ∈ D, (u′, a, v′) ∈ D iff (u′, a, v′) ∈ ΣST (D).
Clearly, |Iu,vD (p)| = |Iu,vΣST (D)(p)|.

Suppose p = ddrcc for some pattern r over S. By Proposi-
tion 3(4), if there exists a pattern r′ over T s.t. |Iu,vD (r)| > 0
iff |Iu,vΣST (D)(r

′)| > 0, we have |Iu,vD (p)| = |Iu,vΣST (D)(ddr
′cc)|.

Also, by Proposition 3(5), one may write p · ddp−cc instead
of [p]. Hence, we may consider a pattern p without any use
of dd cc or []. Further, since I(p∗) = I(ε)∪I(p)∪I(p2)∪ ...,
if there exists p′ such that |Iu,vD (p)| = |Iu,vΣST (D)(p

′)|, then

|Iu,vD (p∗)| = |Iu,vΣST (D)(p
′∗)|. Hence, we may also consider a

pattern p without the use of ∗.
Assume p = p1 + ...+ pm where p1, ..., pm are distinct and

contain no ‘+’.
We first show that, for each i = 1...m, there exists a pat-

tern p′i over T s.t. ∀u, v ∈ D, |Iu,vD (pi)| = |Iu,vΣST (D)(p
′
i)|

using strong induction over the number of concatenations in
pi.

Clearly, if pi = a or pi = a− where a ∈ S and a ∈ T , then
the statement holds. Otherwise, since ΣST is information
preserving, there exists k > 0 transformation rules in its in-
verse s.t. φ1(x1, x2, x̄)→ (x1, a, x2), ..., φk(x1, x2, x̄)→ (x1,
a, x2). Because each rule is acyclic, one can construct a pat-
tern p′i,j that traverses φj(x̄) from x1 to x2 for each j = 1...k.
We have that, ∀u, v ∈ D, (u, a, v) ∈ D iff

∨
j=1...k φj(u, v, x̄)

iff (u, p′i1 + ...+p′ik, v) ∈ ΣST (D). Let p′i = ddp′i1 + ...+p′ikcc.
By Proposition 3(4), |Iu,vD (pi)| = |Iu,vΣST (D)(p

′
i)|. The proof

extends for the case where p = a−.
Suppose the statement holds for any pi that contains up

to k concatenations. Without losing generality, let pi =

7

pi,1 · pi,2, for some pi,1, pi,2 6= ε, containing k + 1 concate-
nations. Hence, pi,1 and pi,2 contain at most k concatena-
tions. Consider that, ∀u, v, w ∈ D, there exists ri1 and ri2
in T (D) s.t. |Iu,wD (pi1)| = |Iu,wΣST (D)(ri1)| and |Iw,vD (pi2)| =

|Iw,vΣST (D)(ri2)|. Thus |Iu,vD (p)| =
∑
w∈D |I

u,w
D (pi1)||Iw,vD (pi2)|

=
∑
w∈ΣST (D) |I

u,w
T (D)(ri1)||Iw,vΣST (D)(ri2)|= |Iu,vΣST (D)(ri1·ri2)|.

That is, p′i = ri1 · ri2 satisfies the claim.
Next we show that p′j = pi, for each i 6= j. Consider

if p′j = p′i, where i 6= j, and there is no other such p′j .
There must exist a transformation rule in the inverse of ΣST
that maps to multiple labels in S, and there is no rule that
maps to each of those labels. Hence, ΣST is not information
preserving.

Using an induction over the number of disjunction over p,
we have that there exists a pattern p′ = p′1 + ...+ p′k s.t. the
theorem holds.

We restrict our attention to transformation with an acyclic
premise in order to reduce the expressivity of the relation-
ship language and keep the computation of similarity scores
efficient. A cyclic premise allows multiple traversals from
one variable to another along the premise, and requires an
indicator in the relationship language where two variables
along the traversal are the same, e.g., starting and ending
nodes in a cycle are the same. For instance, consider the
relationship pattern representing the premise of a cyclic tgd
(x1, a, x2) ∧ (x2, b, x3) ∧ (x3, c, x4) ∧ (x1, d, x3) ∧ (x2, e, x4)
→ (x1, f, x4). It is not possible to rewrite this pattern to
an equivalent one without a conjunction (∧). That is, the
premise must be rewritten in the form (x1, exp, x4) for some
RRE exp. For instance, to remove the conjunction between
in (x1, a, x2)∧ (x2, b, x3), one may write (x1, a · b, x3). How-
ever, because x2 is specified in (x2, e, x4), x2 cannot be re-
moved, and so this conjunction is necessary. Hence, the lan-
guage to properly express this relationship pattern should
be a conjunctive RRE expression. By adding conjunction
to the relationship language, as the patterns become more
complex, it will take longer to compute the similarity scores
between nodes. The result of Theorem 1 extends for gen-
eral tgd constraints if conjunction is added to our proposed
relationship language.

The following is an immediate result of Theorem 1.

Corollary 1. Given a database D of a schema S, for
every transformation ΣST for some schema T , there is a
mapping M between the set of patterns over S and the set
of patterns over T such that, for a given pattern p over S,
we have that ∀D ∈ Inst(S), ∀u, v ∈ D, simp(u, v,D) =
simM(p)(u, v,ΣST (D)).

Corollary 1 guarantees that, for each pairs of entities u and
v and pattern p between them over a dataset, one can al-
ways find a equivalent pattern with equal similarity score
to p between u and v on other variations of the database.
Hence, the returned ranked list of answers to a similarity
query across databases under this transformation are always
the same. We call the algorithm that uses Equation 1 to
compute similarity on RRE patterns Relationship-Similarity
(RelSim).

One may define RWR or SimRank scores between entities
based on a particular relationship pattern between entities
[35]. RWR computes a similarity score between nodes u
and v in a dataset using the steady-state probability that a
random walk from u will stay at v. SimRank, on the other

hand, computes the score based on the probability that two
random walks from u and v are met at a vertex in the data
graph. Technically, the probability of a random walk from u
to v computes the chance that the walk from u hops from a
node to its neighbor repeatedly until reaching v. Each hop,
hence, is intuitively defined as a single edge between two
nodes. However, when given a relationship pattern, a hop
is defined only if there is a walk that follows and completes
the given pattern from one node to another node. Following
this idea, we can use the same measurement as SimRank
and RWR to compute similarity scores over a relationship
pattern as similarly specified in RelSim. Using a similar
proof to Theorem 1, we prove the following proposition. Let
RWRp(u, v,D) and SimRankp(u, v,D) denote a similarity score
between nodes u and v computed using RWR and SimRank
scoring function that only consider walks that follows RRE
p.

Proposition 4. Given a database instance D of a schema
S, for every transformation ΣST for some schema T , there
is a mapping M between a set of patterns over S and a set of
patterns over T such that, for a given pattern p over S, we
have ∀D ∈ Inst(S), ∀u, v ∈ D, RWRp(u, v,D) = RWRM(p)(u,
v,ΣST (D)) and SimRankp(u, v,D) = SimRankM(p)(u, v,ΣST (D)).

PathSim is shown to be more effective than RWR and
SimRank [35]. Thus, we focus on our extension of PathSim.

4.3 Computing Similarity Scores
For an expression with only concatenations, the number

of RRE instances can be computed using commuting ma-
trix [35]. Given labels l1, ..., lm in a schema S, a commuting
matrix of an expression p = l1 · ... · lm over database D is
Mp = Al1Al2 ...Alm where Ali is an adjacency matrix that
represents a number of edges of label li between pairs of
nodes in D. Each entry Mp(u, v) represents the number of
instances of p from node u to node v in D. Given a commut-
ing matrix, we can compute a similarity score simp(u, v,D)

as
2Mp(u,v)

Mp(u,u)+Mp(v,v)
[35].

We extend the computation of commuting matrix for RRE
expressions as follows. Given matrices X and Y, let > be
a boolean operation such that each entry (i, j) of X > Y
is 1 if X(i, j) > Y(i, j) or 0 otherwise, and diag{X} de-
note a diagonal matrix of X. Given a label a and arbitrary
expressions p, p1 and p2 over database D in schema S, we
have Ma = Aa, Mp− = MT

p , Mp1·p2 = Ap1Ap2 , Mp1+p2

= Ap1 + Ap2 if p1 6= p2, Mp1+p2 = Ap1 = Ap2 if p1 = p2,
Mddpcc = Mp > 0, and M[p] = diag{Mp(M

T
p > 0)} where

0 denotes a matrix whose entries are zero.
Since computing a commuting matrix for RRE expressions

p over database D still follow standard matrix operations,
the complexity is bounded by O(m|V |3 + n|V |2) where m
denotes the number of matrix multiplications, e.g., the num-
ber of concatenations and nested operations in p, n denotes
number of other operations, and |V | denotes the number of
nodes in D. Therefore, RelSim still has the same complexity
as that of PathSim.

Nevertheless, one may reduce the complexity by exploit-
ing the use of parenthesis when constructing an expression
p. For instance, consider an expression p = l1 · l2 + l1 · l3
for some labels l1, l2 and l3. The commuting matrix for p
can be computed as Al1Al2 + Al1Al3 . One may rewrite p
as l1 · (l2 + l3) which can be computed as Al1(Al2 + Al3).

8

Hence, the latter helps reduce the required matrix opera-
tions by one multiplication. One may also use sparse ma-
trices operations or any existing fast matrices multiplica-
tion to reduce the time complexity [45]. Further, consider
that certain patterns (or sub-patterns) may be frequently
used. Their commuting matrices, hence, are repeatedly con-
structed. To reduce such repetitive computation and overall
running time, we may pre-materialize those matrices then
look them up in later computation. For instance, one can
pre-materialize and store all commuting matrices Ml1·l2 of
pattern l1 · l2, for every pair of labels l1 and l2. To compute
instances of pattern a · b · c, one only needs to look up Ma·b
and Mb·c and performs a single multiplication Ma·bMb·c.
Nevertheless, we do not explain and discuss any details of
such optimization as it is out of the scope of this paper. To
compute the similarity scores using patterns with kleene-
star p∗, one has to consider all possible repetition of p as we
have I(p∗) = I(ε+p+p ·p+ . . .). To compute such patterns
efficiently, we limit the maximum number of repetitions in
p∗ to a given number.

5. SIMPLIFYING RelSim
The relationship language presented in Section 4, is rela-

tively complicated and hard to construct or interpret for av-
erage users. For instance, an RRE p4 : field· [pubslihed-in−]
· [pubslihed-in−]· field− is less intuitive than an RRE p2 :
field·field− over Figure 1(b). Generally, users would like
to spend less effort to express their queries. One way to
achieve this goal is to enable users to submit their patterns
using a relatively smaller and intuitive subset of operations
in our proposed pattern language such as concatenation. In
addition, users may also like to measure the degree of sim-
ilarity of two entities using a set of related relationships to
get a more holistic view of their similarities. For example,
users may want to use both p2 and p4 to compute similarity
between pairs of research areas over Figure 1(b) to find the
overall similarity of research areas. In this section, we pro-
pose a robust similarity search algorithm whose input is an
RRE pattern that uses only concatenations and/or reverse
traversals. We call such a pattern simple. Our algorithm
leverages the constrains in the database to generate a set of
patterns related to the input one and use the full expressivity
of RRE. Our algorithm, then, compute and aggregate the
similarity scores of these patterns. This way, the user can
both use a relatively simple language to specify relationships
between entities, which is as simple as the one used by Path-
Sim, and take advantage of complex relationships between
entities to get effective and robust answers.

Algorithm 1 finds a subset of RREs by minimally modify-
ing a simple pattern given by the user such that the results
of Corollary 1 holds for the aggregated scores of all patterns.
Each RRE returned by the algorithm represents a relation-
ship pattern that may include or exclude some information
to or from the input pattern according to the database con-
straints.

For instance, given an input p2 : field· field− over Fig-
ure 1(b), the algorithm returns a set of RREs including both
p2 and p4 : field· [published-in−] · [published-in−] ·
field−. These RREs are then used to compute aggregate
scores over each RRE in the returned set using Equation 1.

Specifically, Algorithm 1 takes a simple pattern p = l1 · ...
· ln from a user in addition to a database schema S = (L,Γ).
Let (r, i) denote an RRE r which is processed up to label li

Algorithm 1: Path Modifier

Input: schema S = (L,Γ), simple pattern p = l1 · ... · ln over
S

Output: subset Ep of RREs over S

1 done← {}
2 processing ← {(ε, 0)} // For each pair (r, i) ∈ processing, r

denotes an RRE processed up to the position of label li
in p

3 foreach (r, i) ∈ processing do
4 Remove (r, i) from processing
5 if i ≥ n then
6 Add r to done
7 continue

8 Add (r · li+1, i+ 1) to processing
9 s← li+1 · li+2 · ...ln

10 foreach γ ∈ Γ do
11 R← R∪ SubPathModifierPerConstraint(γ, s)

12 foreach j ≥ i+ 1 do
13 foreach (li+1 · li+2 · ... · lj , exp′) ∈ R do
14 Add (r · exp′, j) to processing

15 return Ep ← done

Algorithm 2: Sub-path Modifier Per Constraint

Input: constraint γ, simple pattern s = l′1 · ... · l′m
Output: set R = {(exp, exp′)} where exp′ is a

corresponding RRE to exp which is a sub-path of s

1 Gγ ← a graph representing φγ
2 foreach i > 0, j ≥ i do
3 exp← l′i · l′i+1 · ... · l′j
4 if a path exp from some vg to vh exists in Gpre(γ)

then
5 foreach connected subgraph H of Gpre(γ) do
6 Find all RREs exp′ : vg ↪→H vh that traverse H

from vg to vh and visit each edge of H once
7 Add (exp, exp′) to R
8 Add (exp−, exp′−) to R

9 return R

in p. Given (r, i), let s denote the the remaining unprocessed
sub-path of p, e.g., s = li+1 · ... · ln. Algorithm 1 examines
each sub-path exp : li+1 · lj of s for some i + 1 ≤ j ≤
n. Then, it uses Algorithm 2 to find a set R of possible
replacement pattern for exp according to each constraint
in S (Line 11). If a replacement exp′ exists for exp, the
algorithm replaces exp in s with exp′ and marks that all
labels up to lj has been processed, e.g., (r ·exp′, j) (Line 14).
In addition, the algorithm also keeps the case where exp is
not replaced, e.g., (r ·exp, j) or (r · li+1, i+1) when consider
only j = i+1 (Line 8). Overall, Algorithm 1 fines all possible
combinations of replacement over each sub-path of p.

We provide a toy example of running Algorithm 1 as fol-
lows. Consider a simple pattern p = a · b · c · d and a single
constraint γ. Starting from (ε, 0), the algorithm adds (a, 1)
to processing. Here, we have the remaining unprocessed
sup-path s = a · b · c · d of p. Then the algorithm exam-
ines each of following sub-paths of s: a, a · b, a · b · c and
a · b · c · d. Assume Algorithm 2 returns a set R consist-
ing of (a, w1) and (a · b · c, w2) for a simple pattern s and
constraint γ. Hence, the algorithm adds (w1, 1) and (w2, 3)
to processing. Then the algorithm continues with the next
member in processing. Consider (w1, 1) where the remain-

9

ing unprocessed sub-path s is now b · c · d. It first adds (a
· b, 2) to processing. Assume Algorithm 2 returns a set R
consisting of (b · c · d, w3) for the this new value of s. It then
adds (a · w3, 4) to processing. Since 4 is the length of p, a ·
w3 is marked as done and will be added to the final results
in Ep. The algorithm repeats these steps until all members
in processing are processed.

Before we explain Algorithm 2, we would like to describe
a graph representing the premise of a constraint. Given a
constraint γ : φγ(x̄) → ψγ(x̄), let us first assume that, for
each atom (xi, exp, xj) in φγ , exp cannot be written as exp1

· exp2 for some non-empty RPQs exp1 and exp2. If such
atom exists, the atom is rewritten as (xi, exp1, x

′)∧(x′, exp2,
xj) for some fresh variable x′. A representing graph of the
premise of γ, denoted by Gpre(γ), is a directed graph (V,E)
whose nodes are variables in φγ and edges are labeled by
the RPQ pattern between each pair of those variables in φγ .
More specifically, a node vi ∈ V if and only if xi is a variable
in φγ , and an edge (vi, exp, vj) ∈ E if and only if (xi, exp,
xj) is in φγ . For instance, given a constraint γ : (x1, a, x2)∧
(x2, b, x3) ∧ (x3, c + d, x4) → (x1, e, x4), the graph Gpre(γ)
is shown in Figure 2.

Next, we would like to explain the underlying idea of the
replacement patterns found by Algorithm 2. Consider that
each constraint implies an information-preserving transfor-
mation that may add or remove an edge from the current
schema. For instance, consider a constraint γ1a as described
in Example 1 over a schema S1a of a database shown in
Figure 1(a). Following Example 3, a transformation from
S1a may add an edge label field between two nodes u1

and u2 for every path area·published-in from u1 to u2.
The transformation then removes edges of label area re-
sulting in a target schema S1b of a database as shown in
Figure 1(b). That is, the corresponding RRE over S1a to
field over S1b is pfield : ddarea · published-incc. Con-
sider Gpre(γ) which is the representing graph of the premise
of constraint γ1a or Gpre(γ1a). Because edges (v1, area, v3)
and (v3, published-in, v4) exist in Gpre(γ), the path area·
published-in from u1 to u2 matches the same pattern from
v1 to v4 over Gpre(γ). Hence, we can find an RRE pat-
tern pfield which is one of the traversals from v1 to v4 over
Gpre(γ).

Based on the aforementioned observation, given a con-
straint γ and a simple pattern r, we describe Algorithm 2
that finds associated RREs over a graph Gpre(γ) to r. Gen-
erally, for each simple pattern exp, the algorithm constructs
one or more RREs exp′ from possible traversals over Gpre(γ)
along the path exp. Then each sub-path of the user’s pat-
tern matching exp is replaced with each corresponding exp′

in Algorithm 1.
For Algorithm 2, we briefly describe a recursive procedure

to compute an RRE vs ↪→G vt that traverses a graph G from
node vs to vt as follows. Consider that one may adopt a
depth-first or breath-first search algorithm to find all paths,
i.e. simple patterns, from node vi to node vj in G. An RRE
pattern of all n paths that traverses a pair of nodes vi and vj
is pi,j1 + ...+pi,jn . Since we assume a constraint to be acyclic,
then n is exactly 1. Let us denote this pattern as pi,j . At
each node vi which connects to some leaf node vk in G, we
construct a pattern [pi,k]. We then concatenate [pi,k] at the
front of any pattern from vi or at the end of any pattern
to vi. We mark each edge as visited when each pattern pi,j

or [pi,k] is constructed. The base case is to first construct

v1 v2 v3 v4a b c+d

Figure 2: A representing graph Gpre(γ) of a con-
straint γ : (x1, a, x2) ∧ (x2, b, x3) ∧ (x3, c + d, x4)→ (x1, e,
x4)

a pattern ps,t. The procedure ends when all edges in the
graph of G are visited. We must note that each constructed
pi,j can also be written as ddpi,jcc, which results in multiple
patterns of this traversal.

As an example, given a graph Gpre(γ) as shown in Fig-
ure 2 and a simple pattern a ·b, Possible RRE patterns that
traverse this graph from v1 to v3, i.e. v1 ↪→H⊆Gpre(γ) v3,
are a · b, dda · bcc, a · b · [c + d] and dda · bcc · [c + d]. In this
case, Algorithm 2 adds all (a · b, exp′) to the returned set R
where exp′ is one of the above patterns, except the first one.

The complexity of Algorithm 1 largely depends on the
number of replacement patterns found from Algorithm 2.
In Algorithm 2, since each simple pattern p found in G
when constructing the traversal can be either p or ddpcc,
this algorithm is indeed exponential in the number of sim-
ple patterns. However, each simple pattern is a subgraph of
G that is a path graph, e.g., a connected tree whose nodes
have degree 2 except two terminal nodes. Hence, the num-
ber of simple patterns is D = 1 +

∑
v∈Vdeg>2

(deg(v) − 1)

where Vdeg>2 is a set of nodes in G whose degrees are greater
than 2. Since

∑
v∈V (G) deg(v) = 2|E(G)|. Hence, the pro-

cedure is O(2|E(G)|). Further, a linear-time algorithm that
finds all connected subgraphs G of Gγ is described in [24]
based on either depth-first-search or breath-first-search pro-
cedures. Also, since the algorithm iterates over all sub-path
of the input pattern, the total complexity of Algorithm 2
is O(n2(|V (G)| + 2|E(G)|)). Nevertheless, constraints of a
schema are given and usually have small number of terms
compared to the size of databases. We may view them as
some small constants C. Hence, Algorithm 2 is O(n2C).
Since Algorithm 1 replaces each label or sub-expression of
the user input with possible RREs returned by Algorithm 2,
the complexity of Algorithm 1 is O((n2C)n) = O(n2Cn).

Proposition 5. Given a database D of schema S and
a equivalent schema T under information preserving trans-
formation Σ, for every simple expression pS over S, there
exists a simple expression pT over T such that, ∀u, v ∈ D,∑
p∈EpS

simp(u, v,D) =
∑
p′∈EpT

simp′(u, v,Σ(D))

Thus, a similarity search algorithm that compute aggregate
similarity scores over a set of RREs returned by Algorithm 1
is structurally robust.

According to our discussion in Section 3, to have an in-
vertible variation of a database I, I must satisfy some tgd
constraints. However, these constraints may be trivial , e.g.,
(x, a, y)→ (x, a, y). Obviously, it is not efficient to consider
all trivial constraints over a database in our algorithms. We
show that a structural variation actually needs I to have
non-trivial constrains. Thus, as far as our algorithm uses
non-trivial constraints, it is structurally robust. We also
show that a simple pattern will be restructured based on
a tgd only if at least one of its labels appear in both left-
and right hand-side of the tgd. This enables Algorithm 1 to
ignore many tgds for a given input pattern. These optimiza-
tions reduce the number of patterns need to be generated
by Algorithm 1 and significantly improve its running time

10

proc area

paper

author

w

p-in r-
a

(a) DBLP

proc area

paper

author

w

p-in

r-a

(b) SIGMOD Record

Figure 3: Schema fragments of bibliographic data-
bases. p-in, r-a and w denote edge labels published-
in, research-area and writes, respectively.

and the running time of its similarity search. The details of
our optimizations are in the Appendix 7.

Our approach simplifies the language of patterns but users
still need to know the schema of the database to formulate
their queries. This is more difficult on very large and hetero-
geneous databases, such as Yago (www.mpi-inf.mpg.de/yago-
naga), which contain thousands of edges types. One may use
path suggestion and auto-completion tools based on the pop-
ularity of queries paths to make users’ work easier. Users
may also use schema exploration tools, e.g., [44], to learn
the schema easier.

6. EMPIRICAL EVALUATION
Datasets & Settings: We use 4 datasets in our exper-
iments: DBLP, Microsoft Academic Search (MAS), WSU
course dataset, and a Biomedical dataset (BioMed). DBLP
consists of 1,227,602 nodes and 2,692,679 edges, which con-
tains bibliographic information of publications in computer
science. We add information about the research areas for
each conference in DBLP from information extracted from
Microsoft Academic Search (MAS). Figure 3(a) depicts the
schema of DBLP. We also use a subset of Microsoft Aca-
demic Search data with 44,068 nodes and 44,220 edges. MAS
contain information about papers, conferences, areas, e.g.,
Databases, and keywords of each paper and/or area, e.g., in-
dexing. WSU course database1 contains information about
courses, instructors and course offerings in the university.
The dataset consists of 1,124 nodes and 1,959 edges. Fig-
ure 4(a) depicts the schema of WSU dataset. The Biomedi-
cal dataset, (BioMed), is made available to us as a part of an
NIH funded project and contains information about genetic
conditions, diseases, drugs, and their relationships. Figure 5
depicts a fragment of BioMed. It consists of 43,307 nodes
and 1,742,970 edges.

We compare robustness, effectiveness and efficiency of Rel-
Sim with RWR [39] using a restart probability of 0.8, Sim-
Rank [26] using a damping factor of 0.8, and PathSim [35].
Since previous study show that the PathSim similarity com-
putation method is more effective than those of SimRank
and RWR [35], we use RelSim with the similarity compu-
tation score of PathSim , i.e., Equation 1. We implement
all algorithms using MATLAB 8.5 on a Linux server with
64GB memory and two quad core processors.

6.1 Structural Robustness
We use DBLP, WSU and BioMed databases to evaluate

the structural robustness of RWR, SimRank, PathSim and
RelSim. Because SimRank takes too long to finish on full

1cs.washington.edu/research/xmldatasets

course subject

offer

instructor

t

co os

(a) WSU

course subject

offer

instructor

t

co

cs

(b) Alchemy UW-CSE

Figure 4: Variations for course databases. cs, os, t

and co denote edge labels course-subject, offering-
subject, teach, and offering-course, respectively.

protein

anatomy

phenotype

disont disease

omim disease drug reactome pathway

microna

co
nt
ro
l
ex
pr
es
si
on

of

affects

e
x
p
r
e
s
s
e
d
i
n

is
me
mb
er

of

is expres
s in

t
a
r
g
e
t

Pr-DD:
associ

ated with

Ph-A:associated with

P
h
-
D
D
:
a
s
s
o
c
i
a
t
e
d
w
i
t
h

M
-
O
D
:
a
s
s
o
c
i
a
t
e
d
w
i
t
h

Ph-M:associated with

Ph-Pr:associated
with

i
n
t
e
r
a
c
t
w
i
t
h

is parent of

is
parent

of

Ph-A:indirect-associated with

P
h
-
D
D
:
i
n
d
i
r
e
c
t
-
a
s
s
o
c
i
a
t
e
d
w
i
t
h

Figure 5: Schema fragment of BioMed dataset
DBLP dataset, we perform this evaluation using a subset of
DBLP with 24,396 nodes and 98,731 edges.

DBLP dataset satisfies constraint (paper1, r-a, area) ∧
(paper1, p-in, proc) ∧ (paper2, p-in, proc) → (paper2, r-a,
area). We transform this database to a database with the
structure shown in Figure 3(b), which follows the style of
SIGMOD Record database. We call this transformation
DBLP2SIGM. We randomly sample 100 proceedings based
on their node degrees as our query workload over these data-
sets.

WSU course dataset satisfies the constraint (offer1, os,
subject)∧(offer1, co, course)∧(offer2, co, course)→ (offer2,
os, subject). We transform WSU course database to the
graph structure of Alchemy UW-CSE database2 whose struc-
ture is shown in Figure 4(b). We call this transformation
WSUC2ALCH. We also randomly sample 100 courses from
WSU based on their degrees as our query workload for these
datasets.

BioMed database satisfies (phenotype1, is-parent-of,
phenotype2) ∧ (phenotype1, associated-with, anatomy)
→ (phenotype2, indirect-associated-with, anatomy) and
(phenotype1, is-parent-of, phenotype2) ∧ (disease, associated
-with, phenotype1)→ (disease, indirect-associated-with,
phenotype2). We transform the BioMed dataset such that all
edges of label indirect-associated-with are removed. We
denote the transformation over BioMed dataset as BioMedT.
The structure of the transformed BioMed dataset is also
shown in Figure 5 excluding all dashed edges. A main goal
of using this dataset in the NIH project is to discover the
drugs that are closely related to queried diseases. Since we
use this dataset to also evaluate the effectiveness of our al-
gorithms, we have obtained a set of 30 diseases and their
relevant drugs from experts in the domain of the data. Since
paths between diseases and drugs are asymmetric, we can-
not compute similarity scores using PathSim formula over
this dataset. Instead, we evaluate the queries using HeteSim
[34], which extends PathSim to support asymmetric paths,
e.g., finding similarity between different entity types.

2alchemy.cs.washington.edu/data/uw-cse

11

Table 2: Average ranking differencesDBLP2SIGM WSUC2ALCH BioMedT
top 5 top 10 top 5 top 10 top 5 top 10

RWR .447 .412 .259 .253 .130 .112
SimRank .455 .410 .387 .341 .405 .385
PathSim .608 .590 .310 .247 .438 .461

We measure the structural robustness of each method by
comparing its ranked list of results for the same query over
different datasets with the same information but different
structural representations. We adopt normalized Kendall’s
tau measurement to compare two ranked lists. The value
of normalized Kendall’s tau varies between 0 and 1 where
0 means two lists are identical and 1 means one list is the
reverse of another. Because users are normally interested
only in highly ranked answers, we compare only top 5 and
10 answers.

Table 2 shows the average ranking differences for top 5 and
10 answers returned by RWR, SimRank, PathSim and/or
HeteSim. We do not report the results of RelSim because
it returns the same answers over all transformations. For
PathSim, we use the expressions p-in− · r-a · r-a− · p-in
and r-a ·r-a− over DBLP and SIGMOD Record structures,
respectively. For RelSim, we use the same expression as
that for PathSim over DBLP and use an RRE [p-in−] ·
r-a ·r-a− · [p-in−] over SIGMOD. Over WSU and Alchemy
UW-CSE, we use the simple patterns co− · os · os− · co and
cs · cs−, respectively, for PathSim. For RelSim, we use the
same expression over WSU, but we use [co−] · cs · cs− ·
[co−] over Alchemy UW-CSE. For BioMed dataset, we con-
sult an expert and obtain an RRE pex : target·express-
in· (Ph-A:associated-with+Ph-A:indirect-associated-

with) · (Ph-DD:associated-with+Ph-DD:indirect-associated

-with). The corresponding RRE over the transformed BioMed
dataset is pTex : target·express-in· (Ph-A:associated-with
+ ddis-parent-of−·Ph-A:associated-withcc) · (Ph-DD:associated
-with+ ddis-parent-of−·Ph-DD:associated-withcc). Since
HeteSim does not support RRE, we compute the similarity
scores between a pair of drug dr and disease dd by averag-
ing similarity scores computed over the following patterns:
target·express-in· L1·L2, where L1 is either Ph-A:associated
-with or Ph-A:indirect-associated-with and L2 is either
Ph-DD:associated-with or Ph-DD:indirect-associated-

with. Since edges of label indirect-associated-with do
not exist in the transformed database, our best attempt to
construct an equivalent expression to pTex for HeteSim re-
sults in the following patterns: target·express-in· L′1 · L′2,
where L′1 is either Ph-A:associated-with or is-parent-

of−·Ph-A:associated-with and L′2 is either Ph-DD:associated-
with or is-parent-of−·Ph-DD:associated-with. Accord-
ing to Table 2, the outputs of all current algorithms are sig-
nificantly different across databases under these invertible
transformations.

Furthermore, real world data transformation may induce
some small information lost during the process. That is, a
transformation may not be invertible. Hence, we also mea-
sure the robustness of algorithms when some small fraction
of relations between entities are removed during the trans-
formation. In this experiment, we create 2 extra transforma-
tions for DBLP and BioMed, namely DBLP2SIGM(.95) and
BioMedT(.95), respectively. DBLP2SIGM(.95) and BioMedT(.95)
restructure DBLP and BioMed similar to that of DBLP2SIGM

Table 3: Average ranking differences over transfor-
mations that slightly reduce information

DBLP2SIGM(.95) BioMedT(.95)
top5 top10 top5 top10

RelSim .170 .298 .750 .144
RWR .696 .640 .530 .500

SimRank .790 .750 .143 .344
PathSim/HeteSim .423 .452 .927 .927

and BioMedT, respectively. To reflect information lost, they
also randomly remove 5% of the total edges of the trans-
formed databases. It takes more than a few days to run
SimRank and RWR over both DBLP and BioMed datasets.
Thus, to compare the impact of reducing information on
all algorithms, we have performed these experiments over
subsets of DBLP and BioMed datasets, which have 18,995
and 4,125 nodes, and 24,962 and 60,176 edges, respectively.
We followed the same approach in choosing queries for all
methods and the same relationship patterns for PathSim,
HeteSim and RelSim as used in the previous experiments
to evaluate robustness. Table 3 shows the average ranking
differences for top 5 and top 10 answers returned by RWR,
SimRank, PathSim (HeteSim) and RelSim. These results
indicate that RelSim is generally more robust than other
methods for the cases that original and transformed data-
bases do not contain exactly the same information. The only
exception is the top-5 results for SimRank and RWR over
BioMed dataset.

6.2 Effectiveness
We evaluate the effectiveness of RelSim over MAS and

BioMed. For query workload over MAS, we randomly sam-
ple 100 conferences based on their degrees in the dataset.
To provide the ground truth, for a given conference q, we
manually label other conferences in three categories: simi-
lar, quite-similar and least-similar. A conference is consid-
ered similar to q when they share the same research area.
A conference is considered quite-similar to q when they are
connected to strongly related research area. Otherwise, the
conference is considered least-similar to q. For example,
Data Mining and Databases are strongly related, but Data-
bases and Computer Vision are not. We use Normalized
DCG (nDCG) to evaluate the effectiveness because it sup-
ports multiple levels of relevance for returned answers [30].
The value of nDCG varies between 0 and 1 where the high
values indicate more effective ranking. We compare the ef-
fectiveness of RelSim with PathSim and report the values
of nDCG for top 5 (nDCG@5) and top 10 (nDCG@10) an-
swers. For BioMed, we obtain the query workload from an
expert. We use 30 queries of diseases with their relevant
drugs from the domain experts. Since each disease query
relates only to a single drug, we use Mean Reciprocal Rank
(MRR) to evaluate the effectiveness of the algorithms. Re-
ciprocal Rank (RR) of a list of answers to a query is 1/p
where p is the position of the first relevant answer in the
returned list of answers. MRR is the average of RR over a
set of queries.

Over MAS, we compute similarities between conferences
based on the keywords in their domains. We use the pattern
pc · pd · da · da− · pd− · pc− and ddpc · pdcc · da · da− · ddpd− ·
pc−cc for PathSim and RelSim, respectively. The average

12

Table 4: The MRR of RWR, SimRank, HeteSim and
RelSim over BioMed databases.

BioMed dataset RWR SimRank HeteSim RelSim
original .010 .062 .077 .077

under BioMedT .010 .062 .072 .077

nDCG@5 (nDCG@10) for RelSim and PathSim are 1.0 (1.0)
and 0.969 (0.901), respectively. RelSim significantly outper-
forms PathSim. This is because, nodes about paper should
not influence the similarity score between conferences based
on the keywords of their domains. Since the language of
relationship pattern used by PathSim is less expressive, the
pattern between conferences and keywords always include
papers. Hence, it deems conferences with more papers to
be more similar although they may not have many common
keywords. The RRE language used by RelSim is more ex-
pressive, and so it could avoid this problem. For example,
the top 5 answers returned by RelSim for query SIGKDD
are ICDM, IDEAL, PAKDD, PJW and PKDD. However,
the the top 5 answers returned by PathSim for the same
query are ICOMP, IC-AI, ICAIL, ICALP and ICANN.

Table 4 shows the MRR values of RWR, SimRank, Het-
eSim and RelSim over original BioMed dataset and BioMed
under BioMedT. According to our discussion with the ex-
perts, these queries are very hard to answer effectively by
using only the structural patterns in the data set and with-
out consulting external sources of knowledge. According to
the experts, even a slight improvement in the accuracy of
the returned answers may save a great deal of time and ef-
fort in their research. The overall results show that RelSim
are more effective than other algorithms.

In addition, consider that RelSim uses the same similar-
ity metric to that of PathSim over MAS and HeteSim over
BioMed, but RelSim is shown to be more effective. This
implies that the use of RRE language helps to improve the
effectiveness of the algorithm.

6.3 Efficiency
We evaluate the query processing time of RelSim and

PathSim over DBLP and BioMed datasets using the query
workloads reported in Section 6.1. First, we evaluate the
query processing time of RelSim and PathSim for the case
where the user provides an exact relationship pattern (Sec-
tion 4). All reported running times in this section assume
that the commuting matrices of all meta-paths, i.e., sim-
ple RRE patterns that use only concatenation and reversal
operations, up to size 3 are materialized and pre-loaded in
main memory for both RelSim and PathSim. Theoretically,
both RelSim and PathSim have the same time complexity.
However, the expressiveness of RRE used in RelSim allows
the specified relationship pattern to be more complex than
the expression used by PathSim. To compare the efficiency
between these two algorithms, we first pick a pattern over
each database as a reference. Then, for each referenced pat-
tern, we find the corresponding RRE pattern pR for RelSim
and the closest correspondent simple pattern , i.e., meta-
path, pP for PathSim. For instance, a referenced pattern
over DBLP is p-in·r-a. Over DBLP under DBLP2SIGM
transformation, the correspondent patterns for RelSim and
PathSim are pR : [p-in−]·r-a and pP : r-a, respectively.
Then we compare the running time of PathSim using pP
with the running time of RelSim using pR and report the

Figure 6: Running times of RelSim given various
parameter settings

results. The average query processing time for a single pat-
tern per query of RelSim (PathSim) over DBLP and BioMed
dataset are 0.035 (0.024) and 0.473 (0.267) seconds, respec-
tively. The reason that RelSim is slower than PathSim as
RelSim uses more complex and longer patterns than those
used by PathSim. But, the running time is still relatively
short over large datasets.

Next, we measure the efficiency of RelSim that incorpo-
rates Algorithm 1 introduced in Section 5 and applied the
filter discussed in Section ??. In this version, RelSim takes a
simple pattern as an input. Hence, we supply the same pat-
tern to both RelSim and PathSim, and compare their query
processing times. We use the same relationship patterns
over DBLP and BioMed as described in Section 6.1. The av-
erage query processing time per query of RelSim (PathSim)
over DBLP and BioMed dataset are 0.034 (0.024) and 0.511
(0.477) seconds, respectively. Overall, the running time of
RelSim is slightly slower than PathSim due to the procedure
of Algorithm 1. This result also shows that making RelSim
more usable does not increase its running time considerably.

Since the complexity of RelSim is exponentially large, we
evaluate the scalability of RelSim after applying our pro-
posed optimization as follows. Since the complexity of Rel-
Sim depends on the number of given constraints and the
length of input simple pattern, we measure the running time
of the algorithm by fixing one of the components while vary-
ing the remaining component to analyze how each compo-
nent affects the running time. We test our algorithm over
randomly generated constraints whose numbers of atoms are
between 2 and 5. We measure the running time by setting
the number of constraints to 1, 5, 10, 20 and 40, and vary
the length of an input simple pattern, p, between 4 and 10.
The length of a simple pattern is defined as the number of
labels in the pattern. We report the average running times
of RelSim with proposed optimization per query over 5 runs
of each settings in Figure 6.

7. RELATED WORK
The notion of inverse of a schema mapping has been ex-

tensively studied in relational data exchange. Since some
schema mappings lose significant amount of information of
the original database, it is not possible to define an in-
verse for them such that it fully restores the information of
the original database. Thus, researchers have proposed less
restrictive notions of inverse, which may not fully recover
the mapped information. A maximum-recovery inverse of

13

a mapping recovers as much source information as possible
from the mapped data [4]. Arenas et al. further define the
notion of maximum recovery based on classes of queries on
the source database: a L-maximum (L-full) recovery inverse
of a mapping Σ recovers the maximum possible amount (all)
of information that can be retrieved by query language L
over the source database [3]. Generally, the less expressive
L is, the less information a L-maximum recovery inverse re-
covers. Our goal is to find structural variations over which
a similarity algorithm returns the same results. Thus, the
information related to similarity queries must be available
to the similarity search algorithm on all structural varia-
tions. Thus, our notion of inverse is most similar to the
Fagin-inverse for relational data. Further discussion on the
related work is in Section A of the appendix.

8. ADDITIONAL AUTHORS

9. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases: The Logical Level. Addison-Wesley, 1995.

[2] I. Antonellis, H. Garcia-Molina, and C. Chang.
Simrank++: Query Rewriting through Link Analysis
of the Click Graph. In VLDB, 2008.

[3] M. Arenas, J. Pérez, J. L. Reutter, and C. Riveros.
Inverting schema mappings: Bridging the gap between
theory and practice. PVLDB, 2(1):1018–1029, 2009.

[4] M. Arenas, J. Pérez, and C. Riveros. The recovery of
a schema mapping: Bringing exchanged data back.
ACM Trans. Database Syst., 34(4):22:1–22:48, Dec.
2009.

[5] P. Barcelo, J. Perez, and J. Reutter. Schema
Mappings and Data Exchange for Graph Databases.
In ICDT, 2013.

[6] C. Beeri and M. Y. Vardi. A proof procedure for data
dependencies. J. ACM, 31(4), Sept. 1984.

[7] I. Boneva, A. Bonifati, and R. Ciucanu. Graph data
exchange with target constraints. In EDBT/ICDT
Workshop GraphQ, PODS ’17, pages 171–176, 2015.

[8] A. Borodin, G. Roberts, J. S. Rosenthal, and
P. Tsaparas. Link Analysis Ranking: Algorithms,
Theory, and Experiments. ACM Trans. Inter. Tech.,
5(1), 2005.

[9] Y. Chodpathumwan, A. Aleyasen, A. Termehchy, and
Y. Sun. Towards representation independent similarity
search over graph databases. In CIKM, 2016.

[10] I. Cruz, A. Mendelzon, and P. Wood. A graphical
query language supporting recursion. In SIGMOD,
page 323330, 1987.

[11] E. Codd. Does Your DBMS Run By the Rules?
ComputerWorld, 1985.

[12] R. Fagin. Inverting schema mappings. ACM Trans.
Database Syst., 32(2), 2007.

[13] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan.
Composing schema mappings: Second-order
dependencies to the rescue. ACM Trans. Database
Syst., 30(4):994–1055, Dec. 2005.

[14] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan.
Quasi-inverses of schema mappings. ACM Trans.
Database Syst., 33(2), 2008.

[15] R. Fagina, P. Kolaitis, R. Miller, and L. Popa. Data
exchange: semantics and query answering. TCS,
336(1), 2005.

[16] W. Fan and P. Bohannon. Information Preserving
XML Schema Embedding. TODS, 33(1), 2008.

[17] W. Fan, Y. Wu, and J. Xu. Functional dependencies
for graphs. In SIGMOD, SIGMOD ’16, pages
1843–1857, New York, NY, USA, 2016. ACM.

[18] N. Francis and L. Libkin. Schema mappings for data
graphs. In PODS, PODS ’17, pages 389–401, New
York, NY, USA, 2017. ACM.

[19] B. Ghadiri Bashardoost, C. Christodoulakis,
S. Hassas Yeganeh, R. J. Miller, K. Lyons, and
O. Hassanzadeh. Vizcurator: A visual tool for
curating open data. In WWW, 2015.

[20] G. Ghoshal and A. Barbasi. Ranking Stability and
Super-stable Nodes in Complex Networks. Nature
Communications, 2(394), 2011.

[21] G. He, H. Feng, C. Li, and H. Chen. Parallel SimRank
Computation on Large Graphs with Iterative
Aggregation. In KDD, 2010.

[22] J. Heer, J. Hellerstein, and S. Kandel. Predictive
interaction for data transformation. In CIDR, 2015.

[23] A. Hernich, L. Libkin, and N. Schweikardt. Closed
world data exchange. ACM Trans. Database Syst.,
36(2):14:1–14:40, June 2011.

[24] J. Hopcroft and R. Tarjan. Algorithm 447: Efficient
algorithms for graph manipulation. Commun. ACM,
16(6):372–378, June 1973.

[25] R. Hull. Relative Information Capacity of Simple
Relational Database Schemata. 1984.

[26] G. Jeh and J. Widom. Simrank: A measure of
structural-context similarity. In KDD, 2002.

[27] G. Jeh and J. Widom. Scaling Personalized Web
Search. In WWW, 2003.

[28] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer.
Wrangler: Interactive visual specification of data
transformation scripts. In CHI, 2011.

[29] L. Katz. A new status index derived from sociometric
analysis. Psychometrika, 18(1):39–43, 1953.

[30] C. Manning, P. Raghavan, and H. Schutze. An
Introduction to Information Retrieval. Cambridge
University Press, 2008.

[31] S. Melnik, A. Adya, and P. A. Bernstein. Compiling
mappings to bridge applications and databases. In
SIGMOD, 2007.

[32] A. Ng, A. Zheng, and M. Jordan. Stable Algorithms
for Link Analysis. In SIGIR, 2001.

[33] J. Picado, A. Termehchy, A. Fern, and P. Ataei.
Schema independent relational learning. In
Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD ’17,
pages 929–944, New York, NY, USA, 2017. ACM.

[34] C. Shi, X. Kong, Y. Huang, S. Y. Philip, and B. Wu.
Hetesim: A general framework for relevance measure
in heterogeneous networks. TKDE, (10), 2014.

[35] Y. Sun, J. Han, X. Yan, S. P. Yu, and T. Wu.
PathSim: MetaPath-Based Top-K Similarity Search in
Heterogeneous Information Networks. In VLDB, 2011.

[36] J. Tang, C. Li, and Q. Mei. Learning representations
of large-scale networks. In KDD, 2017.

14

[37] A. Termehchy, M. Winslett, Y. Chodpathumwan, and
A. Gibbons. Design Independent Query Interfaces.
TKDE, 2012.

[38] H. Tong and C. Faloutsos. Center-piece subgraphs:
Problem definition and fast solutions. In KDD, 2006.

[39] H. Tong, C. Faloutsos, and J. Pan. Fast random walk
with restart and its applications. In ICDM, 2006.

[40] H. Tong, H. Qu, and H. Jamjoom. Measuring
Proximity on Graphs with Side Information. In
ICDM, 2008.

[41] B. Q. Truong, S. S. Bhowmick, and C. Dyreson.
SINBAD: Towards Structure-Independent Querying of
Common Neighbors in XML Databases, pages
156–171. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[42] M. Vardi. The universal-relation data model for
logical independence. IEEE Software, 5, 1988.

[43] M. Y. Vardi. On decomposition of relational
databases. In FOCS, pages 176–185, Nov 1982.

[44] G. VegaGorgojo, M. Giese, and L. Slaughter.
Exploring semantic datasets with rdf surveyor. In
ISWC, 2017.

[45] V. V. Williams. Breaking the coppersmith-winograd
barrier. E-mail address: jml@ math. tamu. edu, 2011.

[46] P. T. Wood. Query languages for graph databases.
SIGMOD Rec., 41(1), Apr. 2012.

[47] S. H. Yeganeh, O. Hassanzadeh, and R. J. Miller.
Linking Semistructured Data on the Web. In WebDB,
2011.

[48] W. Yu and X. Lin. IRWR: Incremental Random Walk
with Restart. In SIGIR, 2012.

[49] J. Zhang, J. Tang, C. Ma, H. Tong, Y. Jing, and J. Li.
Panther: Fast top-k similarity search on large
networks. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’15, pages 1445–1454, New York,
NY, USA, 2015. ACM.

[50] P. Zhao, J. Han, and Y. Sun. P-Rank: A
Comprehensive Structural Similarity Measure over
Information Networks. In CIKM, 2009.

APPENDIX
.1 The case of trivial constraints

Our proposed Algorithms 1 and 2 indeed require a non-
empty set of a schema constraints. According to Propo-
sition 2, structural variations require database constraints.
However, the proposition does not exclude the use of trivial
constraints. Intuitively, a trivial constraint is a constraint
such that its premise and its conclusion are logically equiv-
alent, e.g., φ(x̄)→ φ(x̄). As we have simplified our analysis
in Section 3.2 where the conclusion of a constraint is an
atom of a single label, e.g., (xi, a, xj) where xi, xj ∈ x̄ and
a is schema label. That is a trivial constraint is of the form
(xi, a, xj)→ (xi, a, xj). Clearly, every database in a schema
S satisfies all trivial constraints for every label a ∈ S. In
order to simplify our discussion, since trivial constraints are
meaningless in term of putting restriction in a database, we
ignore any occurrence of trivial constraints and treat them
as if they do not exist.

In relational database, it has been proved by Hull that
there is not any information-preserving variation of a rela-

tional schema without any constraint beyond simple renam-
ing of the scheme elements [25]. We show that this result
also holds for graph databases.

Theorem 2. Given two schemas S = (LS ,ΓS) and T =
(LT ,ΓT) where ΓS = ΓT = ∅, if there exists ΣST such that

S
ΣST≡ T then S = T or there is a bijection between LS and
LT .

Based on this findings, we have that for a representation
variations beyond renaming, either the source schema or the
target schema must contain some non-trivial constraints.

Similar to the idea of trivial constraint, there always ex-
ists a transformation from a schema S to schema T , T ≡ S,
whose transformation constraints are also trivial. We call
such transformation an identity transformation. Assume
that all associated constraints with a schema S are trivial. It
is possible to have a non-identity transformation ΣST from
S to a target schema T . For instance, consider a schema
S = {a, b} without any non-trival constraint. A transfor-
mation ΣST from S to a target schema T = {a, b, c} de-
scribed as {(x1, a, x2)∧ (x2, b, x3)→ (x1, c, x3), (x1, l, x2)→
(x1, l, x2), l ∈ S} is information preserving. In this case, T
consists of a constraint (x1, a, x2) ∧ (x2, b, x3) → (x1, c, x3).
However, with only trivial constraints available in S, Algo-
rithm 2 cannot produce an RRE dda · bcc over S which is
mapped to c over T because the expression involves two sep-
arate constraints. In fact, with only a trivial constraint, our
algorithms do not modify an input expression.

Further, with the assumption that a constraint γ∗ exists
for each constraint γ in a given schema, we have the following
theorem regarding constraints of T .

Theorem 3. Given two schemas S = (LS ,ΓS) and T =

(LT ,ΓT) where ΓS = ∅, if there exists ΣST such that S
ΣST≡

T then there exists a bijection between LS and some L′ ⊆ LT
where there is no constraint whose conclusion contains label
in L′, and for each l ∈ LT \L′, there exists a constraint λ(x̄)
→ (x1, l, x2) in ΓT where l does not appear in λ, for some
CRPQ f .

Following Theorem 3, we have that if a schema S con-
tains no constraint, every information preserving transfor-
mation from S preserves all edges (or up-to renaming of
those edges). We call this type of transformation an easy
transformation, and they are information preserving.

Corollary 2. Every transformation from a schema with-
out a constraint is easy.

Theorem 4. Every easy transformation is information
preserving.

Based on Theorem 3 and Corollary 2, to avoid the issue of
trivial constraints. Our proposed algorithms should ignore
producing any expression over a non-trivial constraint in
the form of φ(x̄) → (x1, l, x2) where l does not appear in a
CRPQ φ.

Consider a schema S whose constraint is φ(x̄) → (x1, l,
x2), where l does not appear in φ. S is information equiv-
alent to a schema T = S \ {l}. We have that x1 ↪→Gφ x2

exists in both S and T . Also, following the proof of Theo-
rem 1, we have that an expression l over S is mapped to an
expression r : ddx1 ↪→Gφ x2cc. However, r is not a simple

15

expression and might not be easily discovered by a user. If
we would like to ensure the robustness of RelSim via the use
of Algorithm 1, then either label l should be disallowed or
every l should be replaced with x1 ↪→Gφ x2 that does not
contains a skip-operation.

.2 Filtering Constraints Based on Conclusions
We have simplified the usage of our framework in Sec-

tion 5 so that users can take advantage of it by submitting
only simple patterns. Using the database constraints, our
algorithm finds a set of relationship patterns related to the
input pattern and use them to compute an aggregated sim-
ilarity score.

If the set of such RREs patterns is too large, our sys-
tem has to compute the similarity scores for many patterns,
therefore, it may not be efficient on a large database. In this
section, we provides a method to reduce the set of RREs in
order to improve the efficiency of RelSim while ensuring its
effectiveness and robustness.

Intuitively, in order to modify a database structure, a
transformation may add or remove edges of certain labels.
Also, we have shown that a database constraint, either in
source or target schema, is necessary for structural varia-
tions beyond renaming. However, not every label appear-
ing in the constraint can be removed. Following Propo-
sition 2, let us define a transformation induced by a con-
straint γ over schema S, denoted by ΣγST , as an information-
preserving transformation ΣST whose inverse Σ−1

ST satisfies
Σ−1
ST ◦ΣST ≡ γ. We show in Proposition 6 that, given a con-

straint γ, an information-preserving transformation induced
by γ may remove only edges of a label that appears in the
conclusion of γ.

Proposition 6. Given a schema S with a constraint γ :
φγ(x̄)→ (x1, a, x2), for every information-preserving trans-
formation ΣγST from S to a target schema T , there exists a
mapping M : S → T such that (x, l, y) → (x,M(l), y), for
all l 6= a ∈ S, in ΣγST .

Consider that each transformation rule (x, l, y) → (x,
M(l), y) simply renames each edge label l to a new edge
label M(l) in the target schema. For simplicity of our model
and analysis, we refer to M(l) in the target schema simply
as l and assume that this transformation rule always exists.
published-in is an example of such label in the transforma-
tion between the two databases presented in Figure 1. We
also call a transformation that preserves all edges that ap-
pears in the premise of a constraint an easy transformation.
Further details of discussion about easy transformation and
the filtering method for them can be found in Appendix 7.

Some constraint may induce an information-preserving
transformation that is not easy. For instance, a transfor-
mation between structure of databases shown in Figure 1
is not easy. However, not every non-easy transformation Σ
is information-preserving unless there exists an inverse Σ−1

such that Σ−1 ◦ Σ is equivalent to the constraint. In this
paper, we do not provide a procedure to determine whether
a transformation is information-preserving. Regardless, us-
ing Propositions 6, we may conclude that non-easy transfor-
mations are induced by some constraint φ(x̄) → (x1, l, x2)
where l appears in φ(x̄). That is, an RRE that does not
contain label l is obtained from some easy transformation.

To this end, we should filter out all RREs returned by Al-
gorithm 1 that are induced by any easy transformation even

though the constraint is not trivial or of the form discussed
in the end of Section 5. For instance, given a constraint (x1,
area, x3) ∧ (x3, published-in, x4) ∧ (x2, published-in, x4)
→ (x1, area, x2) in Figure 1(a), the algorithm should ignore
producing an RRE such as published-in·published-in−.
However, an RRE such as area·published-in is valid be-
cause area appears in the conclusion of the constraint. Hence,
this filtering helps reduce the space and running time of ag-
gregate RelSim over a set of relationship patterns returned
by Algorithm 1.

A. ADDITIONAL RELATED WORK
One generic approach to achieve schematic robustness is

to define a universal schema to which all possible represen-
tations of a database can be transformed and use and/or
develop algorithms that are effective over this representa-
tion. Nevertheless, the experience gained from the idea of
universal relation, indicates that such representation does
not often exist [1, 42]. One also has to transform their data-
base to the universal representation, which may be quite
complex considering the intricacies associated with defining
such a representation and not practical for a large database.

Researchers have also analyzed the stability of random
walk algorithms in graphs against relatively small perturba-
tions in the data [32, 20, 8]. We also seek to instill robustness
in graph mining algorithms, but we are targeting robustness
in a new dimension: robustness in the face of variations in
the representation of data. Researchers have provided sys-
tems that help users with transforming and wrangling their
data [28, 22, 19, 47]. We also address the problem of data
preparation but using a difference approach: eliminating the
need to wrangle the data.

Researchers have defined schema mappings over graph
databases as constraints in some graph query language in
the context of data exchange [5]. We focus on evaluating
the robustness of similarity search algorithms rather than
traditional questions in schema mapping and data exchange,
such as computing the transformed database instances.

Researchers have proposed a keyword query interfaces over
XML dataset that returns the same answers across normal-
ized and denormalized XML databases with equivalent in-
formation content [37]. Authors in [9] have presented a sim-
ilarity search algorithm over graph databases that is robust
over a data variation of representing relationships between
entities as a node or edge in a database. Our proposed
method goes beyond robustness over a fixed variation and
provides a way to develop similarity search methods that
is robust across a wide variety of structural variations. We
also propose a usable interface for using such a system.

16

