
1

Efficient Prediction of Difficult Keyword
Queries over Databases

Shiwen Cheng, Arash Termehchy, and Vagelis Hristidis

Abstract—Keyword queries on databases provide easy access to data, but often suffer from low ranking quality, i.e., low precision
and/or recall, as shown in recent benchmarks. It would be useful to identify queries that are likely to have low ranking quality
to improve the user satisfaction. For instance, the system may suggest to the user alternative queries for such hard queries. In
this paper, we analyze the characteristics of hard queries and propose a novel framework to measure the degree of difficulty
for a keyword query over a database, considering both the structure and the content of the database and the query results.
We evaluate our query difficulty prediction model against two effectiveness benchmarks for popular keyword search ranking
methods. Our empirical results show that our model predicts the hard queries with high accuracy. Further, we present a suite of
optimizations to minimize the incurred time overhead.

F

1 INTRODUCTION

K EYWORD query interfaces (KQIs) for databases have
attracted much attention in the last decade due to their

flexibility and ease of use in searching and exploring the
data [1], [2], [3], [4], [5]. Since any entity in a data set that
contains the query keywords is a potential answer, keyword
queries typically have many possible answers. KQIs must
identify the information needs behind keyword queries and
rank the answers so that the desired answers appear at the
top of the list [1], [6]. Unless otherwise noted, we refer to
keyword query as query in the remainder of this paper.

Databases contain entities, and entities contain attributes
that take attribute values. Some of the difficulties of answer-
ing a query are as follows: First, unlike queries in languages
like SQL, users do not normally specify the desired schema
element(s) for each query term. For instance, query Q1:
Godfather on the IMDB database (http://www.imdb.com)
does not specify if the user is interested in movies whose
title is Godfather or movies distributed by the Godfather
company. Thus, a KQI must find the desired attributes
associated with each term in the query. Second, the schema
of the output is not specified, i.e., users do not give enough
information to single out exactly their desired entities [7].
For example, Q1 may return movies or actors or producers.
We present a more complete analysis of the sources of
difficulty and ambiguity in Section 4.2.

Recently, there have been collaborative efforts to provide
standard benchmarks and evaluation platforms for keyword
search methods over databases. One effort is the data-
centric track of INEX Workshop [8] where KQIs are
evaluated over the well-known IMDB data set that contains

• S. Cheng is with the Univerisity of California, Riverside, CA 92521.
E-mail: schen064@cs.ucr.edu

• A. Termehchy is with the Oregon State University, Corvallis, OR 97331.
E-mail: termehca@eecs.oregonstate.edu

• V. Hristidis is with the Univerisity of California, Riverside, CA 92521.
E-mail: vagelis@cs.ucr.edu

structured information about movies and people in show
business. Queries were provided by participants of the
workshop. Another effort is the series of Semantic Search
Challenges (SemSearch) at Semantic Search Workshop [9],
where the data set is the Billion Triple Challenge data set at
http://km.aifb.kit.edu/projects/btc-2010/. It is extracted from
different structured data sources over the Web such as
Wikipedia. The queries are taken from Yahoo! keyword
query log. Users have provided relevance judgments for
both benchmarks.

The Mean Average Precision (MAP) of the best per-
forming method(s) in the last data-centric track in INEX
Workshop and Semantic Search Challenge for queries are
about 0.36 and 0.2, respectively. The lower MAP values of
methods in Semantic Search Challenge are mainly due to
the larger size and more heterogeneity of its data set.

These results indicate that even with structured data,
finding the desired answers to keyword queries is still a
hard task. More interestingly, looking closer to the ranking
quality of the best performing methods on both workshops,
we notice that they all have been performing very poorly
on a subset of queries. For instance, consider the query
ancient Rome era over the IMDB data set. Users would
like to see information about movies that talk about ancient
Rome. For this query, the state-of-the-art XML search
methods which we implemented return rankings of con-
siderably lower quality than their average ranking quality
over all queries. Hence, some queries are more difficult
than others. Moreover, no matter which ranking method
is used, we cannot deliver a reasonable ranking for these
queries. Table 1 lists a sample of such hard queries from
the two benchmarks. Such a trend has been also observed
for keyword queries over text document collections [10].
These queries are usually either under-specified, such as
query carolina in Table 1, or overspecified, such as query
Movies Klaus Kinski actor good rating in Table 1.

It is important for a KQI to recognize such queries and
warn the user or employ alternative techniques like query

2

TABLE 1: Some difficult queries from benchmarks.
INEX SemSearch
ancient Rome era Austin Texas
Movies Klaus Kinski actor good rating Carolina
true story drugs addiction Earl May

reformulation or query suggestions [11]. It may also use
techniques such as query results diversification [12].

To the best of our knowledge, there has not been any
work on predicting or analyzing the difficulties of queries
over databases. Researchers have proposed some meth-
ods to detect difficult queries over plain text document
collections [10], [13]. However, these techniques are not
applicable to our problem since they ignore the structure
of the database. In particular, as mentioned earlier, a KQI
must assign each query term to a schema element(s) in
the database. It must also distinguish the desired result
type(s). We empirically show that direct adaptations of
these techniques are ineffective for structured data.

In this paper, we analyze the characteristics of difficult
queries over databases and propose a novel method to detect
such queries. We take advantage of the structure of the data
to gain insight about the degree of the difficulty of a query
given the database. We have implemented some of the most
popular and representative algorithms for keyword search
on databases and used them to evaluate our techniques on
both the INEX and SemSearch benchmarks. The results
show that our method predicts the degree of the difficulty
of a query efficiently and effectively.

We make the following contributions:

• We introduce the problem of predicting the degree
of the difficulty for queries over databases. We also
analyze the reasons that make a query difficult to answer
by KQIs (Section 4).

• We propose the Structured Robustness (SR) score,
which measures the difficulty of a query based on the
differences between the rankings of the same query over
the original and noisy (corrupted) versions of the same
database, where the noise spans on both the content and
the structure of the result entities (Section 5).

• We present an algorithm to compute the SR score, and
parameters to tune its performance (Section 6).

• We introduce efficient approximate algorithms to es-
timate the SR score, given that such a measure is
only useful when it can be computed with a small
time overhead compared to the query execution time
(Section 7).

• We show the results of extensive experiments using
two standard data sets and query workloads: INEX
and SemSearch. Our results show that the SR score
effectively predicts the ranking quality of representative
ranking algorithms, and outperforms non-trivial base-
lines, introduced in this paper. Also, the time spent to
compute the SR score is negligible compared to the
query execution time (Section 8).

Section 2 discusses related work and Section 3 presents
basic definitions. Section 9 concludes the paper and
presents future directions.

2 RELATED WORK

Researchers have proposed methods to predict hard queries
over unstructured text documents [10], [13], [14], [15], [16],
[17]. We can broadly categorize these methods into two
groups: pre-retrieval and post-retrieval methods.

Pre-retrieval methods [18], [14] predict the difficulty of a
query without computing its results. These methods usually
use the statistical properties of the terms in the query to
measure specificity, ambiguity, or term-relatedness of the
query to predict its difficulty [19]. Examples of these statis-
tical characteristics are average inverse document frequency
of the query terms or the number of documents that contain
at least one query term [14]. These methods generally
assume that the more discriminative the query terms are,
the easier the query will be. Empirical studies indicate that
these methods have limited prediction accuracies [10], [20].

Post-retrieval methods utilize the results of a query to
predict its difficulty and generally fall into one of the
following categories.

Clarity-score-based: The methods based on the concept
of clarity score assume that users are interested in a very
few topics, so they deem a query easy if its results belong to
very few topic(s) and therefore, sufficiently distinguishable
from other documents in the collection [10], [14], [15],
[20]. Researchers have shown that this approach predicts
the difficulty of a query more accurately than pre-retrieval
based methods for text documents [10]. Some systems mea-
sure the distinguishability of the queries results from the
documents in the collection by comparing the probability
distribution of terms in the results with the probability
distribution of terms in the whole collection. If these
probability distributions are relatively similar, the query
results contain information about almost as many topics as
the whole collection, thus, the query is considered difficult
[10]. Several successors propose methods to improve the
efficiency and effectiveness of clarity score [14], [15], [20].

However, one requires domain knowledge about the
data sets to extend idea of clarity score for queries over
databases. Each topic in a database contains the entities
that are about a similar subject. It is generally hard to
define a formula that partitions entities into topics as it
requires finding an effective similarity function between
entities. Such similarity function depends mainly on the
domain knowledge and understanding users’ preferences
[21]. For instance, different attributes may have different
impacts on the degree of the similarity between entities.
Assume movies A and B in IMDB share some terms in
their genre attributes, which explain the subjects of the
movies. Also, let movies A and C share the same number
of terms in their distributor attributes, which describe the
distribution company of the movies. Given other attributes
of A, B, and C do not contain any common term, movies
A and B are more likely to be about the same subject and
satisfy the same information need than movies A and C.
Our empirical results in Section 8 confirms this argument
and shows that the straightforward extension of clarity score
predicts difficulties of queries over databases poorly.

3

Some systems use a pre-computed set of topics and
assign each document to at least one topic in the set in
order to compute the clarity score [15]. They compare
the probability distribution of topics in the top ranked
documents with the probability distribution of topics of the
whole collection to predict the degree of the difficulty of the
query. One requires domain knowledge about the data sets
and its users to create a set of useful topics for the tuples
in the database. We like to find an effective and domain
independent approach to predict the difficulties of queries.

Ranking-score-based: The ranking score of a document
returned by the retrieval systems for an input query may
estimate the similarity of the query and the document. Some
recent methods measure the difficulty of a query based on
the score distribution of its results [16], [17]. Zhou and
Croft argue that the information gained from a desired list
of documents should be much more than the information
gained from typical documents in the collection for an
easy query. They measure the degree of the difficulty of
a query by computing the difference between the weighted
entropy of the top ranked results’ scores and the weighted
entropy of other documents’ scores in the collection [17].
Shtok et al. argue that the amount of non-query-related
information in the top ranked results is negatively correlated
with the deviation of their retrieval scores [16]. Using
language modeling techniques, they show that the standard
deviation of ranking scores of top-k results estimates the
quality of the top ranked results effectively. We examine
the query difficulty prediction accuracy of this set of
methods on databases in Section 8, and show that our model
outperforms these methods over databases.

Robustness-based: Another group of post-retrieval meth-
ods argue that the results of an easy query are relatively
stable against the perturbation of queries [22], documents
[13] or ranking algorithms [23]. Our proposed query diffi-
culty prediction model falls in this category. More details
of some related work will be given in Section 4, where we
discuss the difference of applying these techniques on text
collection and database.

Some methods use machine learning techniques to learn
the properties of difficult queries and predict their hardness
[22]. They have similar limitations as the other approaches
when applied to structured data. Moreover, their success
depends on the amount and quality of their available
training data. Sufficient and high quality training data is not
normally available for many databases. Some researchers
propose frameworks that theoretically explain existing pre-
dictors and combine them to achieve higher prediction
accuracy [24], [25].

A preliminary version of this work has been published
[26].

3 DATA AND QUERY MODELS

We model a database as a set of entity sets. Each entity
set S is a collection of entities E. For instance, movies
and people are two entity sets in IMDB. Figure 1 depicts
a fragment of a data set where each subtree whose root’s
label is movie represents an entity. Each entity E has a set

Fig. 1: IMDB database fragment
of attribute values Ai, 1 ≤ i ≤ |E|. Each attribute value is
a bag of terms. Following current unstructured and (semi-)
structure retrieval approaches, we ignore stop words that
appear in attribute values, although this is not necessary
for our methods. Every attribute value A belongs to an
attribute T written as A ∈ T . For instance, Godfather and
Mafia are two attribute values in the movie entity shown
in the subtree rooted at node 1 in Figure 1. Node 2 depicts
the attribute of Godfather, which is title.

The above is an abstract data model. We ignore the
physical representation of data in this paper. That is, an
entity could be stored in an XML file or a set of normalized
relational tables. The above model has been widely used
in works on entity search [5], [3] and data-centric XML
retrieval [8], and has the advantage that it can be easily
mapped to both XML and relational data. Further, if a
KQI method relies on the intricacies of the database design
(e.g. deep syntactic nesting), it will not be robust and
will have considerably different degrees of effectiveness
over different databases [27]. Hence, since our goal is to
develop principled formal models that cover reasonably
well all databases and data formats, we do not consider
the intricacies of the database design or data format in our
models.

A keyword query is a set Q = {q1 · · · q|Q|} of terms,
where |Q| is the number of terms in Q. An entity E is an
answer to Q iff at least one of its attribute values A contains
a term qi in Q, written qi ∈ A1. Given database DB
and query Q, retrieval function g(E,Q,DB) returns a real
number that reflects the relevance of entity E ∈ DB to Q.
Given database DB and query Q, a keyword search system
returns a ranked list of entities in DB called L(Q, g,DB)
where entities E are placed in decreasing order of the value
of g(E,Q,DB).

4 RANKING ROBUSTNESS PRINCIPLE FOR
STRUCTURED DATA

In this section we present the Ranking Robustness Princi-
ple, which argues that there is a (negative) correlation be-
tween the difficulty of a query and its ranking robustness in
the presence of noise in the data. Section 4.1 discusses how
this principle has been applied to unstructured text data.
Section 4.2 presents the factors that make a keyword query
on structured data difficult, which explain why we cannot
apply the techniques developed for unstructured data. The
latter observation is also supported by our experiments in
Section 8.2 on the Unstructured Robustness Method [13],
which is a direct adaptation of the Ranking Robustness
Principle for unstructured data.

1. Some works on keyword search in databases [1] use conjunctive
semantics, where all query keywords must appear in a result.

4

4.1 Background: Unstructured Data
Mittendorf has shown that if a text retrieval method effec-
tively ranks the answers to a query in a collection of text
documents, it will also perform well for that query over the
version of the collection that contains some errors such as
repeated terms [28]. In other words, the degree of the diffi-
culty of a query is positively correlated with the robustness
of its ranking over the original and the corrupted versions
of the collection. We call this observation the Ranking
Robustness Principle. Zhou and Croft [13] have applied this
principle to predict the degree of the difficulty of a query
over free text documents. They compute the similarity
between the rankings of the query over the original and
the artificially corrupted versions of a collection to predict
the difficulty of the query over the collection. They deem a
query to be more difficult if its rankings over the original
and the corrupted versions of the data are less similar. They
have empirically shown their claim to be valid. They have
also shown that this approach is generally more effective
than using methods based on the similarities of probability
distributions, that we reviewed in Section 2. This result
is especially important for ranking over databases. As we
explained in Section 2, it is generally hard to define an
effective and domain independent categorization function
for entities in a database. Hence, we can use Ranking
Robustness Principle as a domain independent proxy metric
to measure the degree of the difficulties of queries.

4.2 Properties of Hard Queries on Databases
As discussed in Section 2, it is well established that the
more diverse the candidate answers of a query are, the more
difficult the query is over a collection of the text documents.
We extend this idea for queries over databases and propose
three sources of difficulty for answering a query over a
database as follows:

1) The more entities match the terms in a query, the
less specificity of this query and it is harder to answer
properly. For example, there are more than one person
called Ford in the IMDB data set. If a user submits
query Q2: Ford, a KQI must resolve the desired Ford
that satisfy the user’s information need. As opposed
to Q2, Q3: Spielberg matches smaller number of
people in IMDB, so it is easier for the KQI to return
its relevant results.

2) Each attribute describes a different aspect of an entity
and defines the context of terms in attribute values
of it. If a query matches different attributes in its
candidate answers, it will have a more diverse set
of potential answers in database, and hence it has
higher attribute level ambiguity. For instance, some
candidate answers for query Q4: Godfather in IMDB
contain its term in their title and some contain its term
in their distributor. For the sake of this example, we
ignore other attributes in IMDB. A KQI must identify
the desired matching attribute for Godfather to find
its relevant answers. As opposed to Q4, query Q5:
taxi driver does not match any instance of attribute
distributor. Hence, a KQI already knows the desired

matching attribute for Q5 and has an easier task to
perform.

3) Each entity set contains the information about a
different type of entities and defines another level
of context (in addition to the context defined by
attributes) for terms. Hence, if a query matches enti-
ties from more entity sets, it will have higher entity
set level ambiguity. For instance, IMDB contains the
information about movies in an entity set called movie
and the information about the people involved in
making movies in another entity set called person.
Consider query Q6: divorce over IMDB data set
whose candidate answers come from both entity sets.
However, movies about divorce and people who get
divorced cannot both satisfy information need of
query Q6. A KQI has a difficult task to do as it has
to identify if the information need behind this query
is to find people who got divorced or movies about
divorce. In contrast to Q6, Q7: romantic comedy
divorce matches only entities from movie entity set.
It is less difficult for a KQI to answer Q7 than Q6

as Q7 has only one possible desired entity set.
The aforementioned observations show that we may use the
statistical properties of the query terms in the database to
compute the diversity of its candidate answers and predict
its difficulty, like the pre-retrieval predictors introduced in
Section 2. One idea is to count the number of possible
attributes, entities, and entity sets that contain the query
terms to estimate the query specificity and ambiguity and
use them to predict the difficulty of the query. The larger
this value is the more difficult the query will be. We
have shown empirically in Section 8.2 that such approach
predicts the difficulty of queries quite poorly. This is
because the distribution of query terms over attributes and
entity sets may also impact the difficulty of the query. For
instance, assume database DB1 contains two entity sets
book and movie and database DB2 contains entity sets
book and article. Let term database appear in both entity
sets in DB1 and DB2. Assume that there are far fewer
movies that contain term database compared to books and
articles. A KQI can leverage this property and rank books
higher than movies when answering query Q8: database
over DB1. However, it will be much harder to decide the
desired entity set in DB2 for Q8. Hence, a difficulty metric
must take in to account the skewness of the distributions
of the query term in the database as well. In Section 5
we discuss how these ideas are used to create a concrete
noise generation framework that consider attribute values,
attributes and entity sets.

5 A FRAMEWORK TO MEASURE STRUC-
TURED ROBUSTNESS

In Section 4 we presented the Ranking Robustness Princi-
ple and discussed the specific challenges in applying this
principle to structured data. In this section we present con-
cretely how this principle is quantified in structured data.
Section 5.1 discusses the role of the structure and content

5

of the database in the corruption process, and presents the
robustness computation formula given corrupted database
instances. Section 5.2 provides the details of how we
generate corrupted instances of the database. Section 5.3
suggests methods to compute the parameters of our model.
In Section 5.4 we show real examples of how our method
corrupts the database and predicts the difficulty of queries.

5.1 Structured Robustness
Corruption of structured data. The first challenge in
using the Ranking Robustness Principle for databases is
to define data corruption for structured data. For that,
we model a database DB using a generative probabilistic
model based on its building blocks, which are terms,
attribute values, attributes, and entity sets. A corrupted
version of DB can be seen as a random sample of such
a probabilistic model. Given a query Q and a retrieval
function g, we rank the candidate answers in DB and
its corrupted versions DB′, DB′′, · · · to get ranked lists
L and L′, L′′, · · · , respectively. The less similar L is to
L′, L′′, · · · , the more difficult Q will be.

According to the definitions in Section 3, we model
database DB as a triplet (S, T ,A), where S, T , and A
denote the sets of entity sets, attributes, and attribute values
in DB, respectively. |A|, |T |, |S| denote the number of
attribute values, attributes, and entity sets in the database,
respectively. Let V be the number of distinct terms in
database DB. Each attribute value Aa ∈ A, 1 ≤ a ≤ |A|,
can be modeled using a V-dimensional multivariate distri-
bution Xa = (Xa,1, · · · , Xa,V), where Xa,j ∈ Xa is a
random variable that represents the frequency of term wj

in Aa. The probability mass function of Xa is:

fXa(x⃗a) = Pr(Xa,1 = xa,1, · · · , Xa,V = xa,V) (1)

where x⃗a = xa,1, · · · , xa,V and xa,j ∈ x⃗a are non-negative
integers.

Random variable XA = (X1, · · · , X|A|) models at-
tribute value set A, where Xa ∈ XA is a vector of size
V that denotes the frequencies of terms in Aa. Hence, XA
is a |A|× V matrix. The probability mass function for XA
is:
fXA (x⃗) = fXA (x⃗1, · · · , ⃗x|A|) = Pr(X1 = x⃗1, · · · , X|A| = ⃗x|A|) (2)

where x⃗a ∈ x⃗ are vectors of size V that contain non-
negative integers. The domain of x⃗ is all |A|× V matrices
that contain non-negative integers, i.e. M(|A|× V).

We can similarly define XT and XS that model the set
of attributes T and the set of entity sets S, respectively. The
random variable XDB = (XA, XT , XS) models corrupted
versions of database DB. In this paper, we focus only on
the noise introduced in the content (values) of the database.
In other words, we do not consider other types of noise such
as changing the attribute or entity set of an attribute value
in the database. Since the membership of attribute values to
their attributes and entity sets remains the same across the
original and the corrupted versions of the database, we can
derive XT and XS from XA. Thus, a corrupted version
of the database will be a sample from XA; note that the

attributes and entity sets play a key role in the computation
of XA as we discuss in Section 5.2. Therefore, we use only
XA to generate the noisy versions of DB, i.e. we assume
that XDB = XA. In Section 5.2 we present in detail how
XDB is computed.

Structured Robustness calculation. We compute the sim-
ilarity of the answer lists using Spearman rank correlation
[29]. It ranges between 1 and -1, where 1, -1, and 0 indicate
perfect positive correlation, perfect negative correlation, and
almost no correlation, respectively. Equation 3 computes
the Structured Robustness score (SR score), for query Q
over database DB given retrieval function g:

SR(Q, g,DB,XDB) = E{Sim(L(Q, g,DB), L(Q, g,XDB))}

=
∑
x⃗

Sim(L(Q, g,DB), L(Q, g, x⃗))fXDB
(x⃗) (3)

where x⃗ ∈ M(|A|× V) and Sim denotes the Spearman
rank correlation between the ranked answer lists.

5.2 Noise Generation in Databases
In order to compute Equation 3, we need to define the
noise generation model fXDB

(M) for database DB. We
will show that each attribute value is corrupted by a
combination of three corruption levels: on the value itself,
its attribute and its entity set. Now the details: Since the
ranking methods for queries over structured data do not
generally consider the terms in V that do not belong to
query Q [1], [4], we consider their frequencies to be the
same across the original and noisy versions of DB. Given
query Q, let x⃗ be a vector that contains term frequencies for
terms w ∈ Q∩V . Similarly to [13], we simplify our model
by assuming the attribute values in DB and the terms in
Q ∩ V are independent. Hence, we have:

fXA(x⃗) =
∏
xa∈x⃗

fXa(x⃗a). (4)

and
fXa(x⃗a) =

∏
xa,j∈x⃗a

fXa,j (xa,j). (5)

where xj ∈ x⃗i depicts the number of times wj appears
in a noisy version of attribute value Ai and fXi,j (xj)
computes the probability of term wj to appear in Ai xj

times.
The corruption model must reflect the challenges dis-

cussed in Section 4.2 about search on structured data, where
we showed that it is important to capture the statistical
properties of the query keywords in the attribute values,
attributes and entity sets. We must introduce content noise
(recall that we do not corrupt the attributes or entity sets
but only the values of attribute values) to the attributes
and entity sets, which will propagate down to the attribute
values. For instance, if an attribute value of attribute title
contains keyword Godfather, then Godfather may appear in
any attribute value of attribute title in a corrupted database
instance. Similarly, if Godfather appears in an attribute
value of entity set movie, then Godfather may appear in any
attribute value of entity set movie in a corrupted instance.

6

Since the noise introduced in attribute values will propa-
gate up to their attributes and entity sets, one may question
the need to introduce additional noise in attribute and entity
set levels. The following example illustrates the necessity to
generate such noises. Let T1 be an attribute whose attribute
values are A1 and A2, where A1 contains term w1 and A2

does not contain w1. A possible noisy version of T1 will be
a version where A1 and A2 both contain w1. However, the
aforementioned noise generation model will not produce
such a version. Similarly, a noisy version of entity set S
must introduce or remove terms from its attributes and
attribute values. According to our discussion in Section 4,
we must use a model that generates all possible types of
noise in the data.

Hence, we model the noise in a DB as a mixture of the
noises generated in attribute value, attribute, and entity set
levels. Mixture models are typically used to model how the
combination of multiple probability distributions generates
the data. Let Yt,j be the random variable that represents
the frequency of term wj in attribute Tt. Probability mass
function fYt,j (yt,j) computes the probability of wj to
appear yt,j times in Tt. Similarly, Zs,j is the random
variable that denotes the frequency of term wj in entity
set Ss and probability mass function fZs,j (zs,j) computes
the probability of wj to appear zs,j times in Ss. Hence, the
noise generation models attribute value Ai whose attribute
is Tt and entity set is Ss:

f̂Xa,j
(xa,j) = γAfXa,j

(xa,j) + γT fYt,j
(xt,j) + γSfZs,j

(xs,j). (6)

where 0 ≤ γA, γT , γS ≤ 1 and γA + γT + γS = 1. fXa,j ,
fYt,j , and fYs,j model the noise in attribute value, attribute,
and entity set levels, respectively. Parameters γA, γT and
γS have the same values for all terms w ∈ Q ∩ V and are
set empirically.

Since each attribute value Aa is a small document, we
model fXi,j as a Poisson distribution:

fXa,j (xa,j) =
e−λa,jλ

xa,j

a,j

xa,j !
. (7)

Similarly, we model each attribute Tt, 1 ≤ t ≤ |T |, as
a bag of words and use Poisson distribution to model the
noise generation in the attribute level:

fYt,j (xt,j) =
e−λt,jλ

xt,j

t,j

xt,j !
. (8)

Using similar assumptions, we model the changes in the
frequencies of the terms in entity set Ss, 1 ≤ s ≤ |S|,
using Poisson distribution:

fZs,j (xs,j) =
e−λs,jλ

xs,j

s,j

xs,j !
. (9)

In order to use the model in Equation 6, we have to
estimate λA,w, λT,w, and λS,w for every w ∈ Q ∩ V ,
attribute value A, attribute T and entity set S in DB.
We treat the original database as an observed value of the
space of all possible noisy versions of the database. Thus,
using the maximum likelihood estimation method, we set

the value of λA,w to the frequency of w in attribute value A.
Assuming that w are distributed uniformly over the attribute
values of attribute T , we can set the value of λT,w to the
average frequency of w in T . Similarly, we set the value
of λS,w as the average frequency of w in S. Using these
estimations, we can generate noisy versions of a database
according to Equation 6.

5.3 Smoothing The Noise Generation Model

Equation 6 overestimates the frequency of the terms of
the original database in the noisy versions of the database.
For example, assume a bibliographic database of computer
science publications that contains attribute T2 = abstract
which constitutes the abstract of a paper. Apparently, many
abstracts contain term w2 = algorithm, therefore, this
term will appear very frequently with high probability in
fT2,w2 model. On the other hand, a term such as w3 =
Dirichlet is very likely to have very low frequency in
fT2,w3 model. Let attribute value A2 be of attribute abstract
in the bibliographic DB that contains both w2 and w3.
Most likely, term algorithm will appear more frequently
than Dirichlet in A2. Hence, the mean for fA2,w2 will
be also larger than the mean of fA2,w3 . Thus, a mixture
model of fT2,w2 and fA2,w2 will have much larger mean
than a mixture model of fT2,w3 and fA2,w3 . The same
phenomenon occurs if a term is relatively frequent in an
entity set. Hence, a mixture model such as Equation 6
overestimates the frequency of the terms that are relatively
frequent in an attribute or entity set. Researchers have faced
a similar issue in language model smoothing for speech
recognition [30]. We use a similar approach to resolve this
issue. If term w appear in attribute value A, we use only the
first term in Equation 6 to model the frequency of w in the
noisy version of database. Otherwise, we use the second or
third terms if w belongs to T and S, respectively. Hence,
the noise generation model is:

f̂Xa,j
(xa,j) =

γAfXa,j

(xa,j) if wj ∈ Aa

γT fYt,j
(xt,j) if wj /∈ Aa, wj ∈ Tt

γSfZs,j
(xs,j) if wj /∈ Aa, Tt, wj ∈ Ss

(10)

where we remove the condition γA + γT + γS = 1.

5.4 Examples

We illustrate the corruption process and the relationship
between the robustness of the ranking of a query and its
difficulty using INEX queries Q9: mulan hua animation
and Q11: ancient rome era, over the IMDB dataset. We
set γA = 1, γT = 0.9, γS = 0.8 in Equation 10. We use
the XML ranking method proposed in [4], called PRMS,
which we explain in more detail in Section 6. Given query
Q, PRMS computes the relevance score of entity E based
on the weighted linear combination of the relevance scores
the attribute values of E.

Example of calculation of λt,j for term t =ancient and
attribute Tj =plot in Equation 8: In the IMDB dataset,
ancient occurs in attribute plot 2132 times in total, and
total number of attribute values under attribute plot is
184,731, λt,j = 2132/184731 which is 0.0115. Then, since

7

γT = 0.9, the probability that ancient occurs k times in a
corrupted plot attribute is 0.9e−0.0115(0.0115)k

k! .
Q11: Figure 2a depicts two of the top results (ranked as

1st and 12nd respectively) for query Q11 over IMDB. We
omit most attributes (shown as elements in XML lingo in
Figure 2a) that do not contain any query keywords due
to space consideration. Figure 2b illustrates a corrupted
version of the entities shown in Figure 2a. The new
keyword instances are underlined. Note that the ordering
changed according to the PRMS ranking. The reason is
that PRMS believes that title is an important attribute for
rome (for attribute weighing in PRMS see Section 8.1) and
hence having a query keyword (rome) there is important.
However, after corruption, query word rome also appears
in the title of the other entity, which now ranks higher,
because it contains the query words in more attributes.
<movie id= “1025102”>
<title>rome ...</title>
<keyword>ancient-world</keyword>
<keyword>ancient-art</keyword>
<keyword>ancient-rome</keyword>
<keyword>christian-era</keyword>
</movie>

<movie id=“1149602”>
<title>Gladiator</title>
<keyword>ancient-rome</keyword>
<character>Rome ...</character>
<person>... Rome/UK)</person>
<trivia>"Rome of the imagination...
</trivia>
<goof>Rome vs. Carthage ...</goof>
<quote>... enters Rome like a ... Rome
... </quote>
</movie>

(a) Original ranking

<movie id=“1149602”>
<title> Gladiator rome</title>
<keyword>ancient-rome
rome</keyword>
<character>Rome ...</character>
<person> ... Rome/UK)</person>
<trivia>of the imagination...</trivia>
<goof>Rome vs. Carthage ...</goof>
<quote>... enters Rome like a ... Rome
...</quote>
</movie>

<movie id= “1025102”>
<title>rome ...</title>
<keyword>ancient-world
ancient</keyword>
<keyword>-art</keyword>
<keyword>ancient ancient</keyword>
<keyword>christian-</keyword>
</movie>

(b) Corrupted ranking

Fig. 2: Original and corrupted results of Q11

<movie id=“1492260”>
<title>The Legend of Mulan (1998)
</title>
<genre>Animation</genre >
<link>Hua Mu Lan (1964)</link>
<link>Hua Mulan cong jun</link>
<link>Mulan (1998)</link>
<link>Mulan (1999)</link>
<link>The Secret of Mulan
(1998)</link>
</movie>

<movie id=“1180849”>
<title>Hua Mulan (2009)</title>
<character>Hua Hu (Mulan’s father)
</character>
<character>Young Hua Mulan
</character>
<character>Hua Mulan</character>
</movie>

(a) Original ranking

<movie id=“1492260”>
<title>The Legend of Mulan (1998)
mulan mulan</title>
<genre></genre >
<link>Hua Mu Lan (1964)</link>
<link>Hua Mulan cong jun</link>
<link>Mulan (1998) mulan</link>
<link> (1999)</link>
<link>The Secret of Mulan (1998)
mulan </link>
<movie>

<movie id=“1180849”>
<title>Hua (2009) hua</title>
<character>Hua Hu (Mulan’s father)
</character>
<character>Young Hua Mulan mulan
mulan hua</character>
<character>Mulan</character>
</movie>

(b) Corrupted ranking

Fig. 3: Original and corrupted results of Q9

Word rome was added to the title attribute of the orig-
inally second result through the second level (attribute-
based, second branch in Equation 10) of corruption, be-
cause rome appears in the title attribute of other entities
in the database. If no title attribute contained rome, then it
could have been added through the third level corruption
(entity set-based, third branch in Equation 10) since it
appears in attribute values of other movie entities.

The second and third levels corruptions typically have
much smaller probability of adding a word than the first

level, because they have much smaller λ; specifically λT is
the average frequency of the term in attribute T . However,
in hard queries like Q11, the query terms are frequent in the
database, and also appear in various entities and attributes,
and hence λT and λS are larger.

In the first keyword attribute of the top result in Figure 2b,
rome is added by the first level of corruption, whereas in
the trivia attribute rome is removed by the first level of
corruption.

To summarize, Q11 is difficult because its keywords are
spread over a large number of attribute values, attributes
and entities in the original database, and also most of the
top results have a similar number of occurrences of the
keywords. Thus, when the corruption process adds even a
small number of query keywords to the attribute values of
the entities in the original database, it drastically changes
the ranking positions of these entities.

Q9: Q9 (mulan hua animation) is an easy query because
most its keywords are quite infrequent in the database.
Only term animation is relatively frequent in the IMDB
dataset, but almost all its occurrences are in attribute genre.
Figures 3a and 3b present two ordered top answers for
Q9 over the original and corrupted versions of IMDB,
respectively. The two results are originally ranked as 4th

and 10th. The attribute values of these two entities contain
many query keywords in the original database. Hence,
adding and/or removing some query keyword instances in
these results, does not considerably change their relevance
score and they preserve their ordering after corruption.

Since keywords mulan and hua appear in a small number
of attribute values and attributes, the value of λ for these
terms in the second and the third level of corruption is very
small. Similarly, since keyword animation only appears in
the genre attribute, the value of λ for all other attributes
(second level corruption) is zero. The value of λ for
animation in the third level is reasonable, 0.0007 for movie
entity set, but the noise generated in this level alone is not
considerable.

6 EFFICIENT COMPUTATION OF SR SCORE

A key requirement for this work to be useful in practice
is that the computation of the SR score incurs a minimal
time overhead compared to the query execution time. In
this section we present efficient SR score computation
techniques.

6.1 Basic Estimation Techniques
Top-K results: Generally, the basic information units in
structured data sets, attribute values, are much shorter than
text documents. Thus, a structured data set contains a larger
number of information units than an unstructured data set
of the same size. For instance, each XML document in the
INEX data centric collection constitutes hundreds of ele-
ments with textual contents. Hence, computing Equation 3
for a large DB is so inefficient as to be impractical. Hence,
similar to [13], we corrupt only the top-K entity results of
the original data set. We re-rank these results and shift them
up to be the top-K answers for the corrupted versions of

8

DB. In addition to the time savings, our empirical results
in Section 8.2 show that relatively small values for K
predict the difficulty of queries better than large values.
For instance, we found that K = 20 delivers the best
performance prediction quality in our datasets. We discuss
the impact of different values of K in the query difficulty
prediction quality more in Section 8.2.

Number of corruption iterations (N): Computing the
expectation in Equation 3 for all possible values of x⃗ is very
inefficient. Hence, we estimate the expectation using N > 0
samples over M(|A|× V). That is, we use N corrupted
copies of the data. Obviously, smaller N is preferred for
the sake of efficiency. However, if we choose very small
values for N the corruption model becomes unstable. We
further analyze how to choose the value of N in Section 8.2.

We can limit the values of K or N in any of the
algorithms described below.

6.2 Structured Robustness Algorithm
Algorithm 1 shows the Structured Robustness Algorithm
(SR Algorithm), which computes the exact SR score based
on the top K result entities. Each ranking algorithm uses
some statistics about query terms or attributes values over
the whole content of DB. Some examples of such statistics
are the number of occurrences of a query term in all
attributes values of the DB or total number of attribute
values in each attribute and entity set. These global statistics
are stored in M (metadata) and I (inverted indexes) in the
SR Algorithm pseudocode.

Algorithm 1 CorruptTopResults(Q,L,M, I,N)

Input: Query Q, Top-K result list L of Q by ranking function g,
Metadata M , Inverted indexes I , Number of corruption iteration N .

Output: SR score for Q.
1: SR← 0; C ← {}; //C caches λT , λS for keywords in Q
2: FOR i = 1→ N DO
3: I′ ← I; M ′ ←M ; L′ ← L; //Corrupted copy of I , M and L
4: FOR each result R in L DO
5: FOR each attribute value A in R DO
6: A′ ← A; //Corrupted versions of A
7: FOR each keywords w in Q DO
8: Compute # of w in A′ by Equation 10; //If λT,w , λS,w needed

but not in C, calculate and cache them
9: IF # of w varies in A′ and A THEN

10: Update A′, M ′ and entry of w in I′;
11: Add A′ to R′;
12: Add R′ to L′;
13: Rank L′ using g, which returns L, based on I′, M ′;
14: SR += Sim(L,L′); //Sim computes Spearman correlation
15: RETURN SR← SR/N ; //AVG score over N rounds

SR Algorithm generates the noise in the DB on-the-fly
during query processing. Since it corrupts only the top K
entities, which are anyways returned by the ranking module,
it does not perform any extra I/O access to the DB, except
to lookup some statistics. Moreover, it uses the information
which is already computed and stored in inverted indexes
and does not require any extra index.

Nevertheless, our empirical results, reported in Sec-
tion 8.2, show that SR Algorithm increases the query
processing time considerably. Some of the reasons for SR
Algorithm inefficiency are the following: First, Line 5 in SR
Algorithm loops every attribute value in each top-K result
and tests whether it must be corrupted. As noted before,
one entity may have hundreds of attribute values. We must

(a) SR Algorithm (b) SGS-Approx

Fig. 4: Execution flows of SR Algorithm and SGS-Approx

note that the attribute values that do not contain any query
term still must be corrupted (Line 8-10 in SR Algorithm)
for the second and third levels of corruption defined in
Equation 10. This is because their attributes or entity
sets may contain some query keywords. This will largely
increase the number of attribute values to be corrupted.
For instance, for IMDB which has only two entity sets, SR
Algorithm corrupts all attribute values in the top-K results
for all query keywords. Second, ranking algorithms for DBs
are relatively slow. SR Algorithm has to re-rank the top K
entities N times which is time consuming.

7 APPROXIMATION ALGORITHMS

In this section, we propose approximation algorithms to
improve the efficiency of SR Algorithm. Our methods are
independent of the underlying ranking algorithm.

Query-specific Attribute values Only Approximation
(QAO-Approx): QAO-Approx corrupts only the attribute
values that match at least one query term. This approxima-
tion algorithm leverages the following observations:

Observation 1: The noise in the attribute values that
contain query terms dominates the corruption effect.

Observation 2: The number of attribute values that
contain at least one query term is much smaller than the
number of all attribute values in each entity.

Hence, we can significantly decrease the time spent
on corruption if we corrupt only the attribute values that
contain query terms. We add a check before Line 7 in SR
Algorithm to test if A contains any term in Q. Hence, we
skip the loop in Line 7. The second and third levels of
corruption (on attributes, entity sets, respectively) corrupt
a smaller number of attribute values so the time spent on
corruption becomes shorter.

Static Global Stats Approximation (SGS-Approx): SGS-
Approx uses the following observation:

Observation 3: Given that only the top-K result entities
are corrupted, the global DB statistics do not change much.

Figure 4a shows the execution flow of SR Algorithm.
Once we get the ranked list of top K entities for Q, the
corruption module produces corrupted entities and updates
the global statistics of DB. Then, SR Algorithm passes the
corrupted results and updated global statistics to the ranking
module to compute the corrupted ranking list.

SR Algorithm spends a large portion of the robustness
calculation time on the loop that re-ranks the corrupted

9

results (Line 13 in SR Algorithm), by taking into account
the updated global statistics. Since the value of K (e.g., 10
or 20) is much smaller than the number of entities in the
DB, the top K entities constitute a very small portion of the
DB. Thus, the global statistics largely remain unchanged or
change very little. Hence, we use the global statistics of the
original version of the DB to re-rank the corrupted entities.
If we refrain from updating the global statistics, we can
combine the corruption and ranking module together. This
way re-ranking is done on-the-fly during corruption. SGS-
Approx algorithm is illustrated in Figure 4b.

We use the ranking algorithm proposed in [4], called
PRMS, to better illustrate the details of our approximation
algorithm. PRMS employs a language model approach
to search over structured data. It computes the language
model of each attribute value smoothed by the language
model of its attribute. It assigns each attribute a query
keyword-specific weight, which specifies its contribution in
the ranking score. It computes the keyword-specific weight
µj(q) for attribute values whose attributes are Tj and query
q as µj(q) =

P (q|Tj)∑
T∈DB P (q|T) . The ranking score of entity E

for query Q, P (Q|E) is:

P (Q|E) =
∏
q∈Q

P (q|E) =
∏
q∈Q

n∑
j=1

[µj(q)((1− λ)P (q|Aj) + λP (q|Tj))]

(11)

where Aj is an attribute value of E, Tj is the attribute
of Aj , 0 ≤ λ ≤ 1 is the smoothing parameter for the
language model of Aj , and n is the number of attribute
values in E. If we ignore the change of global statistics
of DB, then µj and P (q|Tj) parts will not change when
calculating the score of corrupted version of E, E′, for q.
Hence, the score of E′ will depend only on P (q|A′j), where
A′j is the corrupted version of Aj . We compute the value
of P (q|A′j) using only the information of A′j as (# of q
in A′j / # of words in A′j). SGS-Approx uses the global
statistics of the original DB to compute µj and P (q|Tj) in
order to calculate the value of P (q|E). It re-uses them to
compute the score of the corrupted versions of E. However,
SR Algorithm has to finish all corruption on all attribute
values in top results to update the global statistics and re-
rank the corrupted results. Similarly, we can modify other
keyword query ranking algorithms over DBs that use query
term statistics to score entities.

Combination of QAO-Approx and SGS-Approx: QAO-
Approx and SGS-Approx improve the efficiency of ro-
bustness calculation by approximating different parts of
the corruption and re-ranking process. Hence, we combine
these two algorithms to further improve the efficiency of
the query difficulty predication.

8 EXPERIMENTS

8.1 Experimental Setting

Data sets: Table 2 shows the characteristics of two data
sets used in our experiments. The INEX data set is from the
INEX 2010 Data Centric Track [8] discussed in Section 1.
The INEX data set contains two entity sets: movie and

person. Each entity in the movie entity set represents one
movie with attributes like title, keywords, and year. The
person entity set contains attributes like name, nickname,
and biography. The SemSearch data set is a subset of the
data set used in Semantic Search 2010 challenge [9]. The
original data set contains 116 files with about one billion
RDF triplets. Since the size of this data set is extremely
large, it takes a very long time to index and run queries over
this data set. Hence, we have used a subset of the original
data set in our experiments. We first removed duplicate
RDF triplets. Then, for each file in SemSearch data set,
we calculated the total number of distinct query terms in
SemSearch query workload in the file. We selected the 20,
out of the 116, files that contain the largest number of query
keywords for our experiments. We converted each distinct
RDF subject in this data set to an entity whose identifier
is the subject identifier. The RDF properties are mapped
to attributes in our model. The values of RDF properties
that end with substring “#type" indicates the type of a
subject. Hence, we set the entity set of each entity to the
concatenation of the values of RDF properties of its RDF
subject that end with substring “#type". If the subject of an
entity does not have any property that ends with substring
“#type", we set its entity set to “UndefinedType". We have
added the values of other RDF properties for the subject
as attributes of its entity. We stored the information about
each entity in a separate XML file. We have removed the
relevance judgment information for the subjects that do not
reside in these 20 files. The sizes of the two data sets are
quite close; however, SemSearch is more heterogeneous
than INEX as it contains a larger number of attributes and
entity sets. The size of both data sets are about 10GB,
which is reasonably large for highly structured data sets,
especially given that most empirical studies on keyword
query processing over databases have been conducted on
much smaller datasets [3], [2], [4]. We should note that
structured data sets contain many more finer grained data
items than unstructured data sets of the same size. Hence,
KQIs over a database must process many more candidate
answers than retrieval algorithms over an unstructured set of
documents with the same size, and require much more time
and resources. Thus, the databases used in evaluating KQIs
are generally smaller than typical document collections
used in studying document retrieval algorithms.

TABLE 2: INEX and SemSearch datasets characteristics
INEX SemSearch

Size 9.85 GB 9.64 GB
Number of Entities 4,418,081 7,170,445

Number of Entity Sets 2 419,610
Number of Attributes 77 7,869,986

Number of Attribute values 113,603,013 114,056,158

Query Workloads: Since we use a subset of the dataset
from SemSearch, some queries in its query workload may
not contain enough candidate answers. We picked the 55
queries from the 92 in the query workload that have at
least 50 candidate answers in our dataset. Because the
number of entries for each query in the relevance judgment
file has also been reduced, we discarded another two
queries (Q6 and Q92) without any relevant answers in our

10

dataset, according to the relevance judgment file. Hence,
our experiments is done using 53 queries (2, 4, 5, 11-12,
14-17, 19-29, 31, 33-34, 37-39, 41-42, 45, 47, 49, 52-54,
56-58, 60, 65, 68, 71, 73-74, 76, 78, 80-83, 88-91) from the
SemSearch query workload. 26 query topics are provided
with relevance judgments in the INEX 2010 Data Centric
Track. Some query topics contain characters “+" and “-"
to indicate the conjunctive and exclusive conditions. In our
experiments, we do not use these conditions and remove the
keywords after character “-". Some searching systems use
these operators to improve search quality. Similar to other
efforts in predicting query difficulty, we left supporting
these operators to the future work. Generally, KQIs over
DBs return candidate answers that contain all terms in the
query [6], [1], [27]. However, queries in the INEX query
workload are relatively long (normally over four distinct
keywords). If we retrieve only the entities that contain all
query terms, there will not be sufficient number of (in some
cases none) candidate answers for many queries in the data.
Hence, for every query Q, we use the following procedure
to get at least 1,000 candidate answers for each query. First,
we retrieve the entities that contain |Q| distinct terms in
query Q. If they are not sufficient, we retrieve the entities
that contain at least |Q| − 1 distinct query keywords, and
so on until we get 1000 candidate answers.

Ranking Algorithms: To evaluate the effectiveness of
our model for different ranking algorithms, we have eval-
uated the query performance prediction model with two
representative ranking algorithms: PRMS [4] and IR-Style
[1]. Many other algorithms are extensions of these two
methods (e.g., [2], [12]).
PRMS: We explained the idea behind PRMS algorithm
in Section 6. We adjust parameter λ in PRMS in our
experiments to get the best MAP and then use this value
of λ for query performance prediction evaluations. Varying
λ from 0.1 to 0.9 with 0.1 as the test step, we have found
that different values of λ change MAP very slightly on both
datasets, and generally smaller λs deliver better MAP. We
use λ = 0.1 on INEX and 0.2 on SemSearch.
IR-Style: We use a variation of the ranking model pro-
posed in [1] for relational data model, referred as IR-
Style ranking. Given a query, IR-Style returns a minimal
join tree that connects the tuples from different tables in
the DB that contain the query terms, called MTNJT .
However, our datasets are not in relational format and
the answers in their relevance judgments files are entities
and not MTNJT s. Hence, we extend the definition of
MTNJT as the minimal subtree that connects the attribute
values containing the query keywords in an entity. The root
of this subtree is the root of the entity in its XML file.
If an entity has multiple MTNJT s, we choose the one
with the maximum score as explained below. Let M be a
MTNJT tree of entity E and AM be the attribute values
in M . The score of M for query Q is: IRScore(M,Q)

size(M) , where
IRScore(M,Q) is the score of M for query Q based on
some IR ranking formula. If we use a vector space model
ranking formula as in [1] to compute the IRScore(M,Q),
we get very low MAP (less than 0.1) for both datasets.

Hence, we compute it using a language model ranking
formula with Jelink-Mercer smoothing [31] which is shown
in equation 12. We set the value of smoothing parameter α
to 0.2 as it returns the highest MAP for our datasets.

IRScore(M,Q) =
∏
q∈Q

∑
A∈AM

((1− α)P (q|A) + αP (q|T)) (12)

Configuration: We have performed our experiments on
an AMD Phenom II X6 2.8 GHz machine with 8 GB
of main memory that runs on 64-bit Windows 7. We use
Berkeley DB 5.1.25 to store and index the XML files and
implement all algorithms in Java.

8.2 Quality results
In this section, we evaluate the effectiveness of the query
quality prediction model computed using SR Algorithm.
We use both Pearson’s correlation and Spearman’s correla-
tion between the SR score and the average precision of a
query to evaluate the prediction quality of SR score.

Setting the value of N : Let L and L′ be the original and
corrupted top-K entities for query Q, respectively. The SR
score of Q in each corruption iteration is the Spearman’s
correlation between L and L′. We corrupt the results N
times to get the average SR score for Q. In order to get a
stable SR score, the value of N should be sufficiently large,
but this increases the computation time of the SR score. We
chose the following strategy to find the appropriate value
of N : We progressively corrupt L 50 iterations at a time
and calculate the average SR score over all iterations. If
the last 50 iterations do not change the average SR score
over 1%, we terminate. N may vary for different queries in
query workloads. Thus, we set it to the maximum number
of iterations over all queries. According to our experiments,
the value of N varies very slightly for different value of
K. Therefore, we set the value of N to 300 on INEX and
250 on SemSearch for all values of K.

Different Values for K: The number of interesting
results for a keyword query is normally small [7]. For
example, the average number of relevant results is 9.6
for the SemSearch query workload. In this setting, many
low ranked answers may not be relevant and have quite
close scores, which makes their relative ranking positions
very sensitive to noise. If we use large values for K,
the SR score will be dominated by the low ranked non-
relevant results and the SR score may deem all queries
almost equally difficult. Hence, it is reasonable to use
small values of K for query performance prediction. We
empirically show that our model prefers smaller K on
these two datasets. We conduct our experiments on K=10,
20 and 50. All these values deliver reasonable prediction
quality (i.e. the robustness of a query is strongly correlated
with its effectiveness). However, on both datasets, K=10
and 20 deliver better prediction quality than K=50, given
other parameters are the same. For instance, the value of
Pearson’s correlation on SemSearch is 0.398 for K=50 but
0.471 for K=10 and 0.556 for K=20. We have achieved
the best prediction quality using K=20 for both datasets
with various combinations of γA, γT , and γS . We present
these experiments in details later in this Section.

11

Training of γA, γT , and γS: We denote the coefficients
combination in Equation 10 as (γA, γT , γS) for brevity.

We train (γA, γT , γS) using 5-fold cross validation. We
get two settings on each dataset by using Spearman’s cor-
relation and Pearson’s correlation, respectively, to measure
the prediction quality. After some preliminary experiments,
we found that large γA is effective. Hence, to reduce the
number of possible combinations, we fix γA as 1, and vary
the other two during the training process to find the highest
Pearson’s correlation between average precision and SR
score. We computed the SR score for γT and γS from 0
to 3 with step 0.1 for different values of K. We found that
the value of (γA, γT , γS) that leads to the best correlation
score, is quite stable on different training sets. In the rest
of the paper, we report the results of Pearson’s correlation
and Spearman’s correlation over INEX using the values of
(1, 0.9, 0.8) and (1, 0.3, 0.5) for (γA, γT , γS), respectively.
We also present the values of Pearson’s correlation and
Spearman’s correlation on SemSearch that are achieved by
the setting (γA, γT , γS) to (1, 0.1, 0.6).

Fig. 5: Average precision versus SR score for queries on
INEX using PRMS, K=20 and (γA, γT , γS) = (1, 0.3, 0.5).

Fig. 6: Average precision versus SR score for queries on
SemSearch using PRMS, K=20 and (γA, γT , γS) = (1, 0.1,
0.6).

Figures 5 and 6 depict the plot of average precision and
SR score for all queries in our query workload on INEX and
SemSearch, respectively. In Figure 5, we see that Q9 is easy
(has high average precision) and Q11 is relatively hard, as
discussed in Section 5.4. As shown in Figure 6, query Q78:
sharp-pc is easy (has high average precision), because its
keywords appear together in few results, which explains its
high SR score. On the other hand, Q19: carl lewis and Q90:
university of phoenix have a very low average precision as
their keywords appear in many attributes and entity sets.
Figure 6 shows that the SR scores of these queries are very
small, which confirms our model.

Baseline Prediction Methods: We use Clarity score
(CR) [10], Unstructured Robustness Method (URM) [13],
Weighted Information Gain (WIG) [17], normalized-query-
commitment (NQC) [16], and prevalence of query key-

words as baseline query difficulty prediction algorithms in
databases. CR, URM are two popular post-retrieval query
difficulty prediction techniques over text documents. WIG
and NQC are also post-retrieval predictors that have been
proposed recently and are shown to achieve better query
difficulty prediction accuracy than CR and URM [17], [16].

To implement CR, URM, WIG, and NQC, we concate-
nate the XML elements and tags of each entity into a text
document and assume all entities (now text documents)
belong to one entity set. The values of all µj in PRMS
ranking formula are set to 1 for every query term. Hence,
PRMS becomes a language model retrieval method for text
documents [7]. We have separately trained the parameters
of these method on each dataset using the whole query
workload as the training data to get the optimal settings for
these methods.

URM and CR: For URM on both datasets, we corrupted
each ranking list 1000 times such that robustness score
becomes stable. For CR, we trained three parameters:
the number of results (k), the vocabulary size (v) used
in computing query language model, and the background
language model smoothing factor (λ). We report the results
for CR using k=100 and λ=0.7 for INEX and k=500 and
λ=0.3 for SemSearch. We have use the whole vocabulary
to compute the query language model in both datasets.

WIG and NQC: In order to make a reasonable compari-
son, we have used the implementations of WIG and NQC
from [16]. We trained the number of of top results, k, for
both methods . For WIG, we set k=5 on SemSearch and
k=10 on INEX. For NQC, we set k=10 on SemSearch
and k=150 on INEX. We think smaller k is prefered on
SemSearch for both methods because its query workload
has smaller average number of relevant results per query.

Prevalence of Query Keywords: As we argued in Sec-
tion 4.2, if the query keywords appear in many entities,
attributes, or entity sets, it is harder for a ranking algo-
rithm to locate the desired entities. Given query Q, we
compute the average number of attributes (AA(Q)), average
number of entity sets (AES(Q)), and the average number
of entities (AE(Q)) where each keyword in Q occurs.
We consider each of these three values as an individual
baseline difficulty prediction metric. We also multiply these
three metrics (to avoid normalization issues that summation
would have) and create another baseline metric, denoted
as AS(Q). Intuitively, if these metrics for query Q have
higher values, Q must be harder and have lower average
precision. Thus, we use the inverse of these values, denoted
as iAA(Q), iAES(Q), iAE(Q), and iAS(Q), respectively.

Comparison to Baseline Methods: Tables 3 and 4 show
Pearson’s and Spearman’s correlation values between aver-
age precision and the metrics for SR, NQC, WIG, URM,
CR, iAA(Q), iAES(Q), iAE(Q), and iAS(Q) methods for
different values of K over both datasets, respectively. These
results are based on all queries in the query workloads with-
out distinguishing between training and testing sets. The n/a
value appears in Table 3 because all query keywords in our
query workloads occur in both entity sets in INEX.

The Pearson’s and Spearman’s correlation scores for SR

12

TABLE 3: Pearson’s correlation of average precision against each metric.
K 10 20

Method SR WIG NQC URM CR iAA iAES iAE iAS SR WIG NQC URM CR iAA iAES iAE iAS
INEX 0.486 0.176 0.302 0.093 0.266 0.299 n/a 0.111 0.143 0.564 0.187 0.262 0.177 0.257 0.370 n/a 0.255 0.292

SemSearch 0.471 0.107 -0.083 0.247 0.111 0.066 0.052 0.040 -0.043 0.556 0.109 -0.079 0.311 0.119 0.082 0.068 0.056 -0.046

TABLE 4: Spearman’s correlation of average precision against each metric.
K 10 20

Method SR WIG NQC URM CR iAA iAES iAE iAS SR WIG NQC URM CR iAA iAES iAE iAS
INEX 0.303 0.242 0.381 0.196 0.199 0.409 n/a -0.167 0.187 0.475 0.218 0.319 0.270 0.202 0.448 n/a -0.154 0.174

SemSearch 0.519 0.270 0.287 -0.012 0.182 0.334 0.282 0.289 0.306 0.576 0.253 0.271 0.074 0.179 0.348 0.302 0.310 0.326

Algorithm are significantly higher than those of URM,
CR and WIG on both datasets for both cases of K = 10
and K = 20. SR Algorithm delivers a higher Pearson’s
and Spearman’s correlation than NQC over both data sets
for both values cases of K = 20, and higher Pearson’s
correlation over both data sets for the case of K = 10.
SR algorithm also provides a higher Pearson’s correlation
than NQC over SemSearch for K = 10. This shows that
our prediction model is generally more effective than other
methods over databases. Especially, the large improvement
over URM confirms that our corruption model better cap-
tures the properties of difficult queries on databases. iAA
provides a more accurate prediction than all other baseline
methods over INEX but slightly worse than NQC in terms
of Spearman’s correlation for K=10. This indicates that one
of the main causes of the difficulties for the queries over
the INEX dataset is to find their desired attributes, which
confirms our analysis in Section 4.2. SR also delivers far
better prediction qualities than iAA(Q), iAES(Q), iAE(Q),
and iAS(Q) metrics over both data sets. Hence, SR effec-
tively considers all causes of the difficulties for queries over
databases.

IR-style ranking algorithm: The best value of MAP
for the IR-Style ranking algorithm over INEX is 0.134
for K=20, which is very low. Note that we tried both
Equation 12 as well as the vector space model originally
used in [1]. Thus, we do not study the quality performance
prediction for IR-Style ranking algorithm over INEX. On
the other hand, the IR-Style ranking algorithm using Equa-
tion 12 delivers larger MAP value than PRMS on the
SemSearch dataset. Hence, we only present results on
SemSearch. Table 5 shows Pearson’s correlation of SR
score with the average precision for different values of K,
for N=250 and (γA, γT , γS) = (1, 0.1, 0.6). Figure 7 plots
SR score against the average precision when K=20.

Fig. 7: Average precision versus SR score using IR-Style
over SemSearch with K=20.

TABLE 5: Effect of K on correlation of average precision
and SR score using IR-Style ranking on SemSearch.

K 10 20
Pearson’s correlation score 0.565 0.544

Spearman’s correlation score 0.502 0.507

Discussion: Without combining with other predictors,
all state-of-the-art predictors on text collections achieve
linear/non-linear correlation between average precision and
prediction metrics up to 0.65 depending on corpus and
query workload [32], [10], [13], [14], [15], [16], [17], [20],
[24], [25]. As the first work in query difficulty prediction
on database, we believe our prediction quality is reasonably
high.

Impact of database schema complexity: On one hand,
increasing the complexity of the schema (e.g., increasing
nesting or number attributes) makes it harder to locate the
user-desired results. On the other hand, a richer structure
may improve the quality of search if the system is able
to locate the right attribute types, e.g., when the keywords
only appear in a single attribute type. For the same reasons
we believe there is no general rule on the effect of the
schema complexity on the effectiveness of SR score.

Using SR Algorithm: Similar to other difficulty metrics,
given the result of SR Algorithm for an input query, a KQI
may apply a thresholding approach to categorize an input
query as “easy” or “hard” [10]. This thresholding approach
defines a reasonable threshold t for a query difficulty
metric. If the difficulty metric of the query is below t, it
will be considered a “hard” query, and the KQI will apply
further treatments like the ones discussed in Section 1 to
it. One may apply the kernel density estimation technique
proposed in [10] to find the value of t for a database. This
technique computes the SR score for a large number of
syntactic keyword queries that are randomly sampled from
the database. It then sets the value of t to the SR score that
is estimated to be less than the SR values of 80% of queries.
Readers can find more information on the justification and
implementation of this approach in [10].

8.3 Performance Study
In this section we study the efficiency of our SR score
computation algorithms.

SR Algorithm: We report the average computation time
of SR score (SR-time) using SR Algorithm and compare it
to the average query processing time (Q-time) using PRMS
for the queries in our query workloads. These times are
presented in Table 6 for K=20. SR-time mainly consists of
two parts: the time spent on corrupting K results and the
time to re-rank the K corrupted results. We have reported
SR-time using (corruption time + re-rank time) format. We
see that SR Algorithm incurs a considerable time overhead
on the query processing. This overhead is higher for queries
over the INEX dataset, because there are only two entity
sets, (person and movie), in the INEX dataset, and all
query keywords in the query load occur in both entity sets.

13

(a) QAO-Approx (b) SGS-Approx (c) Combination of QAO and SGS

Fig. 8: Approximations on INEX.

(a) QAO-Approx (b) SGS-Approx (c) Combination of QAO and SGS

Fig. 9: Approximations on SemSearch.

Hence, according to Equation 10, every attribute value in
top K entities will be corrupted due to the third level of
corruption. Since SemSearch contains far more entity sets
and attributes than INEX, this process does not happen for
SemSearch.
TABLE 6: Average query processing time and average
robustness computation for K=20.

Avg Q-time (ms) Avg SR-time (ms)
INEX (N=250) 24,177 (88,271 + 29,585)

SemSearch (N=300) 46,726 (11,121 + 12,110)

QAO-Approx: Figures 8a and 9a show the results of
using QAO-Approx on INEX and SemSearch, respectively.
We measure the prediction effectiveness for smaller values
of N using average correlation score. The QAO-Approx
algorithm delivers acceptable correlation scores and the
corruption times of about 2 seconds for N=10 on INEX
and N=20 on SemSearch. Comparing to the results of SR
Algorithm for N=250 on SemSearch and N=300 on INEX,
the Pearson’s correlation score drops, because less noise is
added by second and third level corruption. These results
show the importance of these two levels of corruption.

SGS-Approx: Figures 8b and 9b depict the results of ap-
plying SGS-Approx on INEX and SemSearch, respectively.
Since re-ranking is done on-the-fly during the corruption,
SR-time is reported as corruption time only. As shown
in Figure 8b, the efficiency improvement on the INEX
dataset is slightly worse than QAO-Approx, but the quality
(correlation score) remains high. SGS-Approx outperforms
QAO-Apporx in terms of both efficiency and effectiveness
on the SemSearch dataset.

Combination of QAO-Approx and SGS-Approx: As
noted in Section 6, we can combine QAO-Approx and
SGS-Approx algorithms to achieve better performance.
Figures 8c and 9c present the results of the combined
algorithm for INEX and SemSearch databases, respectively.
Since we use SGS-Approx, the SR-time consists only of
corruption time. Our results show that the combination of

two algorithms works more efficiently than either of them
with the same value for N .

Summary of the Performance Results: According to
our performance study of QAO-Approx, SGS-Approx, and
the combined algorithm over both datasets, the combined
algorithm delivers the best balance of improvement in
efficiency and reduction in effectiveness for both datasets.
On both datasets, the combined algorithm achieves high
prediction accuracy (the Pearson’s correlation score about
0.5) with SR-time around 1 second. Using the combined
algorithm over INEX when the value of N is set to 20, the
the Pearson’s and Spearman’s correlation scores are 0.513
an 0.396 respectively and the time decreases to about 1
second. For SR Algorithm on INEX, when N decreases to
10, the Pearson’s correlation is 0.537, but SR-time is over
9.8 seconds, which is not ideal. If we use the combined
algorithm on SemSearch, the Pearson’s and Spearman’s
correlation scores are 0.495 and 0.587 respectively and SR-
time is about 1.1 seconds when N=50. However, to achieve
a similar running time, SGS-Approx needs to decrease
N to 10, with the SR-time of 1.2 seconds, the Pearson’s
correlation of 0.49 and the Spearman’s correlation of 0.581.
Thus, the combined algorithm is the best choice to predict
the difficulties of queries both efficiently and effectively.

Discussion: The time to compute the SR score only
depends on the top-K results, since only the top-K results
are corrupted and reranked (see Section 6). Increasing the
data set size will only increase the query processing time,
which is not the focus of this paper.

The complexity of data schema could have impact on the
efficiency of our model. A simpler schema may not mean
shorter SR computation time, since more attribute values
need to be corrupted, since more attribute values of the
same attribute type of interest exists. The latter is supported
by the longer corruption times incurred by INEX, which has
simpler schema than SemSearch, as shown in Table 6.

14

9 CONCLUSION AND FUTURE WORK
We introduced the novel problem of predicting the effec-
tiveness of keyword queries over DBs. We showed that the
current prediction methods for queries over unstructured
data sources cannot be effectively used to solve this prob-
lem. We set forth a principled framework and proposed
novel algorithms to measure the degree of the difficulty of
a query over a DB, using the ranking robustness principle.
Based on our framework, we propose novel algorithms that
efficiently predict the effectiveness of a keyword query.
Our extensive experiments show that the algorithms predict
the difficulty of a query with relatively low errors and
negligible time overheads.

An interesting future work is to extend this framework
to estimate the query difficulty on other top K ranking
problems in DBs such as ranking underspecified SQL
statements or keyword queries with exclusion operations or
supporting phrases. Another direction is to experiment with
ranking functions that may not fall under the two function
classes used in this paper. Finally, we will extend our
robustness framework for semi-structured queries, where
the user specifies both structured conditions and keywords.

10 ACKNOWLEDGMENTS
Arash Termehchy is supported by National Science Foun-
dation grants 0938071, 076532, and 0938064 and a Yahoo!
Key Scientific Challenges Award. Vagelis Hristidis is sup-
ported by National Science Foundation grants IIS-1216032
and IIS-1216007.

REFERENCES
[1] V. Hristidis, L. Gravano, and Y. Papakonstantinou, “Efficient IR-

Style Keyword Search over Relational Databases,” in VLDB 2003.
[2] Y. Luo, X. Lin, W. Wang, and X. Zhou, “SPARK: Top-k Keyword

Query in Relational Databases,” in SIGMOD, 2007.
[3] V. Ganti, Y. He, and D. Xin, “Keyword++: A Framework to Improve

Keyword Search Over Entity Databases,” PVLDB, vol. 3, pp. 711–
722, 2010.

[4] J. Kim, X. Xue, and B. Croft, “A Probabilistic Retrieval Model for
Semistructured Data,” in ECIR, 2009.

[5] N. Sarkas, S. Paparizos, and P. Tsaparas, “Structured Annotations of
Web Queries,” in SIGMOD, 2010.

[6] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan,
“Keyword Searching and Browsing in databases using BANKS,” in
ICDE, 2002.

[7] C. Manning, P. Raghavan, and H. Schutze, An Introduction to
Information Retrieval, 2008.

[8] A. Trotman and Q. Wang, “Overview of the INEX 2010 Data Centric
Track,” in Comparative Evaluation of Focused Retrieval, ser. Lecture
Notes in Computer Science, 2011, vol. 6932.

[9] T. Tran, P. Mika, H. Wang, and M. Grobelnik, “Semsearch’10: the
3th semantic search workshop,” in WWW, 2010.

[10] S. C. Townsend, Y. Zhou, and B. Croft, “Predicting Query Perfor-
mance,” in SIGIR, 2002.

[11] A. Nandi and H. V. Jagadish, “Assisted Querying Using Instant-
Response Interfaces,” in SIGMOD, 2007.

[12] E. Demidova, P. Fankhauser, X. Zhou, and W. Nejdl, “DivQ:
Diversification for Keyword Search over Structured Databases,” in
SIGIR, 2010.

[13] Y. Zhou and B. Croft, “Ranking Robustness: A Novel Framework
to Predict Query Performance,” in CIKM, 2006.

[14] B. He and I. Ounis, “Query performance prediction,” Inf. Syst.,
vol. 31, pp. 585–594, November 2006.

[15] K. Collins-Thompson and P. N. Bennett, “Predicting Query Perfor-
mance via Classification,” in ECIR, 2010.

[16] A. Shtok, O. Kurland, and D. Carmel, “Predicting Query Perfor-
mance by Query-Drift Estimation,” in ICTIR, 2009.

[17] Y. Zhou and B. Croft, “Query Performance Prediction in Web Search
Environments,” in SIGIR, 2007.

[18] Y. Zhao, F. Scholer, and Y. Tsegay, “Effective pre-retrieval query
performance prediction using similarity and variability evidence,” in
ECIR, 2008.

[19] C. Hauff, L. Azzopardi, and D. Hiemstra, “The Combination and
Evaluation of Query Performance Prediction Methods,” in Advances
in Information Retrieval, 2009.

[20] C. Hauff, V. Murdock, and R. Baeza-Yates, “Improved Query
Difficulty Prediction for the Web,” in CIKM, 2008.

[21] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Tech-
niques. Morgan Kaufmann, 2011.

[22] E. Yom-Tov, S. Fine, D. Carmel, and A. Darlow, “Learning to
Estimate Query Difficulty: including applications to missing content
detection and distributed information retrieval,” in SIGIR, 2005.

[23] J. A. Aslam and V. Pavlu, “Query Hardness Estimation using Jensen-
Shannon Divergence among Multiple Scoring Functions,” in ECIR,
2007.

[24] O. Kurland, A. Shtok, S. Hummel, F. Raiber, D. Carmel, and
O. Rom, “Back to the roots: a probabilistic framework for query-
performance prediction,” in CIKM, 2012.

[25] O. Kurland, A. Shtok, D. Carmel, and S. Hummel, “A Unified
Framework for Post-retrieval Query-Performance Prediction,” in
ICTIR, 2011.

[26] S. Cheng, A. Termehchy, and V. Hristidis, “Predicting the Effective-
ness of Keyword Queries on Databases,” in ACM CIKM, 2012.

[27] A. Termehchy, M. Winslett, and Y. Chodpathumwan, “How Schema
Independent Are Schema Free Query Interfaces?” in ICDE, 2011.

[28] E. Mittendorf and P. Schauble, “Measuring the Effects of Data
Corruption on Information Retrieval,” in SDAIR, 1996.

[29] J. Gibbons and S.Chakraborty, Nonparametric Statistical Inference.
Marcel Dekker, New York, 1992.

[30] S. M. Katz, “Estimation of Probabilistic from Sparse Data for the
Language Model Component of a Speech Recognizer,” IEEE Trans.
Signal Process., vol. 35, no. 3, pp. 400–401, 1987.

[31] C. Zhai and J. Lafferty, “A Study of Smoothing Methods for
Language Models Applied to Ad Hoc Information Retrieval,” in
SIGIR, 2001, pp. 334–342.

[32] C. Hauff, L. Azzopardi, D. Hiemstra, and F. Jong, “Query Per-
formance Prediction: Evaluation Contrasted with Effectiveness,” in
Advances in Information Retrieval, 2010.

Shiwen Cheng is a Ph.D. candidate at the
Computer Science and Engineering Depart-
ment at UC Riverside. He received his B.Sc.
degree in Computer Science from Huazhong
University of Science and Technology, China
in 2007. His main research interests include
Information Retrieval and Databases.

Arash Termehchy is an Assistant Professor
in the School of Electrical Engineering &
Computer Science at Oregon State Univer-
sity. His research interests are in the areas
of database systems and data mining. He is
the recipient of the best student paper award
of ICDE 2011, best papers selection of ICDE
2011, the Yahoo! Key Scientific Challenges
Award in 2011-12, and Feng Chen Memorial
Award in 2012. His PhD is from the University
of Illinois at Urbana-Champaign.

Vagelis Hristidis is an Associate Professor
of Computer Science at UC Riverside. His
key areas of expertise are Databases, Infor-
mation Retrieval, and particularly the inter-
section of these two areas. His key achieve-
ments include the NSF CAREER award, a
Google Research Award, an IBM Award, and
a Kauffmann Entrepreneurship Award.

