
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

A Game-theoretic Approach to Data Interaction

BEN MCCAMISH, Oregon State University, USA

VAHID GHADAKCHI, Oregon State University, USA

ARASH TERMEHCHY, Oregon State University, USA

BEHROUZ TOURI, University of California San Diego, USA

EDUARDO COTILLA-SANCHEZ, Oregon State University, USA

LIANG HUANG, Oregon State University, USA

SORAVIT CHANGPINYO, University of Southern California, USA

As most users do not precisely know the structure and/or the content of databases, their queries do not
exactly reflect their information needs. The database management system (DBMS) may interact with users

and use their feedback on the returned results to learn the information needs behind their queries. Current

query interfaces assume that users do not learn and modify the way they express their information needs

in the form of queries during their interaction with the DBMS. Using a real-world interaction workload, we

show that users learn and modify how to express their information needs during their interactions with the

DBMS and their learning is accurately modeled by a well-known reinforcement learning mechanism. As

current data interaction systems assume that users do not modify their strategies, they cannot discover the

information needs behind users’ queries effectively. We model the interaction between the user and the DBMS

as a game with identical interest between two rational agents whose goal is to establish a common language

for representing information needs in the form of queries. We propose a reinforcement learning method that

learns and answers the information needs behind queries and adapts to the changes in users’ strategies and

prove that it improves the effectiveness of answering queries stochastically speaking. We propose two efficient

implementation of this method over large relational databases. Our extensive empirical studies over real-world

query workloads indicate that our algorithms are efficient and effective.

CCS Concepts: • Human-centered computing → Collaborative interaction; HCI design and evalua-
tion methods; • Theory of computation→ Convergence and learning in games; Database theory.

Additional Key Words and Phrases: user and database interaction, database querying, collaborative interaction,

game theory, reinforcement learning

ACM Reference Format:
Ben McCamish, Vahid Ghadakchi, Arash Termehchy, Behrouz Touri, Eduardo Cotilla-Sanchez, Liang Huang,

and Soravit Changpinyo. 2019. A Game-theoretic Approach to Data Interaction. ACM Trans. Datab. Syst. 1, 1,
Article 1 (January 2019), 44 pages. https://doi.org/10.1145/3351450

Authors’ addresses: Ben McCamish, Oregon State University, 2500 NWMonroe Ave, Corvallis, OR, 97331, USA, mccamisb@

oregonstate.edu; Vahid Ghadakchi, Oregon State University, 2500 NW Monroe Ave, Corvallis, OR, 97331, USA, ghadakcv@

oregonstate.edu; Arash Termehchy, Oregon State University, 2500 NW Monroe Ave, Corvallis, OR, 97331, USA, termehca@

oregonstate.edu; Behrouz Touri, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA, btouri@

eng.ucsd.edu; Eduardo Cotilla-Sanchez, Oregon State University, 2500 NW Monroe Ave, Corvallis, OR, 97331, USA, ecs@

oregonstate.edu; Liang Huang, Oregon State University, 2500 NW Monroe Ave, Corvallis, OR, 97331, USA, lianga@

oregonstate.edu; Soravit Changpinyo, University of Southern California, 941 Bloom Walk, Los Angeles, CA, 90089, USA,

schangpi@usc.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

0362-5915/2019/1-ART1 $15.00

https://doi.org/10.1145/3351450

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1145/3351450
https://doi.org/10.1145/3351450

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 B. McCamish et al.

1 INTRODUCTION
Most users do not know the structure and content of databases and concepts such as schema or

formal query languages sufficiently well to express their information needs precisely in the form of

queries [15, 35, 36]. They may convey their intents in easy-to-use but inherently ambiguous forms,

such as keyword queries, which are open to numerous interpretations. Thus, it is very challenging

for a database management system (DBMS) to understand and satisfy the intents behind these

queries. The fundamental challenge in the interaction of these users and DBMS is that the users

and DBMS represent intents in different forms.

Many such users may explore a database to find answers for various intents over a rather long

period of time. For these users, database querying is an inherently interactive and continuing process.

As both the user and DBMS have the same goal of the user receiving her desired information, the

user and DBMS would like to gradually improve their understandings of each other and reach a

common language of representing intents over the course of various queries and interactions. The

user may learn more about the structure and content of the database and how to express intents

as she submits queries and observes the returned results. Also, the DBMS may learn more about

how the user expresses her intents by leveraging user feedback on the returned results. The user

feedback may include clicking on the relevant answers [72], the amount of time the user spends on

reading the results [28], user’s eye movements [34], or the signals sent in touch-based devises [43].

Ideally, the user and DBMS should establish as quickly as possible this common representation of

intents in which the DBMS accurately understands all or most user’s queries.

Researchers have developed systems that leverage user feedback to help the DBMS understand

the intent behind ill-specified and vague queries more precisely [10, 11]. These systems, however,

generally assume that a user does not modify her method of expressing intents throughout her

interaction with the DBMS. For example, they maintain that the user picks queries to express an

intent according to a fixed probability distribution. It is known that the learning methods that are

useful in a static setting do not deliver desired outcomes in a setting where all agents may modify

their strategies [20, 29]. Hence, one may not be able to use current techniques to help the DBMS

understand the users’ information need in a rather long-term interaction.

To the best of our knowledge, the impact of user learning on database interaction has been

generally ignored. In this paper, we propose a novel framework that formalizes the interaction

between the user and the DBMS as a game with identical interest between two active and potentially

rational agents: the user and DBMS. The common goal of the user and DBMS is to reach a mutual

understanding on expressing information needs in the form of keyword queries. In each interaction,

the user and DBMS receive certain payoff according to how much the returned results are relevant

to the intent behind the submitted query. The user receives her payoff by consuming the relevant

information and the DBMS becomes aware of its payoff by observing the user’s feedback on the

returned results. We believe that such a game-theoretic framework naturally models the long-term

interaction between the user and DBMS. We explore the user learning mechanisms and propose

algorithms for DBMS to improve its understanding of intents behind the user queries effectively

and efficiently over large databases. In particular, we make the following contributions:

• We model the long term interaction between the user and DBMS using keyword queries as a

particular type of game called a signaling game [16] in Section 2.

• Using extensive empirical studies over a real-world interaction log, we show that users modify

the way they express their information need over their course of interactions in Section 3.

We also show that this adaptation is often modeled by a well-known reinforcement learning

algorithm [56] in experimental game-theory.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

A Game-theoretic Approach to Data Interaction 1:3

• Current systems generally assume that a user does not learn and/or modify her method of

expressing intents throughout her interaction with the DBMS. However, it is known that the

learningmethods that are useful in static settings do not deliver desired outcomes in the dynamic

ones [4]. We propose a method of answering user queries in a natural and interactive setting

in Section 4 and prove that it improves the effectiveness of answering queries stochastically

speaking, and converges almost surely. We show that our results hold for both the cases where

the user adapts her strategy using an appropriate learning algorithm and the case where she

follows a fixed strategy.

• In Section 5, we define and analyze the eventual stable states of the game in the long-term

interaction of the user and DBMS. We also show that the game has both stable states in which

the user and DBMS establish an accurate common understanding and the ones where they do

not achieve an accurate common understanding.

• We describe our data interaction system that provides an efficient implementation of our

reinforcement learning method on large relational databases in Section 6. In particular, we

first propose an algorithm that implements our learning method called Reservoir. Then, using
certain mild assumptions and the ideas of sampling over relational operators, we propose

another algorithm called Poisson-Olken that implements our reinforcement learning scheme

and considerably improves the efficiency of Reservoir.
• We report the results of our extensive empirical studies on measuring the effectiveness of

our reinforcement learning method and the efficiency of our algorithms using real-world and

large interaction workloads, queries, and databases in Section 7. Our results indicate that our

proposed reinforcement learning method is more effective than the start-of-the-art algorithm

for long-term interactions. They also show that Poisson-Olken can process queries over large

databases faster than the Reservoir algorithm.

2 A GAME-THEORETIC FRAMEWORK
Users andDBMSs typically achieve a common understanding gradually and using a querying/feedback
paradigm. After submitting each query, the user may revise her strategy of expressing intents based

on the returned result. If the returned answers satisfy her intent to a large extent, she may keep

using the same query to articulate her intent. Otherwise, she may revise her strategy and choose

another query to express her intent in the hope that the new query will provide her with more

relevant answers. We will describe this behavior of users in Section 3 in more details. The user

may also inform the database system about the degree by which the returned answers satisfy the

intent behind the query using explicit or implicit feedback, e.g., click-through information [28].

The DBMS may update its interpretation of the query according to the user’s feedback.

Intuitively, one may model this interaction as a game between two agents with identical interests

in which the agents communicate via sharing queries, results, and feedback on the results. In each

interaction, both agents will receive some reward according to the degree by which the returned

result for a query matches its intent. The user receives her rewards in the form of answers relevant

to her intent and the DBMS receives its reward through getting positive feedback on the returned

results. The final goal of both agents is to maximize the amount of reward they receive during

the course of their interaction. Next, we describe the components and structure of this interaction

game for relational databases. Figure 1 depicts a high level diagram of how an interaction loop

takes place.

Basic Definitions: We fix two disjoint arbitrarily large but finite sets of attributes and relation

symbols. Every relation symbol R is associated with a set of attribute symbols denoted as sort(R).
Let dom be an arbitrarily large but finite set of constants, e.g., strings. An instance IR of relation

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 B. McCamish et al.

Returns
Results

Submits
Query1.

2.

Updates
Strategy

3.

Gives
Feedback

Updates
Strategy

4.

5.

Fig. 1. High Level Diagram of Framework

symbol R with n = |sort(R)| is a (finite) subset of domn
. A schema S is a set of relation symbols. A

database (instance) of S is a mapping over S that associates with each relation symbol R in S an

instance of IR . In this paper, we assume that dom is a set of strings.

2.1 Intent
An intent represents an information need sought after by the user. Current keyword query interfaces

over relational databases generally assume that each intent is a query in a sufficiently expressive

query language in the domain of interest, e.g., Select-Project-Join subset of SQL [15, 36]. Our

framework and results are orthogonal to the language that precisely describes the users’ intents.

Table 1 illustrates a database with schema Univ(Name, Abbreviation, State, Type, Ranking) that
contains information about university rankings. A user may want to find the ranking of university

MSU in Michigan, which is precisely represented by the intent e2 in Table 2(a), which using the

Datalog syntax [1] is: ans(z) ←Univ(x , ‘MSU ’, ‘MI ’,y, z).

2.2 Query
Users’ articulations of their intents are queries. Many users do not know the formal query language,

e.g., SQL, that precisely describes their intents. Thus, they may prefer to articulate their intents

in languages that are easy-to-use, relatively less complex, and ambiguous such as keyword query

language [15, 36]. In the proposed game-theoretic frameworks for database interaction, we assume

that the user expresses her intents as keyword queries. More formally, we fix an arbitrarily large

but finite set of terms, i.e., keywords, T . A keyword query (query for short) is a nonempty (finite)

set of terms in T . Consider the database instance in Table 1. Table 2 depicts a set of intents and

queries over this database. Suppose the user wants to find the ranking of Michigan State University

in Michigan, i.e. the intent e2. Because the user does not know any formal database query language

and may not be sufficiently familiar with the content of the data, she may express intent e2 using

q2 : ‘MSU’.
Some usersmay know a formal database query language that is sufficiently expressive to represent

their intents. Nevertheless, because they may not know precisely the content and schema of the

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

A Game-theoretic Approach to Data Interaction 1:5

database, their submitted queries may not always be the same as their intents [11, 38]. For example,

a user may know how to write a SQL query. But, since she may not know the state abbreviation

MI, she may articulate intent e2 as ans(t) ←Univ(x , ‘MSU ’,y, z, t), which is different from e2. We

plan to extend our framework for these scenarios in future work. But, in this paper, we assume

that users articulate their intents as keyword queries.

2.3 User Strategy
The user strategy indicates the likelihood by which the user submits query q given that her intent

is e . In practice, a user has finitely many intents and submits finitely many queries in a finite period

of time. Hence, we assume that the sets of the user’s intents and queries are finite. However, we

do not know how this is exactly modeled and stored in the user’s mind. This is outside the scope

of this paper. One can view this as instead a stochastic mapping between intents and queries. We

index each user’s intent and query by 1 ≤ i ≤ m and 1 ≤ j ≤ n, respectively. A user strategy,

denoted as U , is am × n row-stochastic matrix from her intents to her queries. We discuss the

details of this stochastic mapping in Section 4. The matrix on the top of Table 3(a) depicts a user

strategy using intents and queries in Table 2. According to this strategy, the user submits query q2

to express intents e1, e2, and e3.

Table 1. A database instance of relation Univ

Name Abbreviation State Type Rank

Missouri State University MSU MO public 20

Mississippi State University MSU MS public 22

Murray State University MSU KY public 14

Michigan State University MSU MI public 18

Table 2. Intents andQueries

2(a) Intents

Intent# Intent

e1 ans(z) ← Univ(x , ‘MSU ’, ‘MS’,y, z)
e2 ans(z) ← Univ(x , ‘MSU ’, ‘MI ’,y, z)
e3 ans(z) ← Univ(x , ‘MSU ’, ‘MO’,y, z)

2(b) Queries

Query# Query

q1 ‘MSU MI’

q2 ‘MSU’

2.4 DBMS Strategy
The DBMS interprets queries to find the intents behind them. It usually interprets queries by

mapping them to a set of SQL with a limit on the number of joins [15, 32, 45]. Since the final

goal of users is to see the result of applying the interpretation(s) on the underlying database, the

DBMS runs its interpretation(s) over the database and returns its results. Moreover, since the

user may not know SQL, suggesting possible SQL queries may not be useful. A DBMS may not

exactly know the language that can express all users’ intents. Current usable query interfaces,

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 B. McCamish et al.

Table 3. Two strategy profiles over the intents and queries in Table 2. User and DBMS strategies at the top
and bottom, respectively.

3(a) A strategy profile

q1 q2

e1 0 1

e2 0 1

e3 0 1

e1 e2 e3

q1 0 1 0

q2 0 1 0

3(b) Another strategy profile

q1 q2

e1 0 1

e2 1 0

e3 0 1

e1 e2 e3

q1 0 1 0

q2 0.5 0 0.5

including keyword query systems, select a query language for the interpreted intents that is

sufficiently complex to express many users’ intents and is simple enough so that the interpretation

and running its outcome(s) are done efficiently [15]. As an example consider current keyword

query interfaces over relational databases [15]. Given constant v in database I and keywordw in

keyword query q, letmatch(v,w) be a function that is true ifw appears in v and false otherwise. A

majority of keyword query interfaces interpret keyword queries as Select-Project-Join queries that

have below certain number of joins and whose where clauses contain only conjunctions ofmatch
functions [32, 45]. Using a larger set of SQL, e.g. the ones with more joins, makes it inefficient to

perform the interpretation and run its outcomes. Given schema S , the interpretation language of
the DBMS, denoted as L, is a set of SQL with a limit on joins over S . We precisely define L for our

implementation of DBMS strategy in Section 6. To interpret a keyword query, the DBMS searches

L for the SQL queries that represent the intent behind the query as accurately as possible.

Because users may be overwhelmed by the results of many interpretations, keyword query

interfaces use a deterministic real-valued scoring function to rank their interpretations and deliver

only the results of top-k ones to the user [15]. It is known that such a deterministic approach

may significantly limit the accuracy of interpreting queries in long-term interactions in which the

information system utilizes user’s feedback [3, 31, 65]. Because the DBMS shows only the result of

interpretation(s) with the highest score(s) to the user, it receives feedback only on a small set of

interpretations. Thus, its learning remains largely biased toward the initial set of highly ranked

interpretations. For example, it may never learn that the intent behind a query is satisfied by an

interpretation with a relatively low score according to the current scoring function.

To better leverage users feedback during the interaction, the DBMS must show the results of and

get feedback on a sufficiently diverse set of interpretations [3, 31, 65]. Of course, the DBMS should

ensure that this set of interpretations are relatively relevant to the query, otherwise the user may

become discouraged and give up querying. This dilemma is called the exploitation versus exploration
trade-off. A DBMS that only exploits, returns top-ranked interpretations according to its scoring

function. Hence, the DBMS may adopt a stochastic strategy to both exploit and explore: it randomly

selects and shows the results of intents such that the ones with higher scores are chosen with larger

probabilities [3, 31, 65]. The main dilemma here is to balance exploiting the information known

so far to deliver accurate results in the short run and exploring new actions that have not been

tried before to gain more knowledge and eventually learn a more accurate model in the long run.

If an online learning method focuses on the former, it might not improve its model significantly

over time. In this approach, users are mostly shown results of interpretations that are relevant to

their intents according to the current knowledge of the DBMS and provide feedback on a relatively

diverse set of interpretations. More formally, given Q is a set of all keyword queries, the DBMS

strategy D is a stochastic mapping fromQ to L. To the best of our knowledge, to search L efficiently,

current keyword query interfaces limit their search per query to a finite subset of L [15, 32, 45]. In

this paper, we follow a similar approach and assume that D maps each query to only a finite subset

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

A Game-theoretic Approach to Data Interaction 1:7

of L. The matrix on the bottom of Table 3(a) depicts a DBMS strategy for the intents and queries in

Table 2. Based on this strategy, the DBMS uses a exploitative strategy and always interprets query

q2 as e2. The matrix on the bottom of Table 3(b) depicts another DBMS strategy for the same set of

intents and queries. In this example, DBMS uses a randomized strategy and does both exploitation

and exploration. For instance, it explores e1 and e2 to answer q2 with equal probabilities, but it

always returns e2 in the response to q1.

2.5 Interaction & Adaptation
The data interaction game is a repeated game with identical interest between two players, the

user and the DBMS. At each round of the game, i.e., a single interaction, the user selects an intent

according to the prior probability distribution π . She then picks the query q according to her

strategy and submits it to the DBMS. The DBMS observes q and interprets q based on its strategy,

and returns the results of the interpretation(s) on the underlying database to the user. The user

provides some feedback on the returned tuples and informs the DBMS how relevant the tuples are

to her intent. In this paper, we assume that the user informs the DBMS if some tuples satisfy the

intent via some signal, e.g., selecting the tuple, in some interactions. The feedback signals may be

noisy, e.g., a user may click on a tuple by mistake. Researchers have proposed models to accurately

detect the informative signals [31]. Dealing with the issue of noisy signals is out of the scope of

this paper.

The goal of both the user and the DBMS is to have as many satisfying tuples as possible in the

returned tuples. Hence, both the user and the DBMS receive some payoff, i.e., reward, according to

the degree by which the returned tuples match the intent. This payoff is measured based on the user

feedback and using standard effectiveness metrics [47]. One example of such metrics is precision at
k , p@k , which is the fraction of relevant tuples in the top-k returned tuples. At the end of each

round, both the user and the DBMS receive a payoff equal to the value of the selected effectiveness

metric for the returned result. We denote the payoff received by the players at each round of the

game, i.e., a single interaction, for returning interpretation eℓ for intent ei as r (ei , eℓ). This payoff is

computed using the user’s feedback on the result of interpretation eℓ over the underlying database.

Next, we compute the expected payoff of the players. Since DBMS strategy D maps each query

to a finite set of interpretations, and the set of submitted queries by a user, or a population of users,

is finite, the set of interpretations for all queries submitted by a user, denoted as Ls , is finite. Hence,
we show the DBMS strategy for a user as an n × o row-stochastic matrix from the set of the user’s

queries to the set of interpretations Ls . We index each interpretation in Ls by 1 ≤ ℓ ≤ o. Each pair

of the user and the DBMS strategy, (U ,D), is a strategy profile. The expected payoff for both players

with strategy profile (U ,D) is as follows.

ur (U ,D) =
m∑
i=1

πi

n∑
j=1

Ui j

o∑
ℓ=1

D jℓ r (ei , eℓ), (1)

The expected payoff reflects the degree by which the user and DBMS have reached a common

language for communication. This value is high for the case in which the user knows which queries

to pick to articulate her intents and the DBMS returns the results that satisfy the intents behind

the user’s queries. Hence, this function reflects the success of the communication and interaction.

For example, given that all intents have equal prior probabilities, intuitively, the strategy profile

in Table 3(b) shows a larger degree of mutual understanding between the players than the one in

Table 3(a). This is reflected in their values of expected payoff as the expected payoffs of the former

and latter are
2

3
and

1

3
, respectively. We note that the DBMS may not know the set of users’ queries

beforehand and does not compute the expected payoff directly. Instead, it uses query answering

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 B. McCamish et al.

Table 4. Summary of the notations used in the model.

Notation Definition

ei A user’s intent

qj A query submitted by the user

πi The prior probability that the user queries for ei
r (ei , eℓ) The reward when the user looks for ei and the

DBMS returns eℓ
U The user strategy

Ui j The probability that user submits qj for intent
ei

D The DBMS strategy

D jℓ The probability that DBMS intent eℓ for query
qj

(U ,D) A strategy profile

ur (U ,D) The expected payoff of the strategy profile

(U ,D) computed using reward metric r based
to Equation 1

algorithms that leverage user feedback, such that the expected payoff improves over the course of

several interactions as we will show in Section 4.

None of the players know the other player’s strategy during the interaction. Given the information

available to each player, it maymodify its strategy at the end of each round (interaction). For example,

the DBMS may reduce the probability of returning certain interpretations that has not received

any positive feedback from the user in the previous rounds of the game. Let the user and DBMS

strategy at round t ∈ N of the game be U (t) and D(t), respectively. In round t ∈ N of the game,

the user and DBMS have access to the information about their past interactions. The user has

access to her sequence of intents, queries, and results, the DBMS knows the sequence of queries

and results, and both players have access to the sequence of payoffs (not expected payoffs) up to

round t − 1. It depends on the degree of rationality and abilities of the user and the DBMS how to

leverage these pieces of information to improve the expected payoff of the game. For example, it

may not be reasonable to assume that the user adopts a mechanism that requires instant access to

the detailed information about her past interactions as it is not clear whether users can memorize

this information for a long-term interaction.

Definition 2.1. Let (eu (t − 1)), (q(t − 1)), (ed (t − 1)), (r (t − 1))) be the sequences of intents, queries,

interpretations, and payoffs up time t , respectively. The data interaction game is the tuple

(U (t),D(t),π , (eu (t − 1)), (q(t − 1)), (ed (t − 1)), (r (t − 1))) (2)

Table 4 contains the notation and concept definitions introduced in this section for future

reference.

3 USER LEARNING MECHANISM
Several models have been proposed to model agent and human learning in strategic games [30, 70,

71]. These models differ mainly on the assumptions they make on the level of rationality of the

agent. For example, in belief learning, the agent first predicts the next action of the other agents

using a predictive model over their previous actions. It then acts based on the predicted set of

actions. As another example,roughly speaking, in no-regret learning the agent uses the full history

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

A Game-theoretic Approach to Data Interaction 1:9

of the game to compute the action that if it had been performed in the past, it would have delivered

the best payoff. The agent will then choose this action in the next round of the game.

Among these methods, reinforcement learning assumes a more reasonable degree of rationality

from normal users as generally speaking the agent chooses its action based on its accumulated

success in the game [70, 71]. Also, it is well established that humans show reinforcement behavior

in learning [51, 59]. Many lab studies with human subjects conclude that one can model human

learning using reinforcement learning models [51, 59]. The exact reinforcement learning method

used by a person, however, may vary based on her capabilities and the task at hand. More specifically,

these methods differ mainly based on how the actual reward is used to compute the accumulated

past success, the expectation of the agent from the payoff of a successful action, the portion of

the history in the game the agent uses to compute the accumulated reward, and whether the

agent shows some forgetting behavior [70]. An empirical evaluation of all proposed methods to

find which ones model user learning in formulating queries takes more space than a single paper.

Thus, we have selected six well-known reinforcement learning algorithms that have been used

to model human learning in games and each represents a design decision in the aforementioned

aspects [9, 56]. We have performed an empirical study of a real-world interaction log to find the

reinforcement learning method(s) that best explain the mechanism by which users adapt their

strategies during interaction with a DBMS.

3.1 Reinforcement Learning Methods
To provide a comprehensive comparison, we evaluate six reinforcement learning methods used

to model human learning in experimental game theory and/or Human Computer Interaction

(HCI) [9, 56].Win-Keep/Lose-Randomize keeps a query with non-zero reward in past interactions

for an intent. If such a query does not exist, it picks a query randomly. Latest-Reward reinforces the
probability of using a query to express an intent based on the most recent reward of the query to

convey the intent. Bush and Mosteller’s and Cross’s models increases (decreases) the probability of

using a query based its past successes (failures) of expressing an intent. A query is successful if it

delivers a reward more than a given threshold, e.g., zero. Roth and Erev’s model uses the aggregated

reward from past interactions to compute the probability by which a query is used. Roth and Erev’s
modifiedmodel is similar to Roth and Erev’s model, with an additional parameter that determines to

what extent the user forgets the reward received for a query in past interactions. For the following

definitions, reward is measured based on the user feedback and using standard effectiveness metrics

[47]. The details of algorithms are as follows.

3.1.1 Win-Keep/Lose-Randomize. This method uses only the most recent interaction for an intent

to determine the queries used to express the intent in the future [6]. Thus, it uses a very small

portion of the interaction history to choose the next action. Assume that the user conveys an

intent e by a query q. If the reward of using q is above a specified threshold τ , the user will use q to

express e in the future. Otherwise, the user randomly picks another query uniformly at random to

express e . The threshold τ is the least amount of the received reward for an action which the agent

expects to have in order to consider the action successful.

3.1.2 Bush and Mosteller’s Model: Bush and Mosteller’s model assumes that if the agent considers

an action successful, the agent will reinforce that action by a fixed value. This reinforcement value

is independent of the amount of received reward for the action [8]. If a user receives reward r for
using q(t) at time t to express intent ei , the model updates the probabilities of using queries in the

user strategy as follows.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 B. McCamish et al.

Ui j (t + 1) =

{
Ui j (t) + α

BM · (1 −Ui j (t)) qj = q(t) ∧ r ≥ 0

Ui j (t) − β
BM ·Ui j (t) qj = q(t) ∧ r < 0

(3)

Ui j (t + 1) =

{
Ui j (t) − α

BM ·Ui j (t) qj , q(t) ∧ r ≥ 0

Ui j (t) + β
BM · (1 −Ui j (t) qj , q(t) ∧ r < 0

(4)

αBM ∈ [0, 1] and βBM ∈ [0, 1] are parameters of the model. Since effectiveness metrics in

interaction are always greater than zero, βBM is never used in our experiments. Using only the

formulas containing αBM
, the probability of using a strategy increases when the correct result is

returned to the user. However, when an incorrect result is returned, the probability of employing

that strategy is explicitly decreased. This increase and decrease of probability is directly proportional

to the strategies’ current probability and the parameter αBM
.

3.1.3 Cross’s Model: Cross’s model modifies the user’s strategy similar to Bush and Mosteller’s

model [18], but uses the amount of the received reward to update the user strategy. The computed

probability of using a query for an intent is a linear function of its past reward for the intent. Given

a user receives reward r for using q(t) at time t to express intent ei , we have:

Ui j (t + 1) =

{
Ui j (t) + R(r) · (1 −Ui j (t)) qj = q(t)

Ui j (t) − R(r) ·Ui j (t) qj , q(t)
(5)

R(r) = αC · r + βC (6)

Parameters αC ∈ [0, 1] and βC ∈ [0, 1] are used to compute the adjusted reward R(r) based on

the value of actual reward r .

3.1.4 Roth and Erev’s Model: Roth and Erev’s model computes the probabilities of using a query

to express an intent based on the total accumulated reward of the query to express that intent over

all previous interactions [56]. Hence, it uses the full history of the game and the value of reward

to pick the future actions. It reinforces the probabilities directly from the reward value r that is
received when the user uses query q(t). Si j (t) in matrix S(t) maintains the accumulated reward of

using query qj to express intent ei over the course of interaction up to round (time) t .

Si j (t + 1) =

{
Si j (t) + r qj = q(t)

Si j (t) qj , q(t)
(7)

Ui j (t + 1) =
Si j (t + 1)

n∑
j′
Si j′(t + 1)

(8)

Each query not used in a successful interaction will be implicitly penalized as when the probability

of a query increases, all others will decrease to keepU row-stochastic.

3.1.5 Roth and Erev’s Modified Model: Roth and Erev’s modified model is similar to the original

Roth and Erev’s model, but it has an additional parameter that determines to what extent the user

takes in to account the outcomes of her past interactions with the system [25]. It is reasonable to

assume that the user may forget the results of her much earlier interactions with the system. This

is accounted for by the forget parameter σ ∈ [0, 1]. Matrix S(t) has the same role it has for the Roth

and Erev’s model.

Si j (t + 1) = (1 − σ) · Si j (t) + E(j,R(r)) (9)

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

A Game-theoretic Approach to Data Interaction 1:11

E(j,R(r)) =

{
R(r) · (1 − ϵ) qj = q(t)

R(r) · (ϵ) qj , q(t)
(10)

R(r) = r − rmin (11)

Ui j (t + 1) =
Si j (t + 1)

n∑
j′
Si j′(t + 1)

(12)

In the aforementioned formulas, ϵ ∈ [0, 1] is a parameter that weights the reward that the

user receives, n is the maximum number of possible queries for a given intent ei , and rmin is the

minimum expected reward that the user wants to receive. The intuition behind this parameter is

that the user often assumes some minimum amount of reward is guaranteed when she queries the

database. The model uses this minimum amount to discount the received reward. We set rmin to 0

in our analysis, representing that there is no expected reward in an interaction.

3.1.6 Latest-Reward: The Latest-Reward method extends win-keep/lose-randomize by using the

rewards of the performed actions in computing the probabilities of using them in future. That is,

it reinforces a query for an intent based on the latest reward the user has observed from using

the query when querying for the intent. All other queries have an equal probability to be chosen

for a given intent. Let a user receive reward r ∈ [0, 1] by entering query qj to express intent ei .
The Latest-Reward method sets the probability of using qj to convey ei in the user strategy, Ui j ,

to r and distribute the remaining probability mass 1 − r evenly between other entries related to

intent ei , inUik , where k , j.

3.2 Empirical Analysis
3.2.1 Interaction Logs. We use an anonymized Yahoo! interaction log for our empirical study,

which consists of queries submitted to a Yahoo! search engine in July 2010 [67]. Each record in the

log consists of a time stamp, user cookie id, submitted query, the top 10 results displayed to the

user, and the positions of the user clicks on the returned answers. Generally speaking, typical users

of Yahoo! are normal users who may not know advanced concepts, such as formal query language

and schema, and use keyword queries to find their desired information. Yahoo! may generally

use a combination of structured and unstructured datasets to satisfy users’ intents. Nevertheless,

as normal users are not aware of the existence of schema and mainly rely on the content of the

returned answers to (re)formulate their queries, we expect that the users’ learning mechanisms over

this dataset closely resemble their learning mechanisms over structured data. We have used three

different contiguous subsamples of this log whose information is shown in Table 5. The duration

of each subsample is the time between the time-stamp of the first and last interaction records.

Because we would like to specifically look at the users that exhibit some learning throughout

their interaction, we have collected only the interactions in which a user submits at least two

different queries to express the same intent. The records of the 8H-interaction sample appear at

the beginning of the the 43H-interaction sample, which themselves appear at the beginning of the

101H-interaction sample.

3.2.2 Intent & Reward. Accompanying the interaction log is a set of relevance judgment scores for
each query and result pair. Each relevance judgment score is a value between 0 and 4 and shows

the degree of relevance of the result to the query, with 0 meaning not relevant at all and 4 meaning

the most relevant result. We define the intent behind each query as the set of results with non-zero

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 B. McCamish et al.

relevance scores. We use the standard ranking quality metric NDCG for the returned results of a

query as the reward in each interaction as it models different levels of relevance [47]. The value of

NDCG is between 0 and 1 and it is 1 for the most effective list.

Table 5. Subsamples of Yahoo! interaction log

Duration #Interactions #Users #Queries #Intents

~8H 622 272 111 62

~43H 12323 4056 341 151

~101H 195468 79516 13976 4829

3.2.3 Parameter Estimation. Some models, e.g., Cross’s model, have some parameters that need

to be trained. We have used a set of 5,000 records that appear in the interaction log immediately

before the first subsample of Table 5 and found the optimal values for those parameters using grid

search and the sum of squared errors.

3.2.4 Training & Testing. We train and test a single user strategy over each subsample and model,

which represents the strategy of the user population in each subsample. The user strategy in each

model is initialized with a uniform distribution, so that all queries are equally likely to be used for

an intent. After estimating parameters, we train the user strategy using each model over 90% of the

total number of records in each selected subsample in the order by which the records appear in the

interaction log. We use the value of NDCG as reward for the models that use rewards to update the

user strategy after each interaction. We then test the accuracy of the prediction of using a query to

express an intent for each model over the remaining 10% of each subsample using the user strategy

computed at the end of the training phase. Each intent is conveyed using only a single query in the

testing portions of our subsamples. Hence, no learning is done in the testing phase and we do not

update the user strategies. We report the mean squared errors over all intents in the testing phase

for each subsample and model in Table 6. A lower mean squared error implies that the model more

accurately represents the users’ learning method. We have excluded the Latest Reward results from

the figure as they are an order of magnitude worse than the others.

Table 6. Accuracies of learning over the subsamples of Table 5

Methods

Duration

101H 43H 8H

Bush and Mosteller’s 0.0672 0.1880 0.2434

Cross’s 0.0686 0.1908 0.2472

Roth and Erev’s 0.0666 0.1827 0.2522

Roth and Erev’s Modified 0.0666 0.1827 0.2522

Win-Keep/Lose-Randomize 0.0713 0.1876 0.2364

3.2.5 Results. Win-Keep/Lose-Randomize performs surprisingly more accurate than other meth-

ods for the 8H-interaction subsample. It indicates that in short-term and/or beginning of their

interactions, users may not have enough interactions to leverage a more complex learning scheme

and use a rather simple mechanism to update their strategies. Both Roth and Erev’s methods use

the accumulated reward values to adjust the user strategy gradually. Hence, they cannot precisely

model user learning over a rather short interaction and are less accurate than relatively more

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

A Game-theoretic Approach to Data Interaction 1:13

aggressive learning models such as Bush and Mosteller’s and Cross’s over this subsample. Both

Roth and Erevs deliver the same result and outperform other methods in the 43-H and 101-H

subsamples. Win-Keep/Lose-Randomize is the least accurate method over these subsamples. Since

larger subsamples provide more training data, the predication accuracy of all models improves

as the interaction subsamples becomes larger. The learned value for the forget parameter in the

Roth and Erev’s modified model is very small and close to zero in our experiments, therefore, it

generally acts like the Roth and Erev’s model.

These results indicate that when we observe users as a collective group, they tend to exhibit

reinforcement learning behavior and remember their past interactions. Presumably there is a way

for users to communicate to some degree how they have learned individually to the entire group.

Commonly this is done through search suggestions. A keyword search engine, such as Yahoo!, will

suggest possible searches for the user based on its previous interactions with other users searching

for similar results. Thus, using features such as this the users are able to learn collectively using

some reinforcement learning model. The following subsection analyzes how the user learns at the

individual level.

Long-term communications between users and DBMS may include multiple sessions. Since

Yahoo! query workload contains the time stamps and user ids of each interaction, we have been

able to extract the starting and ending times of each session. Our results indicate that as long as

the user and DBMS communicate over sufficiently many of interactions, e.g., about 10k for Yahoo!

query workload, the users follow Roth and Erev’s model of learning. Given that the communication

of the user and DBMS involve sufficiently many interactions, we have not observed any difference

in the mechanism by which users learn based on the numbers of sessions in the user and DBMS

communication.

3.3 Analyzing Individual Users
Data management and information retrieval systems usually consider a population of users as a

single user when building a model for users’ behavior. We have followed the same approach in

this section so far and our analyses indicate that a population of users learn during their medium

and long term interactions with the data system in a way that accurately measured by the Roth

and Erev’s model. However, it is not completely clear how a population of users will learn from

its experience as distinct users do not normally share their experiences of trying and exploring

possible queries for an intent. One way for the users to share their experiences could be via the

query suggestion or auto-completion mechanisms provided in the Yahoo! search interface. As

Yahoo! learns more about the right query that satisfy users who seeks a certain intent, it will

suggest this query to other users who look for the same or similar intents. Thus, users may benefit

from the exploration done by other users in their past interactions and submit an accurate query.

The more users successfully use the suggested queries, the more these queries are reinforces in

the query suggestion tool, which in turn causes more users to submit them. Thus, individual users

share and reinforce the result of their past experiences indirectly.

Another hypothesis to explain the learning mechanism of a group of users is that most individual

users actually learn according to the Roth and Erev’s learning algorithm. To test this hypothesis,

we have empirically evaluated the learning mechanism of individual users study. We have taken

users that entered at least 200 queries while entering at least two queries for a single intent over

the entire query log. The users need to use at least two queries for an intent to exhibit some kind of

learning behavior. Each user’s log includes and entire month of interactions. These logs were then

used to train and test our models using the same methods used to evaluate the learning behavior of

a population. We train over 90% and test on 10% of the query log of each user.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 B. McCamish et al.

We compare Roth and Erev’s, Cross’s, Bush and Mosteller’s, Win-Keep/Lose-Randomize, and

Reward Based models. We notice that Roth and Erev is the strategy that has the least squared error

for the majority of the users as seen in Table 7. This indicates that the users, on an individual level,

are best modeled by Roth and Erev over a relatively long term period of one month. These results

align with our previous results indicating that users as a group exhibit intelligent behavior and

consider previous rewards over a long period of time.

Table 7. How many individual user’s strategies are best modeled

Users Roth and Erev’s # Users Cross’s #Users Bush and Mosteller’s

31 2 8

#Users Win-Keep #Users Reward Based

0 0

We compare the average Mean Squared Error for of each of the scores across all users in Table 8.

We notice that Roth and Erev has the lowest average, which is to be expected since it represented

the majority of the users. However, Cross’s model has a lower average than Bush and Mosteller’s

model even though Bush and Mosteller’s model best fits more users then Cross’s. This happens

when Cross’s actually has a lower score compared to Bush and Mosteller’s model alone, but is

still higher when compared to Roth and Erev’s model. We also note that Reward Based and Win-

Keep/Lose-Randomize perform quite poorly and have large averages compared to the other models.

This is because they are quite inaccurate for representing a user’s strategy over a long period of

time, of which all these strategies are over an entire month.

Table 8. Average Mean Squared Error Across the Users

Roth and Erev Cross Bush and Mosteller Win-Keep Reward Based

0.034496 0.03531 0.036374 0.043065 0.16031

3.4 Conclusion
Our analysis indicates that users show a substantially intelligent behavior when adopting and

modifying their strategies over relatively medium and long-term interactions. They leverage their

past interactions and their outcomes, i.e., have an effective long-term memory. While this behavior

is captured to some degree by all of the reinforcement learning models, it is most accurately modeled

using Roth and Erev’s model. Roth and Erev’s model is also more intuitive and easier to analyze

than other models. It has also been widely used to model user learning when in games [14, 17, 19,

33, 46, 58, 69]. Hence, in the rest of the paper, we set the user learning method to this model.

4 LEARNING ALGORITHM FOR DBMS
Current systems generally assume that a user does not learn and/or modify her method of expressing

intents throughout her interaction with the DBMS. However, it is known that the learning methods

that are useful in static settings do not deliver desired outcomes in the dynamic ones [4]. Moreover,

it has been shown that if the players do not use the right learning algorithms in games with identical

interests, the game and its payoff may not converge to any desired states [57]. Thus, choosing

the correct learning mechanism for the DBMS is crucial to improve the payoff and converge to a

desired state. The following algorithmic questions are of interest:

i. How can a DBMS learn or adapt to a user’s strategy?

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

A Game-theoretic Approach to Data Interaction 1:15

ii. Mathematically, is a given learning algorithm effective?

iii. What would be the asymptotic behavior of a given learning algorithm?

Here, we address the first and the second questions above. Dealing with the third question is far

beyond the scope and space of this paper. A summary of the notations introduced in Section 2 and

used in this section can be found in Table 4. In this section, we provide a learning algorithm for the

DBMS that can learn when the user has static or dynamic behavior. We also prove that the payoff

over time converges stochastically speaking when the DBMS uses our algorithm.

4.1 DBMS Reinforcement Learning
We adopt Roth and Erev’s learning method for adaptation of the DBMS strategy, with a slight

modification. The original Roth and Erev method considers only a single action space. In our work,

this would translate to having only a single query. Instead we extend this such that each query

has its own action space or set of possible intents. The adaptation happens over discrete time

t = 0, 1, 2, 3, . . . instances where t denotes the t th interaction of the user and the DBMS. We refer

to t simply as the iteration of the learning rule. For simplicity of notation, we refer to intent ei and
result sℓ as intent i and ℓ, respectively, in the rest of the paper. Hence, we may rewrite the expected

payoff for both user and DBMS as:

ur (U ,D) =
m∑
i=1

πi

n∑
j=1

Ui j

o∑
ℓ=1

D jℓriℓ,

where r : [m] × [o] → R+ is the effectiveness measure between the intent i and the result, i.e.,

decoded intent ℓ. With this, the reinforcement learning mechanism for the DBMS adaptation is as

follows.

a. Let R(0) > 0 be an n × o initial reward matrix whose entries are strictly positive.

b. Let D(0) be the initial DBMS strategy with D jℓ(0) =
Rjℓ (0)∑o
ℓ=1

Rjℓ (0)
> 0 for all j ∈ [n] and ℓ ∈ [o].

c. For iterations t = 1, 2, . . ., do
i. If the user’s query at time t is q(t), DBMS returns a result E(t) ∈ E with probability:

P(E(t) = i ′ | q(t)) = Dq(t)i′(t).

ii. User gives a reward rii′ given that i is the intent of the user at time t . Note that the reward
depends both on the intent i at time t and the result i ′. Then, set

R jℓ(t + 1) =

{
R jℓ(t) + riℓ if j = q(t) and ℓ = i ′

R jℓ(t) otherwise

. (13)

iii. Update the DBMS strategy by

D ji (t + 1) =
R ji (t + 1)∑o
ℓ=1

R jℓ(t + 1)
, (14)

for all j ∈ [n] and i ∈ [o].

In the above algorithm R(t) is simply the reward matrix at time t . One may use an available offline

scoring function, e.g. [11, 32], to compute the initial reward R(0)which possibly leads to an intuitive

and relatively effective initial point for the learning process [65].

4.2 Analysis of the Learning Rule
We show in Section 3 that users modify their strategies in data interactions. Nevertheless, ideally,

one would like to use a learning mechanism for the DBMS that accurately discovers the intents

behind users’ queries whether or not the users modify their strategies, as it is not certain that all

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 B. McCamish et al.

users will always modify their strategies. Also, in some relevant applications, the user’s learning is

happening in a much slower time-scale compared to the learning of the DBMS. So, one can assume

that the user’s strategy is fixed compared to the time-scale of the DBMS adaptation. Therefore, first,

we consider the case that the user is not adapting her strategy, i.e., she has a fixed strategy during

the interaction. Then, we consider the case that the user’s strategy is adapting to the DBMS’s

strategy but perhaps on a slower time-scale in Section 4.3. Introductory material for some of the

concepts utilized in the following subsections may be found at [40, 66]. We provide an analysis

of the reinforcement mechanism provided above and will show that, statistically speaking, the

adaptation rule leads to improvement of the interaction effectiveness.

4.2.1 Basic Interaction Mode. We first investigate the simple case where the DBMS returns only

one result in each interaction. In other words, we assume that the cardinality of the list k is 1. For

the analysis of the learning mechanism in Section 4.2 and for simplification, we denote

u(t) := ur (U ,D(t)), (15)

for an effectiveness measure r as ur is defined in (1). In this section, we assume that the user

provides a binary feedback of relevance and non-relevance on the returned result to simplify our

model. We eliminate this assumption in Section 4.2.2.

We recall that a random process {X (t)} is a submartingale [23] if it is absolutely integrable (i.e.

E(|X (t)|) < ∞ for all t) and

E(X (t + 1) | Ft) ≥ X (t),

where Ft is the history or σ -algebra generated by X1, . . . ,Xt
1
. In other words, a process {X (t)}

is a sub-martingale if the expected value of X (t + 1) given the history X (t),X (t − 1), . . . ,X (0), is
not strictly less than the value of X (t). Note that submartingales are nothing but the stochastic

counterparts of monotonically increasing sequences. As in the case of bounded (from above)

monotonically increasing sequences, submartingales pose the same property, i.e. any submartingale

{X (t)}with E(|X (t)|) < B for someB ∈ R+ and all t ≥ 0 is convergent almost surely, i.e. limt→∞X (t)
exists almost surely.

The main result in this section is that the sequence of the utilities {u(t)} (which is indeed a

stochastic process as {D(t)} is a stochastic process) defined by (15) is a submartignale when the

reinforcement learning rule in Section 4.1 is utilized. As a result the proposed reinforcement learning

rule stochastically improves the efficiency of communication between the DBMS and the user. To

show this, we discuss an intermediate result. For simplicity of notation, we fix the time t and we use
superscript + to denote variables at time (t + 1) and drop the dependencies at time t for variables
depending on time t .

Lemma 4.1. For any ℓ ∈ [m] and j ∈ [n] (and any time t ≥ 0), we have

E(D+jℓ | Ft) − D jℓ =
D jℓ∑m

ℓ′=1
R jℓ′ + 1

(
πℓUℓj − u

j (U ,D)
)
,

where

u j (U ,D) =
m∑
ℓ′=1

πℓ′Uℓ′jD jℓ′,

is the average efficiency of signal j on conveying messages.

1
In this case, simply we have E(X (t + 1) | Ft) = E(X (t + 1) | X (t), . . . , X (1)).

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

A Game-theoretic Approach to Data Interaction 1:17

Proof. Fix ℓ ∈ [m] and j ∈ [n]. Let A be the event that at the t ’th iteration, we reinforce a pair

(j, ℓ′) for some ℓ′ ∈ [m]. Then on the complement Ac
of A, D+jℓ(ω) = D jℓ(ω). Let A1 ⊆ A be the

subset of A such that the pair (j, ℓ) is reinforced and A2 = A \A1 be the event that some other pair

(j, ℓ′) is reinforced for ℓ′ , ℓ. We note that

D+jℓ =
R jℓ + 1∑m

ℓ′=1
R jℓ′ + 1

1A1
+

R jℓ∑m
ℓ′=1

R jℓ′ + 1

1A2
+ D jℓ1Ac .

Therefore, we have

E(D+jℓ | Ft) = πℓUℓjD jℓ
R jℓ + 1∑m

ℓ′=1
R jℓ′ + 1

+
∑
ℓ′,j

πℓ′Uℓ′jD jℓ
R jℓ∑m

ℓ′′=1
R jℓ′′ + 1

+ (1 − p)Q jℓ,

where p = P(A2 | F). Note that Dℓj =
Rjℓ∑m

ℓ′=1
Rjℓ′

and hence,

E(D+jℓ | Ft) − D jℓ =
1∑m

ℓ′=1
R jℓ′ + 1

(
πℓUℓjD jℓ

∑
ℓ′,ℓ

Q jℓ′ −
∑
ℓ′,ℓ

πℓ′Uℓ′jD jℓ′D jℓ

)
.

Replacing

∑
ℓ′,ℓ D jℓ′ = 1 − D jℓ and adding/subtracting πℓUℓjD jℓD jℓ in the term inside the paren-

thesis in the above equality, we get

E(D+jℓ | F) − D jℓ =
D jℓ∑m

ℓ′=1
R jℓ′ + 1

(
πℓPℓj − u

j (U ,D)
)
.

□

Using Lemma 4.1, we show that the process {u(t)} is a sub-martingale.

Theorem 4.2. Let {u(t)} be the sequence given by (15). Then, {u(t)} is a submartingale sequence.

Proof. Let u+ := u(t + 1), u := u(t), u j := u j (U (t),D(t)) and also define R̃ j
:=

∑m
ℓ′=1

R jℓ′ + 1.

Then, using the linearity of conditional expectation and Lemma 4.4, we have:

E(u+ | Ft) − u =
m∑
i=1

n∑
j=1

πiUi j

(
E(D+ji | Ft) − D ji

)
=

m∑
i=1

n∑
j=1

πi
Ui jD ji∑m

ℓ′=1
R jℓ′ + 1

(
πiUi j − u

j)
=

n∑
j=1

1

R̃ j

(
m∑
i=1

D ji (πiUi j)
2 − (u j)2

)
. (16)

Note thatD is a row-stochastic matrix and hence,

∑m
i=1

D ji = 1. Therefore, by the Jensen’s inequality

[23], we have:

m∑
i=1

D ji (πiUi j)
2 ≥

m∑
i=1

(D jiπiUi j)
2 = (u j)2.

Replacing this in the right-hand-side of (16), we conclude that E(u+ | Ft) − u ≥ 0 and hence, the

sequence {u(t)} is a submartingale. □

The above result implies that the effectiveness of the DBMS learning algorithm, stochastically

speaking, increases as time progresses when the learning rule in Section 4 is utilized. This is indeed

a desirable property for any learning scheme for DBMS adaptation. An immediate consequence of

Theorem 4.2 is that the efficiency sequence {u(t)} is convergent almost surely.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 B. McCamish et al.

Corollary 4.3. The sequence {u(t)} given by (15) converges almost surely.

Proof. Note that 0 ≤ u(t) ≤ mn (indeed, a simple application of Hölder’s inequality give the

bound u(t) ≤ 1) and hence, {u(t)} is a bounded submartingale. Therefore, by the Martingale

Convergence Theorem [23], it follows that limt→∞ u(t) exists almost surely. □

4.2.2 Arbitrary Effectiveness Metric. Generally, relevance of an answer to an input query is a matter

of degree and different relevant answers may satisfy the intent behind the query to different levels.

We extend the results of Section 4.2.1 for the case where the relevance of an answer to the input

query is not binary, i.e., relevant and non-relevant. More importantly, this holds for an arbitrary
reward/effectiveness measure r . This is rather a very strong result as the algorithm is robust to the

choice of the reward mechanism. We first show an intermediate result.

Lemma 4.4. For any ℓ ∈ [m] and j ∈ [n], we have

E(D+jℓ | Ft) − D jℓ = D jℓ ·

m∑
i=1

πiUi j

(
riℓ

R̄ j + ril
−

o∑
ℓ′=1

D jℓ′
riℓ′

R̄ j + riℓ′

)
,

where R̄ j =
∑o

ℓ′=1
R jℓ′ .

Proof. Fix ℓ ∈ [m] and j ∈ [n]. Let A be the event that at the t ’th iteration, we reinforce a pair

(j, ℓ′) for some ℓ′ ∈ [m]. Then on the complement Ac
of A, D+jℓ(ω) = D jℓ(ω). Let Ai, ℓ′ ⊆ A be

the subset of A such that the intent of the user is i and the pair (j, ℓ′) is reinforced. Note that the
collection of sets {Ai, ℓ′} for i, ℓ

′ ∈ [m], are pairwise mutually exclusive and their union constitute

the set A.
We note that

D+jℓ =
m∑
i=1

©­­«
R jℓ + ril

R̄ j + riℓ
1Ai, ℓ +

o∑
ℓ′=1

ℓ′,ℓ

R jℓ

R̄ j + riℓ′
1Ai, ℓ′

ª®®¬
+ D jℓ1Ac .

Therefore, we have

E(D+jℓ | Ft) =
m∑
i=1

πiUi jD jℓ
R jℓ + riℓ

R̄ j + riℓ
+

m∑
i=1

πiUi j

∑
ℓ,ℓ′

D jℓ′
R jℓ

R̄ j + riℓ′
+ (1 − p)D jℓ,

where p = P(A | F). Note that D jℓ =
Rji
R̄j

and hence,

E(D+jℓ | Ft) − D jℓ =

m∑
i=1

πiUi jD jℓ
riℓR̄ j − R jℓ

R̄ j (R̄ j + riℓ)
−

m∑
i=1

πiUi j

∑
ℓ,ℓ′

D jℓ′
R jℓriℓ′

R̄ j (R̄ j + riℓ′)
.

Replacing

Rjl
R̄j

with D jℓ and rearranging the terms in the above expression, we get the result. □

To show the main result, we use the following result in martingale theory.

Theorem 4.5. [55] A random process {X (t)} converges almost surely if X (t) is bounded, i.e.,
E(|X (t)|) < B for some B ∈ R+ and all t ≥ 0 and

E(X (t + 1)|Ft) ≥ X (t) − β(t) (17)

where β(t) ≥ 0 is a summable sequence almost surely, i.e.,
∑

t β(t) < ∞ with probability 1.

Using Lemma 4.4 and the above result, we show that up to a summable disturbance, the proposed

learning mechanism is stochastically improving.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

A Game-theoretic Approach to Data Interaction 1:19

Theorem 4.6. Let {u(t)} be the sequence given by (15). Then,

E(u(t + 1 | Ft) ≥ E(u(t) | Ft) − β(t),

for some non-negative random process {β(t)} that is summable (i.e.
∑∞

t=0
β(t) < ∞ almost surely).

Hence, {u(t)} converges almost surely.

Proof. Let u+ := u(t + 1), u := u(t),

u j := u j (U (t),D(t)) =
m∑
i=1

o∑
ℓ=1

πiUi jD jℓriℓ(t),

and also define R̄ j :=
∑m

ℓ′=1
R jℓ′ . Note that u

j
is the efficiency of the jth signal/query.

Using the linearity of conditional expectation and Lemma 4.4, we have:

E(u+ | Ft) − u =
m∑
i=1

n∑
j=1

πiUi j

o∑
ℓ=1

riℓ′
(
E(D+jℓ | Ft) − D jℓ

)
(18)

=

m∑
i=1

n∑
j=1

o∑
ℓ=1

πiUi jD jℓriℓ

(
m∑
i′=1

π ′iUi′j

(
ri′ℓ

R̄ j + ri′ℓ
−

o∑
ℓ′=1

D jℓ′
ri′ℓ′

R̄ j + ri′ℓ′

))
. (19)

Now, let yjℓ =
∑m

i=1
πiUi jriℓ and zjℓ =

∑m
i=1

πiUi j
riℓ

R̄j+riℓ
. Then, we get from the above expression

that

E(u+ | Ft) − u =
n∑
j=1

(
o∑

ℓ=1

D jℓyiℓzjℓ −
o∑

ℓ=1

D jℓyjℓ

o∑
ℓ′=1

D jℓ′zjℓ′

)
. (20)

Now, we express the above expression as

E(u+ | Ft) − u = Vt + Ṽt (21)

where

Vt =
n∑
j=1

1

R̄ j

©­«
o∑

ℓ=1

D jℓy
2

jℓ −

(
o∑
l=1

D jℓyjℓ

)
2ª®¬ ,

and

Ṽt =
n∑
j=1

(
o∑

ℓ=1

D jℓyjℓ

o∑
ℓ′=1

D jℓ′z̃jℓ′ −
m∑
ℓ=1

D jℓyjℓz̃jℓ

)
. (22)

Further, z̃jℓ =
∑

i=1
πiUi j

r 2

iℓ
R̄j (R̄j+riℓ)

.

We claim that Vt ≥ 0 for each t and {Ṽt } is a summable sequence almost surely. Then, from (21)

and Theorem 4.5, we get that {ut } converges almost surely and it completes the proof. Next, we

validate our claims.

We first show that Vt ≥ 0,∀t . Note that D is a row-stochastic matrix and hence,

∑o
ℓ=1

D jℓ = 1.

Therefore, by the Jensen’s inequality [23], we have:

o∑
ℓ=1

D jℓ(yjℓ)
2 ≥

o∑
ℓ=1

(D jℓyjℓ)
2.

Hence, V ≥ 0.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 B. McCamish et al.

We next claim that {Ṽt } is a summable sequence with probability one. It can be observed from

(22) that

Vt ≤
o∑
j=1

o2n

R̄2

j
. (23)

since yjℓ ≤ 1, z̃jℓ ≤ R̄−2

j for each j ∈ [n], ℓ ∈ [m] and D is a row-stochastic matrix. To prove the

claim, it suffices to show that for each j ∈ [m], the sequence { 1

R2

j (t)
} is summable. Note that for each

j ∈ [m] and for each t , we have R̄ j (t + 1) = R̄ j (t) + ϵt where ϵt ≥ ϵ > 0 with probability pt ≥ p > 0.

Therefore, using the Borel-Cantelli Lemma for adapted processes [23] we have { 1

R2

j (t)
} is summable

which concludes the proof. □

The above result implies that the effectiveness of the DBMS, stochastically speaking, increases

as time progresses when the learning rule in Section 4 is utilized. Not only that, but this property

is true for cases where the feedback is not simply a 0/1 value, e.g., the selected answer may be

partially relevant to the desired intent. This is indeed a desirable property for any DBMS learning

scheme.

4.2.3 k-List Learning. We now investigate the variation where the DBMS returns k candidate

answers to the user for each query. As in the previous case, the DBMS strategy D(t) is going to

evolve as a function of time/query t . As in the previous cases, at time t , user will have an intent ei
with probability πi independent of the prior intents of the user. Then, the user will use a query
qj with probability Ui j to convey her intent. The database shows a list L(t) of k tuples i1, i2, . . . , ik
with probability

D ji1 (t)D ji2 (t) · · ·D jik .

This corresponds to showingk independent samples of the tupleswith the distribution (D j1(t), . . . ,D jm(t)).
We refer to such a list as a k-list generated by D(t). Once the k-list is generated, if the original intent
belongs to the list, i.e. i ∈ L(t), the database reinforces (j, i)th entry of D(t) by letting

D ji (t) =
R ji (t) + 1∑
i′ R ji′(t) + 1

,

where R(t) is the reward matrix up-to time t . We refer to this adaptation rule as k-list learning rule.
In this section, we show the effectiveness of this reinforcement learning rule for an arbitrary k ≥ 1.

To investigate the efficiency of this algorithm, let us define the new efficiency metric:

v(U ,D) =
m∑
i=1

n∑
j=1

πiUi j (1 − (1 − D ji)
k),

whereU ,D are the strategies of the user and the database, respectively. For the remainder of this

section, we simplify the notation of Z to be a single variable of Z . Before continuing our discussion,
let us elaborate more on this efficiency metric. Note that (1−D ji)

k
is the probability that the intent

i is not present in a k-list L generated by U when query j is received by the database. Therefore, Z
is the probability if i ∈ L given query j , and hence, πiUi jZ is the probability that a user with intent i ,
uses query j , and the database, successfully decode the message and shows i in the k-list generated
by D. Therefore, v(U ,D) is nothing but the efficiency of the pairU ,D when utilizing k-lists.
Similar to u(U ,D), let

vj (U ,D) =
m∑
i=1

πiUi jZ ,

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

A Game-theoretic Approach to Data Interaction 1:21

to be the efficiency of query j for communication. Also, to reduce notational complexity, let

R j (t) :=
∑m

i=1
R ji (t).

Using these definitions, we have the following result.

Lemma 4.7. Let {D(t)} be a sequence generated using the k-list learning rule. Then, for any t ≥ 1,
we have:

E(D+ji | Ft) − D ji =
1

R j + 1

(πiUi jZ

−vj (U ,D)D ji)

Proof. Let us have a close look on the update of D ji (t). Consider the event E ∈ Ft that some

entry in the jth row of D(t) get reinforced and let A ⊆ E be the event that jith entry get reinforced

and let p = U (E | Ft). Note that,

p =
m∑
i=1

πiUi jZ = vj (U ,D).

Note that on Ec , we have D ji (t + 1) = D ji (t). On A, D ji (t + 1) =
Rji (t)+1

Rj (t)+1
and on B = E \ A, we

have D ji (t + 1) =
Rji (t)
Rj (t)+1

. Also,

U (A | Ft) = πiUi jZ ,

and

U (B | Ft) =
∑
i′,i

πi′Ui′j (1 − (1 − D ji′)
k).

Using these, we have:

E(D+ji | Ft) − D ji f =
∑
i′,i

πi′Ui′j (1 − (1 − D ji′)
k)

R ji

R j + 1

+ πiUi jZ
R ji + 1

R j + 1

+ (1 − p)D ji − D ji

=

m∑
i′=1

πi′Ui′j (1 − (1 − D ji′)
k)

R ji

R j + 1

+ πiUi jZ
1

R j + 1

−vj (U ,D)D ji .

Therefore,

E(D+ji | Ft) − D ji = vj (U ,D)(
R ji

R j + 1

− D ji) + πiUi jZ)
1

R j + 1

. (24)

Note that

R ji

R j + 1

− D ji =
R ji

R j + 1

−
R ji

R j
= −

R ji

R j (R j + 1)
= −

D ji

R j + 1

.

Replacing the above equation in (24), we get:

E(D+ji | Ft) − D ji =
1

R j + 1

(
πiUi jZ −vj (U ,D)D ji

)
.

□

Using Lemma 4.7, we can prove the efficiency of the k-list learning rule.

Theorem 4.8. Let {D(t)} be the sequence generated using the k-list learning rule. Then, the sequence
{u(U ,D(t))} is a sub-martingale, i.e. the efficiency of the k-learning rule (stochastically) improves as a
function of time t . In particular,

lim

t→∞
u(U ,D(t))

exists almost surely.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 B. McCamish et al.

Proof. We have:

E(u+ − u | Fk)

=

m∑
i=1

n∑
j=1

πiUi jE(D
+
ji − D ji | Fk)

=

m∑
i=1

n∑
j=1

πiUi j
1

R j + 1

(
πiUi jZ

−vj (U ,D)D ji
)

=

m∑
i=1

n∑
j=1

1

R j + 1

(
(πiUi j)

2Z

−πiUi jD jivj (U ,D)
)

Hence, using the Jensen’s inequality, we get that

E(u+(U ,D) − u | Fk) ≥
n∑
j=1

1

R j + 1

×

m∑
i=1

(πiUi jD jivj (U ,D) − πiUi jD jivj (U ,D)) = 0.

□

This result shows that, stochastically speaking, the efficiency of the k-list learning rule improves

as function of iteration.

4.3 User and DBMS Adaptations
We also consider the case that the user also adapts to the DBMS’s strategy. At the first glance, it

may seem that if the DBMS adapts using a reasonable learning mechanism, the user’s adaptation

can only result in a more effective interaction as both players have identical interests. Nevertheless,

it is known from the research in algorithmic game theory that in certain two-player games with

identical interest in which both players adapt their strategies to improve their payoff, well-known

learning methods do not converge to any (desired) stable state and cycle among several unstable

states [20, 57]. Here, we focus on the identity similarity measure, i.e. we assume thatm = o and the

user gives a boolean feedback:

riℓ =

{
1 if i = ℓ,
0 otherwise

.

In this case, we assume that the user adapts to the DBMS strategy at time steps 0 < t1 < · · · <
tk < · · · and in those time-steps the DBMS is not adapting as there is no reason to assume the

synchronicity between the user and the DBMS. The reinforcement learning mechanism for the

user is as follows:

a. Let S(0) > 0 be anm × n reward matrix whose entries are strictly positive.

b. LetU (0) be the initial user’s strategy with

Ui j (0) =
Si j (0)∑n

j′=1
Si j′(0)

for all i ∈ [m] and j ∈ [n] and letU (tk) = U (tk − 1) = · · · = U (tk−1 + 1) for all k .
c. For all k ≥ 1, do the following:

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

A Game-theoretic Approach to Data Interaction 1:23

i. The user picks a random intent t ∈ [m] with probability πi (independent of the earlier

choices of intent) and subsequently selects a query j ∈ [n] with probability

P(q(tk) = j | i(tk) = i) = Ui j (tk).

ii. The DBMS uses the current strategy D(tk) and interpret the query by the intent i ′(t) = i ′

with probability

P(i ′(tk) = i
′ | q(tk) = j) = D ji′(tk).

iii. User gives a reward 1 if i = i ′ and otherwise, gives no rewards, i.e.

S+i j =

{
Si j (tk) + 1 if j = q(tk) and i(tk) = i

′(tk)
Si j (tk) otherwise

where S+i j = Si j (tk + 1).

iv. Update the user’s strategy by

Ui j (tk + 1) =
Si j (tk + 1)∑n

j′=1
Si j′(tk + 1)

, (25)

for all i ∈ [m] and j ∈ [n].

In the above scheme S(t) is the reward matrix at time t for the user.
Next, we provide an analysis of the reinforcement mechanism provided above and will show

that, statistically speaking, our proposed adaptation rule for DBMS, even when the user adapts,

leads to improvement of the effectiveness of the interaction. With a slight abuse of notation, let

u(t) := ur (U ,D(t)) = ur (U (t),D(t)), (26)

for an effectiveness measure r as ur is defined in (1).

Lemma 4.9. Let t = tk for some k ∈ N. Then, for any i ∈ [m] and j ∈ [n], we have

E(U +i j | Ft) −Ui j =
πiUi j∑n

ℓ=1
Siℓ + 1

(D ji − u
i (t)) (27)

where

ui (t) =
n∑
j=1

Ui j (t)D ji (t).

Proof. Fix i ∈ [m], j ∈ [n] and k ∈ N. Let B be the event that at the tk ’th iteration, user reinforces
a pair (i, ℓ) for some ℓ ∈ [n]. Then, on the complement Bc of B, P+i j (ω) = Pi j (ω). Let B1 ⊆ B be the

subset of B such that the pair (i, j) is reinforced and B2 = B \ B1 be the event that some other pair

(i, ℓ) is reinforced for ℓ , i .
We note that

U +i j =
Si j + 1∑n
ℓ=1

Siℓ + 1

1B1
+

Si j∑n
ℓ=1

Siℓ + 1

1B2
+Ui j1Bc .

Therefore, we have

E(U +i j | Fkt) = πiUi jD ji
Si j + 1∑n
ℓ=1

Siℓ + 1

+
∑
ℓ,j

πiUiℓDℓi
Si j∑n

ℓ′=1
Siℓ′ + 1

+ (1 − p)Ui j ,

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 B. McCamish et al.

where p = U (B | Fkt) =
∑

ℓ πiUi jD ji . Note thatUi j =
Si j∑n
ℓ=1

Siℓ
and hence,

E(U +i j | Ft) −Ui j =

1∑n
ℓ′=1

Siℓ′ + 1

(
πiUi jD ji − πiUi j

∑
ℓ

UiℓDℓi

)
.

which can be rewritten as in (27). □

Using Lemma 4.9, we show that the process {u(t)} is a sub-martingale.

Theorem 4.10. Let t = tk for some k ∈ N. Then, we have

E(u(t + 1) | Ft) − u(t) ≥ 0 (28)

where u(t) is given by (26).

Proof. Fix t = tk for some k ∈ N. Let u+ := u(t + 1), u := u(t), ui := ui (U (t),D(t)) and also

define S̃ i :=
∑m

ℓ′=1
Siℓ′ + 1. Then, using the linearity of conditional expectation and

Lemma 4.4, we have:

E(u+ | Ft) − u =
m∑
i=1

n∑
j=1

πiD ji

(
E(U +i j | Ft) −Ui j

)
=

m∑
i=1

n∑
j=1

πiD ji
πiUi j∑m

ℓ′=1
S jℓ′ + 1

(
D ji − u

i)
=

m∑
i=1

π 2

i

S̃ i

(
n∑
j=1

Ui j (D ji)
2 − (ui)2

)
. (29)

Note thatU is a row-stochastic matrix and hence,

∑m
i=1

Ui j = 1. Therefore, by the Jensen’s inequality

[23], we have:

n∑
j=1

Ui j (D ji)
2 ≥

(
n∑
j=1

D jiUi j

)
2

= (ui)2.

Replacing this in the right-hand-side of (29), we conclude that E(u+ | Ft) − u ≥ 0 and hence, the

sequence {u(t)} is a submartingale. □

Corollary 4.11. The sequence {u(t)} given by (15) converges almost surely.

Proof. Note from Theorem 4.6 and 4.10 that the sequence {u(t)} satisfies all the conditions of
Theorem 4.5. Hence, proven. □

The authors in [33] have also analyzed the effectiveness of a 2-player signaling game in which

both players use Roth and Erev’s model for learning. However, they assume that both players learn

at the same time-scale. Our result in this section holds for the case where users and DBMS learn at

different time-scales, which may arguably be the dominant case in our setting as generally users

may learn in a much slower time-scale compared to the DBMS.

In this section we proposed a reinforcement learning algorithm that is an adaptation of the Roth

and Erev model. We showed that the payoff function of our model converges almost surely when

the DBMS uses our modified Roth and Erev algorithm. This holds when the user learns using a

Roth and Erev model and when the user does not learn. The authors in [33] have also analyzed the

effectiveness of a 2-player signaling game in which both players use Roth and Erev’s model for

learning. However, they assume that both players learn at the same time-scale. Our results in this

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

A Game-theoretic Approach to Data Interaction 1:25

section holds for the case where users and DBMS learn at different time-scales, which may arguably

be the dominant case in our setting as generally users may learn in a much slower time-scale

compared to the DBMS.

5 EQUILIBRIA OF THE GAME
An important question in analyzing a game is whether it has any eventual stable state, i.e., equi-

librium, in which none of the agents have any reason and motivation to update their strategies.

Intuitively, one stable state in our game could be the one in which the user and DBMS establish

a perfect common understanding, e.g., users get perfectly accurate answers for all their queries.

Nevertheless, it is not clear whether such a state is the only equilibrium of the game. In this section,

we formally define the stable states of the game and investigate their degrees of stability and

desirability. An interesting research direction is to connect the dynamic analyses of the learning

rule in the previous section and the static analysis of the game in this section to understand to

which equilibria the game converges if both agents use our proposed learning rule. Due to the

hardness of this problem and the limited space in this submission, we leave this subject as an

interesting future work.

5.1 Fixed User Strategy
In some settings, the strategy of a user may change in a much slower time scale than that of the

DBMS. In these cases, it is reasonable to assume that the user’s strategy is fixed. Hence, the game

will reach a desirable state where the DBMS adapts a strategy that maximizes the expected payoff.

Let a strategy profile be a pair of user and DBMS strategies.

Definition 5.1. Given a strategy profile (U ,D),D is a best response toU w.r.t. effectiveness measure

r if we have ur (U ,D) ≥ ur (U ,D
′) for all the database strategies D ′.

A DBMS strategy D is a strict best response toU if the inequality in Definition 5.1 becomes strict

for all D ′ , D.

Example 5.2. Consider the database instance about universities that is shown in Table 1 and

the intents, queries, and the strategy profiles in Tables 2(a), 2(b), 3(a), and 3(b), respectively. Given

a uniform prior over the intents, the DBMS strategy is a best response to the user strategy w.r.t

precision and p@k in both strategy profiles 3(a) and 3(b).

Definition 5.3. Given a strategy profile (U ,D), an intent ei , and a query qj , the payoff of ei using
qj is

ur (ei ,qj) =
o∑

ℓ=1

D j, ℓr (ei , sℓ).

Definition 5.4. The pool of intents for query qj in user strategy U is the set of intents ei such
thatUi, j > 0.

We denote the pool of intents of qj as PL(qj). Our definition of pool of intent resembles the notion

of pool of state in signaling games [16, 22]. Each result sℓ such that D j, ℓ > 0 may be returned in

response to query qj . We call the set of these results the reply to query qj .

Definition 5.5. A best reply to query qj w.r.t. effectiveness measure r is a reply that maximizes∑
ei ∈PL(qj) πiUi, j ur (ei ,qj).

The following characterizes the best response to a strategy.

Lemma 5.6. Given a strategy profile (U ,D), D is a best response toU w.r.t. effectiveness measure r
if and only if D maps every query to one of its best replies.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 B. McCamish et al.

Proof. If each query is assigned to its best reply in D, no improvement in the expected payoff

is possible, thus D is a best response for U . Let D be a best response for U such that some query

q is not mapped to its best reply in D. Let rmax be a best reply for q. We create a DBMS strategy

D ′ , D such that all queries q′ , q in D ′ have the same reply as they have in D and the reply of q
is rmax . Clearly, D

′
has higher payoff than D forU . Thus, D is not a best response. □

The following corollary directly results from Lemma 5.6.

Corollary 5.7. Given a strategy profile (U ,D), D is a strict best response toU w.r.t. effectiveness
measure r if and only if every query has one and only one best reply and D maps each query to its best
reply.

Given an intent e over database instance I , some effectiveness measures, such as precision, take

their maximum for other results in addition to e(I). For example, given intent e , the precision of

every non-empty result s ⊂ e(I) is equal to the precision of e(I) for e . Hence, there are more than

one best reply for an intent w.r.t. precision. Thus, according to Corollary 5.7, there is not any strict

best response w.r.t. precision.

5.2 Nash Equilibrium
In this section and Section 5.3, we analyze the equilibria of the game where both user and DBMS

may modify their strategies. A Nash equilibrium for a game is a strategy profile where the DBMS

and user will not do better by unilaterally deviating from their strategies.

Definition 5.8. A strategy profile (U ,D) is a Nash equilibrium w.r.t. a satisfaction function r if
ur (U ,D) ≥ ur (U

′,D) for all user strategyU ′ and ur (U ,D) ≥ ur (U ,D
′) for all database strategy D ′.

Example 5.9. Consider again the database about universities that is shown in Table 1 and the

intents, queries, and the strategy profiles in Tables 2(a), 2(b), 3(a), and 3(b), respectively. Both

strategy profiles 3(a) and 3(b) are Nash equilibria w.r.t precision and p@k . User and DBMS cannot

unilaterally change their strategies and receive a better payoff. If one modifies the strategy of the

database in strategy profile 3(b) and replaces the probability of executing and returning e1 and e3

given query q2 to ϵ and 1 − ϵ , 0 ≤ ϵ ≤ 1, the resulting strategy profiles are all Nash equilibria.

Intuitively, the concept of Nash equilibrium captures the fact that users may explore different

ways of articulating and interpreting intents, but they may not be able to look ahead beyond the

payoff of a single interaction when adapting their strategies. Some users may be willing to lose

some payoff in the short-term to gain more payoff in the long run, therefore, an interesting direction

is to define and analyze less myopic equilibria for the game [27].

If the interaction between user and DBMS reaches a Nash equilibrium, the user does not have

a strong incentive to change her strategy. As a result the strategy of the DBMS and the expected

payoff of the game will likely remain unchanged. Hence, in a Nash equilibrium the strategies of

user and DBMS are likely to be stable. Also, the payoff at a Nash equilibrium reflects a potential

eventual payoff for the user and DBMS in their interaction. Query qj is a best query for intent ei if
qj ∈ arg maxqk ur (ei ,qk).

The following lemma characterizes the Nash equilibrium of the game.

Lemma 5.10. A strategy profile (U ,D) is a Nash equilibrium w.r.t. effectiveness measure r if and
only if
• for every query q, q is a best query for every intent e ∈ PL(q), and
• D is a best response toU .

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

A Game-theoretic Approach to Data Interaction 1:27

Proof. Assume that (U ,D) is a Nash equilibrium. Also, assume qj is not a best query for ei ∈
PL(qj). Let qj′ be a best query for ei . We first consider the case where ur (ei ,qj′) > 0. We build

strategyU ′ whereU ′k, ℓ = Uk, ℓ for all entries (k, ℓ) , (i, j) and (k, ℓ) , (i, j
′),U ′i, j = 0, andU ′i, j′ = Ui, j .

We haveU ′ , U and ur (U ,D) < ur (U
′,D). Hence, (U ,D) is not a Nash equilibrium. Thus, we have

Ui, j = 0 and the first condition of the theorem holds. Now, consider the case whereur (ei ,qj′) = 0. In

this case, we will also haveur (ei ,qj) = 0, which makes qj a best query for ei . We prove the necessity

of the second condition of the theorem similarly. This concludes the proof for the necessity part of

the theorem. Now, assume that both conditions of the theorem hold for strategies U and D. We

can prove that it is not possible to have strategies U ′′ and D ′′ such that ur (U ,D) < ur (U
′′,D) or

ur (U ,D) < ur (U ,D
′′) using a similar method. □

5.3 Strict Nash Equilibrium
A strict Nash equilibrium is a strategy profile in which the DBMS and user will do worse by

unilaterally changing their equilibrium strategy.

Definition 5.11. A strategy profile (U ,D) is a strict Nash equilibrium w.r.t. effectiveness measure

r if we have ur (U ,D) > ur (U ,D
′) for all DBMS strategies D ′ , D and ur (U ,D) > ur (U

′,D) for all
user strategiesU ′ , U .

Table 9. Queries and Intents

9(a) Intents

Intent# Intent

e3 ans(z) ← Univ(x , ‘MSU ’, ‘MO’,y, z)
e4 ans(z) ← Univ(x , ‘MSU ’,y, ‘public’, z)
e5 ans(z) ← Univ(x , ‘MSU ’, ‘KY ’,y, z)

9(b) Queries

Query# Query

q2 ‘MSU’

q3 ‘KY’

Table 10. Strict best strategy profile

q2 q3

e3 1 0

e4 1 0

e5 0 1

e3 e4 e5

q2 1 0 0

q3 0 0 1

Example 5.12. Consider the intents, queries, strategy profile, and database instance in Ta-

bles 9(a), 9(b), 10, and 1. The strategy profile is a strict Nash equilibrium w.r.t precision. However,

the strategy profile in Example 5.9 is not a strict Nash equilibrium as one may modify the value of

ϵ without changing the payoff of the players.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 B. McCamish et al.

Next, we investigate the characteristics of strategies in a strict Nash equilibria profile. Recall that a

strategy is pure iff it has only 1 or 0 values. A user strategy is onto if there is not any query qj such
thatUi, j = 0 for all intend i . A DBMS strategy is one-to-one if it does not map two queries to the

same result. In other words, there is not any result sell such that D jℓ > 0 and D j′ℓ > 0 where j , j ′.

Theorem 5.13. If (U ,D) is a strict Nash equilibrium w.r.t. satisfaction function r , we have

• U is pure and onto.
• D is pure and one-to-one.

Proof. Let us assume that there is an intent ei and a query qj such that 0 < Ui, j < 1. Since U
is row stochastic, there is a query qj′ where 0 < Ui, j′ < 1. Let ur (Ui, j ,D) =

∑o
ℓ=1

D j, ℓr (ei , sℓ). If
ur (Ui, j ,D) = ur (Ui, j′,D), we can create a new user strategyU ′ whereU ′i, j = 1 andU ′i, j′ = 0 and the

values of other entries in U ′ is the same as U . Note that the payoff of (U ,D) and (U ′,D) are equal
and hence, (U ,D) is not a strict Nash equilibrium.

Ifur (Ui, j ,D) , ur (Ui, j′,D), without loss of generality one can assume thatur (Ui, j ,D)> ur (Ui, j′,D).
We construct a new user strategyU ′′ whose values for all entries except (i, j) and (i, j ′) are equal
to U and U ′′i, j = 1, U ′′i, j′ = 0. Because ur (U ,D) < ur (U

′′,D), (U ,D) is not a strict Nash equilibrium.

Hence,U must be a pure strategy. Similarly, it can be shown that D should be a pure strategy.

IfU is not onto, there is a query qj that is not mapped to any intent inU . Hence, one may change

the value in row j of D without changing the payoff of (U ,D).
Assume that D is not one-to-one. Hence, there are queries qi and qj and a result sℓ such that

Di, ℓ = D j, ℓ = 1. Because (U ,D) is a strict Nash,U is pure and we have eitherUi, ℓ = 1 orUj, ℓ = 1.

Assume thatUi, ℓ = 1. We can construct strategyU ′ that have the same values as U for all entries

except for (i, ℓ) and (j, ℓ) and U ′i, ℓ = 0, U ′j, ℓ = 1. Since the payoffs of (U ,D) and (U ′,D) are equal,

(U ,D) is not a strict Nash equilibrium. □

Theorem 5.13 extends the Theorem 1 in [22] for our model. In some settings, the user may know and

use fewer queries than intents, i.e.,m > n. Because the DBMS strategy in a strict Nash equilibrium

is one-to-one, the DBMS strategy does not map some of the results to any query. Hence, the DBMS

will never return some results in a strict Nash equilibrium no matter what query is submitted.

Interestingly, as Example 5.2 suggests some of these results may be the results that perfectly satisfy

some user’s intents. That is, given intent ei over database instance I , the DBMS may never return

ei (I) in a strict Nash equilibrium. Using a proof similar to the one of Lemma 5.10, we have the

following properties of strict Nash equilibria of a game. A strategy profile (U ,D) is a strict Nash
equilibrium w.r.t. effectiveness measure r if and only if:

• Every intent e has a unique best query and the user strategy maps e to its best query, i.e.,

e ∈ PL(qi).

• D is the strict best response toU .

5.4 Number of Equilibria
A natural question is how many (strict) Nash equilibria exist in a game. Theorem 5.13 guarantees

that both user and DBMS strategies in a strict Nash equilibrium are pure. Thus, given that the sets

of intents and queries are finite, there are finitely many strict Nash equilibria in the game. We note

that each set of results is always finite. However, we will show that if the sets of intents and queries

in a game are finite, the game has infinite Nash equilibria.

Lemma 5.14. If a game has a non-strict Nash equilibrium. Then there is an infinitely many Nash
equilibria.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

A Game-theoretic Approach to Data Interaction 1:29

Proof. The result follows from the fact that the payoff function (1) is a bilinear form ofU and D,
i.e. it is a linear ofD whenU is fixed and a linear function ofU , whenD is fixed. If forD , D ′, (U ,D)
and (U ,D ′) are Nash-equilibria, then ur (U ,D) = ur (U ,D

′). Therefore ur (U ,αD + (1 − α)D ′) =
ur (U ,D) for any α ∈ R. In particular, for α ∈ [0, 1], if D,D ′ are stochastic matrices, αD + (1 − α)D ′

will be a stochastic matrix and hence, (U ,αD + (1 − α)D ′) is a Nash equilibrium as well. Similarly,

if (U ′,D) and (U ,D) are Nash equilibria for U , U ′, then ur (αU + (1 − α)U
′,D) = ur (U ,D) and

(αU + (1 − α)U ′,D) is a Nash-equilibrium for any α ∈ [0, 1]. □

Theorem 5.15. Given a game with finitely many intents and queries, if the game has a non-strict
Nash equilibrium, it has an infinite number of Nash equilibria.

Proof. Every finite game has always a mixed Nash equilibrium [62]. According to Theorem 5.13,

a mixed Nash is not a strict Nash equilibrium. Therefore, using Lemma 5.14, the game will have

infinitely many Nash equilibria. □

5.5 Efficiency
In this section we discuss the efficiency of different equilibria. We refer to the value of the utility

(payoff) in Formula (1) at a strategy profile to the efficiency of the strategy. Therefore, the most

efficient strategy profile is naturally the one that maximizes (1). We refer to an equilibria with

maximum efficiency as an efficient equilibrium.

Thus far we have discussed two types of equilibria, Nash and strict Nash, that once reached it is

unlikely that either player will deviate from its current strategy. In some cases it may be possible

to enter a state of equilibria where neither player has any incentive to deviate, but that equilibria

may not be an efficient equilibrium.

The strategy profile in Table 3(b) provides the highest payoff for the user and DBMS given

the intents and queries in Tables 2(a) and 2(b) over the database in Table 1. However, some Nash

equilibria may not provide high payoffs. For instance, Table 3(a) depicts another strategy profile for

the set of intents and queries in Tables 2(a) and 2(b) over the database in Table 1. In this strategy

profile, the user has little knowledge about the database content and expresses all of her intents using

a single query q2, which asks for the ranking of universities whose abbreviations are MSU. Given
query q2, the DBMS always returns the ranking of Michigan State University. Obviously, the DBMS

always returns the non-relevant answers for the intents of finding the rankings of Mississippi State

University and Missouri State University. If all intents have equal prior probabilities, this strategy

profile is a Nash equilibrium. For example, the user will not get a higher payoff by increasing their

knowledge about the database and using query q1 to express intent e2. Clearly, the payoff of this

strategy profile is less than the strategy profile in Table 3(b). Nevertheless, the user and the DBMS

do not have any incentive to leave this undesirable stable state once reached and will likely stay in

this state.

Definition 5.16. A strategy profile (U ,D) is optimal w.r.t. an effectiveness measure r if we have
ur (U ,D) ≥ u(U ′,D ′) for all DBMS strategies D ′ andU ′

Since, the games discussed in this paper are games of identical interest, i.e. the payoff of the user

and the DBMS are the same. If a strategy profile (U ,D) is optimal, then none of the two players

(i.e. the user and the DBMS) has a unilateral incentive to deviate. Thus, the strategy profile is

an equilibrium and an efficient one. Moreover, since the game is cooperative, the players have

mutual interests and a shared payoff. Thus, an efficient equilibrium must be an optimal strategy

profile otherwise both players can collaborate and increase their shared payoff. Hence, we have the

following result.

Proposition 5.17. A strategy profile (U ,D) is optimal if and only if it is an efficient equilibrium.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 B. McCamish et al.

Similar to the analysis on efficiency of a Nash equilibria, there are strict Nash equilibria that

are less efficient than others. Strict Nash equilibria strategy profiles are unlikely to deviate from

the current strategy profile, since any unilateral deviation will result in a lower payoff. From this

we can say that strict Nash equilibria are also more stable than Nash equilibria since unilateral

deviation will always have a lower payoff.

Table 11. Strategy Profile 1

11(a) User strategy

q1 q2

e1 0 1

e2 1 0

e3 1 0

11(b) Database strategy

e1 e2 e3

q1 0 0 1

q2 1 0 0

Table 12. Strategy Profile 2

12(a) User Strategy

q1 q2

e1 0 1

e2 0 1

e3 1 0

12(b) Database Strategy

e1 e2 e3

q1 0 0 1

q2 0 1 0

As an example of a strict Nash equilibrium that is not efficient, consider both strategy profiles

illustrated in Tables 11 and 12. Note that the intents. queries, and results in this example are different

from the ones in the previous examples. For this illustration, we set the rewards to r (e1, s1) = 1,

r (e2, s2) = 2, r (e2, s3) = 0.1, and r (e3, s3) = 3 where all other rewards are 0. Using our payoff function

in Equation 1 we can calculate the total payoff for the strategy profile in Table 11 as u(U ,D) = 4.1.
This strategy profile is a strict Nash since any unilateral deviation by either player will result in a

strictly worse payoff. Consider the strategy profile in Table 12 with payoff u(U ,D) = 5. This payoff

is higher than the payoff the strategy profile in Table 11 receives. It is also not likely for the strategy

profile with less payoff to change either strategy to the ones in the strategy profile with higher

payoff as both are strict Nash.

5.6 Conclusion
When analyzing the current state of the game, we can determine whether the user and the DBMS

are currently in a Nash or strict Nash equilibria. However, in practice this is impossible. As external

observers we might be able to view the state of the database’s strategy, but we cannot know for

sure the state of the user strategy. Nonetheless, this analysis provides some interesting insights

into the model.

If one could determine whether the user and DBMS were in a Nash equilibria, then one would

know that the next adaptation to the strategy by the reinforcement learning algorithm would lead

to no additional reward. However, continued adaptation and reinforcement despite not receiving

additional reward might lead to more reward in the future. This insight is key to understanding

that even though the database and user may not immediately be improving their current state,

some actions might improve their future state. When considering the strict Nash equilirbia, this

insight is even more relevant, as any deviation from the current strategy actually leads to a decrease

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

A Game-theoretic Approach to Data Interaction 1:31

in overall reward, further negating any incentive to deviate. Thus, there is possible work to be

done in ensuring that the deviations leading to a lower reward aren’t completely ignored. However,

determining whether continuing this deviation will lead to a better overall reward is quite difficult.

If this were possible, then their would be no need to learn and the agents could simply immediately

adopt the strategies that have the higher reward. Instead, perhaps one approach could be that when

a Nash equilibrium state is detected, future deviations leading to equal or less reward might not be

discounted as much.

Another interesting observation from this analysis is that not all Nash equilibria are equal. There

may be varying degrees of reward for different strategy profiles in a Nash equilibrium. The same is

true for strict Nash equilibria. Consider again that one was able to determine whether the user and

the DBMS were in a Nash equilibrium. This might trigger some kind of response that deviations

leading to the same or less reward should not be ignored so that the interaction does not stagnate

and they could converge to a possibly better reward in the future. However, the user and the DBMS

may be in the best Nash and those deviations should be ignore or discounted.

6 EFFICIENT QUERY ANSWERING OVER RELATIONAL DATABASES
An efficient implementation of the algorithm proposed in Section 4 over large relational databases

poses two challenges. First, since the set of possible interpretations and their results for a given

query is enormous, one has to find efficient ways of maintaining users’ reinforcements and updating

DBMS strategy. Second, keyword and other usable query interfaces over databases normally return

the top-k tuples according to some scoring functions [15, 32]. Due to a series of seminal works by

database researchers [26], there are efficient algorithms to find such a list of answers. Nevertheless,

our reinforcement learning algorithm uses a randomized semantic for answering algorithms in

which candidate tuples are associated a probability for each query that reflects the likelihood by

which it satisfies the intent behind the query. The tuples must be returned randomly according to

their associated probabilities. Using (weighted) sampling to answer SQL queries with aggregation

functions approximately and efficiently is an active research area [12, 35]. However, there has not

been any attempt on using a randomized strategy to answer so-called point queries over relational

data and achieve a balanced exploitation-exploration trade-off efficiently.

6.1 Maintaining DBMS Strategy
6.1.1 Keyword Query Interface. We use the current architecture of keyword query interfaces over

relational databases that directly use schema information to interpret the input keyword query

[15]. A notable example of such systems is IR-Style [32]. As it is mentioned in Section 2.4, given

a keyword query, these systems translate the input query to a Select-Project-Join query whose

where clause contains functionmatch. The results of these interpretations are computed, scored

according to some ranking function, and are returned to the user. We provide an overview of the

basic concepts of such a system. We refer the reader to [15, 32] for more explanation.

6.1.2 Tuple-set: Given keyword query q, a tuple-set is a set of tuples in a base relation that contain

some terms in q. After receiving q, the query interface uses an inverted index to compute a set

of tuple-sets. For instance, consider a database of products with relations Product(pid, name),
Customer(cid, name), and ProductCustomer(pid, cid) where pid and cid are numeric strings. Given

query iMac John, the query interface returns a tuple-set from Product and a tuple-set from Customer
that match at least one term in the query. The query interface may also use a scoring function, e.g.,

traditional TF-IDF text matching score, to measure how exactly each tuple in a tuple-set matches

some terms in q.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 B. McCamish et al.

6.1.3 Candidate Network: A candidate network is a join expression that connects the tuple-sets via

primary key-foreign key relationships. A candidate network joins the tuples in different tuple-sets

and produces joint tuples that contain the terms in the input keyword query. One may consider

the candidate network as a join tree expression whose leafs are tuple-sets. For instance, one

candidate network for the aforementioned database of products is Product ▷◁ ProductCustomer
▷◁ Customer. To connect tuple-sets via primary key-foreign key links, a candidate network may

include base relations whose tuples may not contain any term in the query, e.g., ProductCustomer
in the preceding example. Given a set of tuple-sets, the query interface uses the schema of the

database and progressively generates candidate networks that can join the tuple-sets. For efficiency

considerations, keyword query interfaces limit the number of relations in a candidate network to

be lower than a given threshold. For each candidate network, the query interface runs a SQL query

and return its results to the users.There are algorithms to reduce the running time of this stage,

e.g., run only the SQL queries guaranteed to produce top-k tuples [32]. Keyword query interfaces

normally compute the score of joint tuples by summing up the scores of their constructing tuples

multiplied by the inverse of the number of relations in the candidate network to penalize long joins.

We use the same scoring scheme. We also consider each (joint) tuple to be candidate answer to the

query if it contains at least one term in the query.

6.1.4 Managing Reinforcements. The aforementioned keyword query interface implements a basic

DBMS strategy of mapping queries to results but it does not leverage users’ feedback and adopts a

deterministic strategy without any exploration. A naive way to record users’ reinforcement is to

maintain a mapping from queries to tuples and directly record the reinforcements applied to each

pair of query and tuple. In this method, the DBMS has to maintain the list of all submitted queries

and returned tuples. Because many returned tuples are the joint tuples produced by candidate

networks, it will take an enormous amount of space and is inefficient to update. Hence, instead of

recording reinforcements directly for each pair of query and tuple, we construct some features for

queries and tuples and maintain the reinforcement in the constructed feature space. More precisely,

we construct and maintain a set of n-gram features for each attribute value in the base relations

and each input query. N-grams are contiguous sequences of terms in a text and are widely used in

text analytics and retrieval [47]. In our implementation, we use up to 3-gram features to model the

challenges in managing a large set of features. Each feature in every attribute value in the database

has its associated attribute and relation names to reflect the structure of the data. We maintain a

reinforcement mapping from query features to tuple features. After a tuple gets reinforced by the

user for an input query, our system increases the reinforcement value for the Cartesian product of

the features in the query and the ones in the reinforced tuple. According to our experiments in

Section 7, this reinforcement mapping can be efficiently maintained in the main memory by only a

modest space overhead.

Given an input query q, our system computes the score of each tuple t in every tuple-set using

the reinforcement mapping: it finds the n-gram features in t and q and sums up their reinforcement

values recorded in the reinforcement mapping. Our system may use a weighted combination of this

reinforcement score and traditional text matching score, e.g., TF-IDF score, to compute the final

score. One may also weight each tuple feature proportional to its inverse frequency in the database

similar to some traditional relevance feedback models [47]. Due to the space limit, we mainly focus

on developing an efficient implementation of query answering based on reinforcement learning

over relational databases and leave using more advanced scoring methods for future work. The

scores of joint tuples are computed as it is explained in Section 6.1.1. We will explain in Section 6.2,

how we convert these scores to probabilities and return tuples. Using features to compute and

record user feedback has also the advantage of using the reinforcement of a pair of query and tuple

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

A Game-theoretic Approach to Data Interaction 1:33

to compute the relevance score of other tuples for other queries that share some features. Hence,

reinforcement for one query can be used to return more relevant answers to other queries.

6.2 Efficient Exploitation & Exploration
We propose the following two algorithms to generate a weighted random sample of size k over all

candidate tuples for a query.

6.2.1 Reservoir. To provide a random sample, one may calculate the total scores of all candidate

answers to compute their sampling probabilities. Because this value is not known beforehand, one

may use weighted reservoir sampling [13] to deliver a random sample without knowing the total

score of candidate answers in a single scan of the data as follows.

Algorithm 1 Reservoir

W ← 0

Initialize reservoir array A[k]to kdummy tuples.

for all candidate network CN do
for all t ∈ CN do

if A has dummy values then
insert k copies of t into A

else
W ←W + Sc(t)
for all i = 1 ∈ k do

insert t into A[i] with probability
Sc(t)
W

Reservoir generates the list of answers only after computing the results of all candidate networks,

therefore, users have to wait for a long time to see any result. It also computes the results of all

candidate networks by performing their joins fully, which may be inefficient. We propose the

following optimizations to improve its efficiency and reduce the users’ waiting time.

6.2.2 Poisson-Olken. Poisson-Olken algorithm uses Poisson sampling to output progressively the

selected tuples as it processes each candidate network. It selects the tuple t with probability
Sc(t)
M ,

whereM is an upper bound to the total scores of all candidate answers. To computeM , we use the

following heuristic. Given candidate network CN , we get the upper bound for the total score of all

tuples generated from

CN : MCN =
1

n
(

∑
TS ∈CN

Scmax (TS))
1

2

ΠTS ∈CN |TS |

in which Scmax (TS) is the maximum query score of tuples in the tuple-setTS and |TS | is the size of
each tuple-set. The term

1

n (
∑
TS ∈CN Scmax (TS)) is an upper bound to the scores of tuples generated

by CN . Since each tuple generated by CN must contain one tuple from each tuple-set in CN ,

the maximum number of tuples in CN is ΠTS ∈CN |TS |. It is very unlikely that all tuples of every

tuple-set join with all tuples in every other tuple-set in a candidate network. Hence, we divide this

value by 2 to get a more realistic estimation. We do not consider candidate networks with cyclic

joins, thus, each tuple-set appears at most once in a candidate network. The value ofM is the sum

of the aforementioned values for all candidate networks with size greater than one and the total

scores of tuples in each tuple-set. Since the scores of tuples in each tuple-set is kept in the main

memory, the maximum and total scores and the size of each tuple-set is computed efficiently before

computing the results of any candidate network.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1:34 B. McCamish et al.

Both Reservoir and the aforementioned Poisson sampling compute the full joins of each candidate

network and then sample the output. This may take a long time particularly for candidate networks

with some base relations. There are several join sampling methods that compute a sample of a join

by joining only samples the input tables and avoid computing the full join [13, 37, 53]. To sample

the results of join R1 ▷◁ R2, most of these methods must know some statistics, such as the number

of tuples in R2 that join with each tuple in R1, before performing the join. They precompute these

statistics in a preprocessing step for each base relation. But, since R1 and/or R2 in our candidate

networks may be tuples sets, one cannot know the aforementioned statistics unless one performs

the full join.

However, the join sampling algorithm proposed by Olken [53] finds a random sample of the join

without the need to precompute these statistics. Given join R1 ▷◁ R2, let t ⋊ R2 denote the set of

tuples in R2 that join with t ∈ R1, i.e., the right semi-join of t and R2. Also, let |t ⋊ R2 |
t ∈R1

max be the

maximum number of tuples in R2 that join with a single tuple t ∈ R1. The Olken algorithm first

randomly picks a tuple t1 from R1. It then randomly selects the tuple t2 from t1 ⋊ R2. It accepts

the joint tuple t1 ▷◁ t2 with probability
|t1⋊R2 |

|t⋊R2 |
t∈R

1

max
and rejects it with the remaining probability. To

avoid scanning R2 multiple times, Olken algorithm needs an index over R2. Since the joins in our

candidate networks are over only primary and foreign keys, we do not need too many indexes to

implement this approach.

We extend the Olken algorithm to sample the results of a candidate network without doing its

joins fully as follows. Given candidate network R1 ▷◁ R2, our algorithm randomly samples tuple

t1 ∈ R1 with probability
Sc(t1)∑

t∈R
1
(Sc(t)) , where Sc(t) is the score of tuple t , if R1 is a tuple-set. Otherwise,

if R1 is a base relation, it picks the tuple with probability
1

|R1 |
. The value of

∑
t ∈R (Sc(t)) for each

tuple set R is computed at the beginning of the query processing and the value of |R | for each base

relation is calculated in a preprocessing step. The algorithm then samples tuple t2 from t1 ⋊ R2

with probability
Sc(t2)∑

t∈t
1
⋊R

2
(Sc(t)) if R2 is a tuple-set and

1

|t1⋊R2 |
if R2 is a base relation. It accepts the

joint tuple with probability

∑
t∈t

1
⋊R

2
Sc(t)

max (
∑
t∈s⋊R

2
,s∈R

1
Sc(t)) and rejects it with the remaining probability.

To compute the exact value of max (
∑

t ∈s⋊R2,s ∈R1

Sc(t)), one has to perform the full join of R1

and R2. Hence, we use an upper bound on max (
∑

t ∈s⋊R2,s ∈R1

Sc(t)) in Olken algorithm. Using

an upper bound for this value, Olken algorithm produces a correct random sample but it may

reject a larger number of tuples and generate a smaller number of samples. To compute an upper

bound on the value of max (
∑

t ∈s⋊R2,s ∈R1

Sc(t)), we precompute the value of |t ⋊ Bi |
t ∈Bj
max before

the query time for all base relations Bi and Bj with primary and foreign keys of the same domain

of values. Assume that B1 and B2 are the base relations of tuple-sets R1 and R2, respectively. We

have |t⋊R2 |
t ∈R1

max ≤ |t⋊B2 |
t ∈B1

max . Because max (
∑

t ∈s⋊R2,s ∈R1

Sc(t)) ≤ maxt ∈R2
(Sc(t))|t⋊R2 |

t ∈R1

max , we

have max (
∑

t ∈s⋊R2,s ∈R1

Sc(t)) ≤ maxt ∈R2
(Sc(t))|t ⋊ B2 |

t ∈B1

max . Hence, we use

∑
t∈t

1
⋊R

2
Sc(t)

maxt∈R
2
(Sc(t)) |t⋊B2 |

t∈B
1

max

for the probability of acceptance. We iteratively apply the aforementioned algorithm to candidate

networks with multiple joins by treating the join of each two relations as the first relation for the

subsequent join in the network.

The following algorithm adopts a Poisson sampling method to return a sample of size k over

all candidate networks using the aforementioned join sampling algorithm. We show binomial

distribution with parameters n and p as B(n,p). We denote the aforementioned join algorithm as

Extended-Olken. Also, ApproxTotalScore denotes the approximated value of total score computed

as explained at the beginning of this section.

The expected value of produced tuples in the Poisson-Olken algorithm is close to k . However, as
opposed to reservoir sampling, there is a non-zero probability that Poisson-Olken may deliver fewer

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

A Game-theoretic Approach to Data Interaction 1:35

Algorithm 2 Poisson-Olken

x ← k
W ←

ApproxTotalScore
k

while x > 0 do
for all candidate network CN do

if CN is a single tuple-set then
for all t ∈ CN do

output t with probability
Sc(t)
W

if a tuple t is picked then
x ← x − 1

else
let CN = R1 ▷◁ . . . ▷◁ Rn
for all t ∈ R1 do

Pick value X from distribution B(k, Sc(t)W)

Pipeline X copies of t to the Olken algorithm

if Olken acceptsm tuples then
x ← x −m

than k tuples. To drastically reduce this chance, one may use a larger value for k in the algorithm

and reject the appropriate number of the resulting tuples after the algorithm terminates [13]. The

resulting algorithm will not progressively produce the sampled tuples, but, as our empirical study

in Section 7 indicates, it is faster than Reservoir over large databases with relatively many candidate

networks as it does not perform any full join.

7 EMPIRICAL STUDY
In this section we show the results of our empirical study of our proposed model and algorithms.

We would like to validate and ground our proposed model and show that considering whether the

user learns or not is an important aspect of interaction with a DBMS. We also want to evaluate the

effectiveness and efficiency of our proposed learning algorithm for DBMS in the presence of the

user learning.

7.1 Effectiveness
7.1.1 Experimental Setup. It is difficult to evaluate the effectiveness of online and reinforcement

learning algorithms for information systems in a live setting with real users because it requires

a very long time and a large amount of resources [29, 31, 54, 60, 65]. Thus, most studies in this

area use purely simulated user interactions [31, 54, 60]. A notable expectation is [65], which uses a

real-world interaction log to simulate a live interaction setting. We follow a similar approach and

use Yahoo! interaction log [67] to simulate interactions using real-world queries and dataset.

7.1.2 User Strategy Initialization: We train a user strategy over the Yahoo! 43H-interaction log

whose details are in Section 3 using Roth and Erev’s method, which is deemed the most accurate to

model user learning according to the results of Section 3. This strategy has 341 queries and 151

intents. The Yahoo! interaction log contains user clicks on the returned intents, i.e. URLs. However,

a user may click a URL by mistake [65]. We consider only the clicks that are not noisy according

to the relevance judgment information that accompanies the interaction log. According to the

empirical study reported in Section 3.2, the parameters of number and length of sessions and

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1:36 B. McCamish et al.

the amount of time between consecutive sessions do not impact the user learning mechanism in

long-term communications. Thus, we have not organized the generated interactions into sessions.

7.1.3 Metric: Since almost all returned results have only one relevant answer and the relevant

answers to all queries have the same level of relevance, we measure the effectiveness of the

algorithms using the standard metric of Reciprocal Rank (RR) [47]. RR is
1

r where r is the position
of the first relevant answer to the query in the list of the returned answers. RR is particularly useful

where each query in the workload has a very few relevant answers in the returned results, which

is the case for the queries used in our experiment.

7.1.4 Algorithms: We compare the algorithm introduced in Section 4.1 against the state-of-the-art

and popular algorithm for online learning in information retrieval called UCB-1 [3, 50, 54, 65]. It

has been shown to outperform its competitors in several studies [50, 54]. It calculates a score for

an intent e given the tth submission of query q as: Scoret (q, e) =
Wq,e,t
Xq,e,t

+ α
√

2ln t
Xq,e,t

, in which X is

how many times an intent was shown to the user,W is how many times the user selects a returned

intent, and α is the exploration rate set between [0, 1]. The first term in the formula prefers the

intents that have received relatively more positive feedback, i.e., exploitation, and the second term

gives higher scores to the intents that have been shown to the user less often and/or have not

been tried for a relatively long time, i.e., exploration. UCB-1 assumes that users follow a fixed

probabilistic strategy. Thus, its goal is to find the fixed but unknown expectation of the relevance

of an intent to the input query, which is roughly the first term in the formula; by minimizing the

number of unsuccessful trials.

7.1.5 Parameter Estimation: We randomly select 50% of the intents in the trained user strategy to

learn the exploration parameter α in UCB-1 using grid search and sum of squared errors over 10,000

interactions that are after the interactions in the 43H-interaction log. We do not use these intents

to compare algorithms in our simulation. We calculate the prior probabilities, π in Equation 1, for

the intents in the trained user strategy that are not used to find the parameter of UCB-1 using the

entire Yahoo! interaction log.

7.1.6 DBMS Strategy Initialization: The DBMS starts the interaction with an strategy that does

not have any query. Thus, the DBMS is not aware of the set of submitted queries apriori. When the

DBMS sees a query for the first time, it stores the query in its strategy, assigns equal probabilities for

all intents to be returned for this query, returns some intent(s) to answer the query, and stores the

user feedback on the returned intent(s) in the DBMS strategy. If the DBMS has already encountered

the query, it leverages the previous user’s feedback on the results of this query and returns the set

of intents for this query using our proposed learning algorithm. Retrieval systems that leverage

online learning perform some filtering over the initial set of answers to make efficient and effective

exploration possible [31, 65]. More precisely, to reduce the set of alternatives over a large dataset,

online and reinforcement learning algorithms apply a traditional selection algorithm to reduce the

number of possible intents to a manageable size. Otherwise, the learning algorithm has to explore

and solicit user feedback on numerous items, which takes a very long time. For instance, online

learning algorithms used in searching a set of documents, e.g., UCB-1, use traditional information

retrieval algorithms to filter out obviously non-relevant answers to the input query, e.g., the

documents with low TF-IDF scores. Then, they apply the exploitation-exploration paradigm and

solicit user feedback on the remaining candidate answers. The Yahoo! interaction workload has

all queries and intents anonymized, thus we are unable to perform a filtering method of our own

choosing. Hence, we use the entire collection of possible intents in the portion of the Yahoo! query

log used for our simulation. This way, there 4521 intent per query that can be returned, which is

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

A Game-theoretic Approach to Data Interaction 1:37

close to the number of answers a reinforcement learning algorithm may consider over a large data

set after filtering [65]. The DBMS strategy for our method is initialized to be completely random.

7.1.7 Results. We simulate the interaction of a user population that starts with our trained user

strategy with UCB-1 and our algorithm. In each interaction, an intent is randomly picked from the

set of intents in the user strategy by its prior probability and submitted to UCB-1 and our method.

Afterwards, each algorithm returns a list of 10 answers and the user clicks on the top-ranked

answer that is relevant to the query according to the relevance judgment information. The details

of simulation is reported in our technical report [49]. We run our simulations for one million

interactions.

Figure 3 shows the accumulated Mean Reciprocal Rank (MRR) over all queries in the simulated

interactions. Our method delivers a higher MRR than UCB-1 and its MRR keeps improving over the

duration of the interaction. UCB-1, however, increases the MRR at a much slower rate. Since UCB-1

is developed for the case where users do not change their strategies, it learns and commits to a fixed

probabilistic mapping of queries to intents quite early in the interaction. Hence, it cannot learn as

effectively as our algorithm where users modify their strategies using a randomized method, such

as Roth and Erev’s. As our method is more exploratory than UCB-1, it enables users to provide

feedback on more varieties of intents than they do for UCB-1. This enables our method to learn

more accurately how users express their intents in the long-run.

We have also observed that our method allows users to try more varieties of queries to express

an intent and learn the one(s) that convey the intent effectively. As UCB-1 commits to a certain

mapping of a query to an intent early in the interaction, it may not return sufficiently many relevant

answers if the user tries this query to express another intent. This new mapping, however, could be

promising in the long-run. Hence, the user and UCB-1 strategies may stabilize in less than desirable

states. Since our method does not commit to a fixed strategy that early, users may try this query

for another intent and reinforce the mapping if they get relevant answers. Thus, users have more

chances to try and pick a query for an intent that will be learned and mapped effectively to the

intent by the DBMS.

Because our proposed learning algorithm is more exploratory than UCB-1, it may have a longer

startup period than UCB-1’s. One method is for the DBMS to use a less exploratory learning

algorithm, such as UCB-1, at the beginning of the interaction. After a certain number of interactions,

the DBMS can switch to our proposed learning algorithm. The DBMS can distinguish the time of

switching to our algorithm by observing the amount of positive reinforcement it receives from the

user. If the user does not provide any or very small number of positive feedback on the returned

results, the DBMS is not yet ready to switch to a relatively more exploratory algorithm. If the DBMS

observes a relatively large number of positive feedback on sufficiently many queries, it has already

provided a relatively accurate answers to many queries. Finally, one may use a relatively large

value of reinforcement in the database learning algorithm at the beginning of the interaction to

reduce its degree of exploration. The DBMS may switch to a relatively small value of reinforcement

after it observes positive feedback on sufficiently many queries.

We have implemented the latter of these methods by increasing the value of reinforcement by

some factor. Figure 2 shows the results of applying this technique in our proposed DBMS learning

algorithm over the Yahoo! query workload. The value of reinforcement is initially 3 and 6 times

larger than the default value proposed in Section 4 until a threshold satisfaction value is reached,

at which point the reinforcement values scales back down to its original rate.

We notice that by increasing the reinforcement value by some factor, the startup period is reduced.

However, there are some drawbacks to this method. Although we don’t see it here, by increasing

the rate of reinforcement in the beginning, some amount of exploration may be sacrificed. Thus

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1:38 B. McCamish et al.

Fig. 2. Mean reciprocal rank for 1,000,000 interactions with different degrees of reinforcements

more exploitation will occur in the beginning of the series of interactions. This may lead to behavior

similar to UCB-1 and perform too much exploitation and not enough exploration. Finding the

correct degree of reinforcement is an interesting area for future work.

7.2 Efficiency
7.2.1 Experimental Setup. We have built two databases from Freebase (developers.google.com/freebase),
TV-Program and Play. TV-Program contains 7 tables and consisting of 291,026 tuples. Play contains 3
tables and consisting of 8,685 tuples. For our queries, we have used two samples of 621 (459 unique)

and 221 (141 unique) queries from Bing (bing.com) query log whose relevant answers after filtering

our noisy clicks, are in TV-program and Play databases, respectively [24]. After submitting each

query and getting some results, we simulate user feedback using the relevance information in the

Bing log.

Freebase is built based on the information about entities in the Wikipedia (wikipedia.org) articles.
Each entity in Freebase database contains the URL of its corresponding article in Wikipedia. For our

queries, we have used a sample of Bing (bing.com) query log whose relevant answers according to

the click-through information, after filtering our noisy clicks, are in the Wikipedia articles [24]. We

use two subsets of this sample whose relevant answers are in the TV-Program and Play databases.

The set of queries over TV-Program has 621 (459 unique) queries with the average number of 3.65

keywords per query and the one over Play has 221 (141 unique) queries with the average number

of 3.66 keywords per query. We use the frequencies of queries to calculate the prior probabilities

of submission. After submitting each query and getting some results, we simulate user feedback

using the relevance information in the Bing query log.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

A Game-theoretic Approach to Data Interaction 1:39

Fig. 3. Mean reciprocal rank for 1,000,000 interactions

7.2.2 Query Processing: We have used Whoosh inverted index

(whoosh.readthedocs.io) to index each table in databases. Whoosh recognizes the concept of table

with multiple attributes, but cannot perform joins between different tables. Because the Poisson-
Olken algorithm needs indexes over primary and foreign keys used to build candidate network, we

have build hash indexes over these tables in Whoosh. Given an index-key, these indexes return the

tuple(s) that match these keys inside Whoosh. To provide a fair comparison between Reservoir and
Poisson-Olken, we have used these indexes to perform join for both methods. We also precompute

and maintain all 3-grams of the tuples in each database as mentioned in Section 6.1. We have

implemented our system using both Reservoir and Poisson algorithms. We have limited the size of

each candidate network to 5. Our system returns 10 tuples in each interaction for both methods.

Hardware Platform: We run experiments on a server with 32 2.6GHz Intel Xeon E5-2640

processors with 50GB of main memory.

7.2.3 Results. Table 13 depicts the time for processing candidate networks and reporting the results

for both Reservoir and Poisson-Olken over TV-Program and Play databases over 1000 interactions.

These results also show that Poisson-Olken is able to significantly improve the time for executing

the joins in the candidate network, shown as performing joins in the table, over Reservoir in both

databases. The improvement is more significant for the larger database, TV-Program. Poisson-Olken
progressively produces tuples to show to user. But, we are not able to use this feature for all

interactions. For a considerable number of interactions, Poisson-Olken does not produce 10 tuples,

as explained in Section 6.2. Hence, we have to use a larger value of k and wait for the algorithm to

finish in order to find a randomize sample of the answers as explained at the end of Section 6.2.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1:40 B. McCamish et al.

Both methods have spent a negligible amount of time to reinforce the features, which indicate that

using a rich set of features one can perform and manage reinforcement efficiently.

Table 13. Average candidate networks processing times in seconds for 1000 interactions

Database Reservoir Poisson-Olken

Play 0.078 0.042

TV Program 0.298 0.171

8 RELATEDWORK
Database community has proposed several systems that help the DBMS learn the user’s information

need by showing examples to the user and collecting her feedback [2, 7, 21, 42, 63]. In these systems,

a user explicitly teaches the system by labeling a set of examples potentially in several steps without

getting any answer to her information need. Thus, the system is broken into two steps: first it learns

the information need of the user by soliciting labels on certain examples from the user and then

once the learning has completed, it suggests a query that may express the user’s information need.

These systems usually leverage active learning methods to learn the user intent by showing the

fewest possible examples to the user [21]. However, ideally one would like to have a query interface

in which the DBMS learns about the user’s intents while answering her (vague) queries as our

system does. As opposed to active learning methods, one should combine and balance exploration

and learning with the normal query answering to build such a system. Moreover, current query

learning systems assume that users follow a fixed strategy for expressing their intents. Also, we

focus on the problems that arise in the long-term interaction that contain more than a single query

and intent.

Sampling has been used to approximate the results of SQL queries with aggregation functions

and achieve the fast response time needed by interactive database interfaces [12, 35]. However,

we use sampling techniques to learn the intent behind imprecise point queries and answer them

effectively and efficiently.

Reinforcement learning is a classic and active research area in machine learning and AI [61].

There is a recent interest in using exploitation-exploration paradigm to improve the understanding

of users intents in an interactive document retrieval [29]. The exploitation-exploration trade-off has

been also considered in finding keyword queries for data integration [68]. These methods, however,

do not consider the impact of user learning throughout the interaction. Reinforcement learning

has also been utilized in database areas for some time [39].

Researchers have leveraged economical models to build query interfaces that return desired

results to the users using the fewest possible interactions [73]. In particular, researchers have

recently applied game-theoretic approaches to model the actions taken by users and document

retrieval systems in a single session [44]. They propose a framework to find out whether the

user likes to continue exploring the current topic or move to another topic. We, however, explore

the development of common representations of intents between the user and DMBS. We also

investigate the interactions that may contain various sessions and topics. Moreover, we focus on

structured rather than unstructured data. Avestani et al. have used signaling games to create a

shared lexicon between multiple autonomous systems [5]. Our work, however, focuses on modeling

users’ information needs and development of mutual understanding between users and the DBMS.

Moreover, as opposed to the autonomous systems, a DBMS and user may update their information

about the interaction in different time scales.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

A Game-theoretic Approach to Data Interaction 1:41

Our game is special case of signaling games, which model communication between two or more

agents and have been widely used in economics, sociology, biology, and linguistics [16, 22, 41, 52].

Generally speaking, in a signaling game a player observes the current state of the world and

informs the other player(s) by sending a signal. The other player interprets the signal and makes a

decision and/or performs an action that affect the payoff of both players. A signaling game may

not be cooperative in which the interests of players do not coincide [16]. Our framework extends a

particular category of signaling games called language games [22, 52, 64] and is closely related to

learning in signaling games [33].

Some of the results reported in this manuscript have appeared at [48]. The current submission

extends our previous work in three main directions. First, we have investigate the convergence

properties of our proposed learning algorithm in a simplified setting where the DBMS returns only

one (candidate) answer to the user. Current manuscript formally explores the convergence of our

learning algorithm where the DBMS returns more than a single answer to the user in Section 4.2.3.

It also investigates the convergence of the algorithm when the relevance of an answer to a query is

a binary value,. i.e., relevant or non-relevant. This is an special case of the general result proved

in [48] in which an answer can have multiple levels of relevance to a query. However, the proof

presented in the current submission for this special case is simpler than the one of the more general

result in [48]. Second, we have define and analyzed the eventual stable states of the game in the

long-term interaction of the user and DBMS in Section 5. An important aspect of analyzing a

game is to understand whether they have any eventual stable states and the characteristics of

such states. We have analyzed the Nash equilibria of the game and the accuracy of the common

understanding between the user and DBMS in these equilibria. Finally, our previous work aims

at understanding user learning mechanism by considering all users as one collective agent. This

assumption, however, requires users to share the outcomes of their explorations and learning. Since

users do not generally communicate, it is not clear whether or how they share their experiences.

Thus, we have performed a new empirical study and analyzed the learning mechanisms of both

individual users and groups of users in Section 3.

9 CONCLUSION
Much of the world data is in structured forms, but many users do not know how to express their

information needs over structured data using precisely framed and formal languages, such as SQL.

These users may express their intents using easy-to-use and inherently vague languages, such as

keyword queries. A DBMS may interact with these users and learn their information needs. We

showed that users also learn and modify how they express their information needs during their

interaction with the DBMS. We modeled the interaction between the user and the DBMS as a game,

where the players would like to establish a common mapping from information needs to queries via

learning. We showed that users exhibit some reinforcement learning tendencies when interacting

with database systems. They remember past decisions and attempt to improve their queries over

time to get better results. We have shown that these behavior can be modeled accurately using

a well-known reinforcement learning scheme used to model human learning in behavioral game

theory called Roth and Erev’s model.

Current query interfaces assume that the user has a static strategy and do not learn over time.

Thus, they do not effectively learn the information needs behind queries in such a setting. We

proposed a reinforcement learning algorithm for the DBMS that learns the querying strategy of

the user effectively. We proved that our proposed algorithm converges in both the cases that users

learn and do not modify her method of expressing her intents stochastically speaking. We have also

analyzed the equilibria of this game and showed that the game has both desirable, in which the user

and the DBMS get the highest possible rewards and undesirable ones, where none of the players

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

1:42 B. McCamish et al.

may get their maximum reward. We also propose an efficient implementation of our algorithm for

large databases by leveraging novel sampling techniques. Our empirical study validates our model

and indicates that our proposed algorithm is more effective compared to other popular ranking

and online learning algorithms. It also shows that our sampling techniques improve the running

times of the algorithm over large databases significantly.

We believe that our proposed game-theoretic setting can be used as an effective method to

tackle the important and long standing problem of data interoperability in databases. It is well

established that due to the enormous upfront cost of data integration and conversion, one ought to

find the right mapping between databases gradually and using human-in-the-loop methods [68]. A

game-theoretic approach to this problem will help users and underlying data sources to collectively

establish a common representation and mapping effectively. Our work can also be extended to

other types of interactions, such as data exploration. During data exploration, users may follow

different states of interactions, e.g., exploring the whole data versus focusing on some parts of the

data, and may adapt different learning mechanisms in each state. An interesting future work is to

explore the learning behavior of users in these states and find the effective learning algorithm for

the DBMS that can effectively collaborate with users in each state.

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1994. Foundations of Databases: The Logical Level. Addison-Wesley.

[2] Azza Abouzied, Dana Angluin, Christos H. Papadimitriou, Joseph M. Hellerstein, and Avi Silberschatz. 2013. Learning

and verifying quantified boolean queries by example. In PODS.
[3] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002a. Finite-time analysis of the multiarmed bandit problem.

Machine learning 47, 2-3 (2002), 235–256.

[4] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. 2002b. The nonstochastic multiarmed bandit

problem. SIAM journal on computing 32, 1 (2002), 48–77.

[5] Paolo Avesani and Marco Cova. 2005. Shared lexicon for distributed annotations on the Web. In WWW.

[6] J. A. Barrett and K. Zollman. 2008. The Role of Forgetting in the Evolution and Learning of Language. Journal of
Experimental and Theoretical Artificial Intelligence 21, 4 (2008), 293–309.

[7] Angela Bonifati, Radu Ciucanu, and Slawomir Staworko. 2015. Learning Join Queries from User Examples. TODS 40, 4
(2015).

[8] Robert R Bush and Frederick Mosteller. 1953. A stochastic model with applications to learning. The Annals of
Mathematical Statistics (1953), 559–585.

[9] Yonghua Cen, Liren Gan, and Chen Bai. 2013. Reinforcement Learning in Information Searching. Information Research:
An International Electronic Journal 18, 1 (2013).

[10] Gloria Chatzopoulou,Magdalini Eirinaki, and Neoklis Polyzotis. 2009. Query Recommendations for Interactive Database

Exploration. In Proceedings of the 21st International Conference on Scientific and Statistical Database Management (SSDBM
2009). Springer-Verlag, Berlin, Heidelberg, 3–18. DOI:http://dx.doi.org/10.1007/978-3-642-02279-1_2

[11] Surajit Chaudhuri, Gautam Das, Vagelis Hristidis, and Gerhard Weikum. 2006. Probabilistic Information Retrieval

Approach for Ranking of Database Query Results. TODS 31, 3 (2006).
[12] Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula. 2017. Approximate Query Processing: No Silver Bullet. In

Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL,
USA, May 14-19, 2017. 511–519. DOI:http://dx.doi.org/10.1145/3035918.3056097

[13] Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. 1999. On Random Sampling over Joins. In Proceedings of
the 1999 ACM SIGMOD International Conference on Management of Data (SIGMOD ’99). ACM, New York, NY, USA,

263–274. DOI:http://dx.doi.org/10.1145/304182.304206
[14] R Chen and Hani S Mahmassani. 2009. Learning and risk attitudes in route choice dynamics. In The Expanding Sphere

of Travel Behavior Research: Selected Papers from the 11th International Conference on Travel Behavior Research.
[15] Yi Chen, Wei Wang, Ziyang Liu, and Xuemin Lin. 2009. Keyword Search on Structured and Semi-structured Data. In

SIGMOD.
[16] I. Cho and D. Kreps. 1987. Signaling games and stable equilibria. Quarterly Journal of Economics 102 (1987).
[17] James J Choi, David Laibson, Brigitte C Madrian, and Andrew Metrick. 2009. Reinforcement learning and savings

behavior. The Journal of finance 64, 6 (2009), 2515–2534.
[18] John G Cross. 1973. A stochastic learning model of economic behavior. The Quarterly Journal of Economics 87, 2 (1973),

239–266.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

http://dx.doi.org/10.1007/978-3-642-02279-1_2
http://dx.doi.org/10.1145/3035918.3056097
http://dx.doi.org/10.1145/304182.304206

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

A Game-theoretic Approach to Data Interaction 1:43

[19] Sanmay Das and Allen Lavoie. 2014. The Effects of Feedback on Human Behavior in Social Media: An Inverse

Reinforcement Learning Model. In Proceedings of the 2014 International Conference on Autonomous Agents and Multi-
agent Systems (AAMAS ’14). International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC,

653–660. http://dl.acm.org/citation.cfm?id=2615731.2615837

[20] Constantinos Daskalakis, Rafael Frongillo, Christos H. Papadimitriou, George Pierrakos, and Gregory Valiant. 2010.

On Learning Algorithms for Nash Equilibria. In Proceedings of the Third International Conference on Algorithmic Game
Theory (SAGT’10). Springer-Verlag, Berlin, Heidelberg, 114–125. http://dl.acm.org/citation.cfm?id=1929237.1929248

[21] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. 2014. Explore-by-example: An Automatic Query Steering

Framework for Interactive Data Exploration. In SIGMOD.
[22] Matina C. Donaldson, Michael Lachmannb, and Carl T. Bergstroma. 2007. The evolution of functionally referential

meaning in a structured world. Journal of Mathematical Biology 246 (2007).

[23] Rick Durrett. 2010. Probability: theory and examples. Cambridge university press.

[24] Elena Demidova and Xuan Zhou and Irina Oelze and Wolfgang Nejdl. 2010. Evaluating Evidences for Keyword Query

Disambiguation in Entity Centric Database Search. In DEXA.
[25] Ido Erev and Alvin E Roth. 1995. On the Need for Low Rationality, Gognitive Game Theory: Reinforcement Learning in

Experimental Games with Unique, Mixed Strategy Equilibria.
[26] Ronald Fagin, Amnon Lotem, and Moni Naor. 2001. Optimal Aggregation Algorithms for Middleware. In Proceedings

of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS ’01). ACM, New

York, NY, USA, 102–113. DOI:http://dx.doi.org/10.1145/375551.375567
[27] Arjita Ghosh and Sandip Sen. 2004. Learning TOMs: Towards Non-Myopic Equilibria. In AAAI.
[28] Laura A. Granka, Thorsten Joachims, and Geri Gay. 2004. Eye-tracking Analysis of User Behavior in WWW Search. In

SIGIR.
[29] Artem Grotov and Maarten de Rijke. 2016. Online Learning to Rank for Information Retrieval: SIGIR 2016 Tutorial.

In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’16). ACM, New York, NY, USA, 1215–1218. DOI:http://dx.doi.org/10.1145/2911451.2914798

[30] Teck Ho. 2008. Individual Learning in Games. In The New Palgrave Dictionary of Economics: Design of Experiments and
Behavioral Economics, L. Blume and S. Durlauf (Eds.). Palgrave Macmillian.

[31] Katja Hofmann, Shimon Whiteson, and Maarten de Rijke. 2013. Balancing exploration and exploitation in listwise and

pairwise online learning to rank for information retrieval. Information Retrieval 16, 1 (2013), 63–90.
[32] Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou. Efficient IR-Style Keyword Search over Relational

Databases. In VLDB 2003.
[33] Yilei Hu, Brian Skyrms, and Pierre Tarrès. 2011. Reinforcement learning in signaling game. arXiv preprint arXiv:1103.5818

(2011).

[34] Jeff Huang, Ryen White, and Georg Buscher. 2012. User See, User Point: Gaze and Cursor Alignment in Web Search. In

CHI.
[35] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. 2015. Overview of Data Exploration Techniques. In

SIGMOD.
[36] H. V. Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian, Yunyao Li, Arnab Nandi, and Cong Yu. 2007.

Making Database Systems Usable. In SIGMOD.
[37] Srikanth Kandula, Anil Shanbhag, Aleksandar Vitorovic, Matthaios Olma, Robert Grandl, Surajit Chaudhuri, and Bolin

Ding. 2016. Quickr: Lazily Approximating Complex AdHoc Queries in BigData Clusters. In SIGMOD. 631–646. DOI:
http://dx.doi.org/10.1145/2882903.2882940

[38] Nodira Khoussainova, YongChul Kwon, Magdalena Balazinska, and Dan Suciu. 2010. SnipSuggest: Context-aware

Autocompletion for SQL. PVLDB 4, 1 (2010).

[39] Daphne Koller, Nir Friedman, Sašo Džeroski, Charles Sutton, Andrew McCallum, Avi Pfeffer, Pieter Abbeel, Ming-Fai

Wong, David Heckerman, Chris Meek, and others. 2007. Introduction to statistical relational learning. MIT press.

[40] Harold J Larson and Harold J Larson. 1969. Introduction to probability theory and statistical inference. Vol. 12. Wiley

New York.

[41] David Lewis. 1969. Convention. Cambridge: Harvard University Press.

[42] Hao Li, Chee-Yong Chan, and David Maier. 2015. Query From Examples: An Iterative, Data-Driven Approach to Query

Construction. PVLDB 8, 13 (2015).

[43] Erietta Liarou and Stratos Idreos. 2014. dbTouch in action database kernels for touch-based data exploration. In IEEE
30th International Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014. 1262–1265.
DOI:http://dx.doi.org/10.1109/ICDE.2014.6816756

[44] Jiyun Luo, Sicong Zhang, and Hui Yang. 2014. Win-Win Search: Dual-Agent Stochastic Game in Session Search. In

SIGIR.
[45] Yi Luo, Xumein Lin, Wei Wang, and Xiaofang Zhou. SPARK: Top-k Keyword Query in Relational Databases. In SIGMOD

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

http://dl.acm.org/citation.cfm?id=2615731.2615837
http://dl.acm.org/citation.cfm?id=1929237.1929248
http://dx.doi.org/10.1145/375551.375567
http://dx.doi.org/10.1145/2911451.2914798
http://dx.doi.org/10.1145/2882903.2882940
http://dx.doi.org/10.1109/ICDE.2014.6816756

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

1:44 B. McCamish et al.

2007.
[46] Michael W Macy and Andreas Flache. 2002. Learning dynamics in social dilemmas. Proceedings of the National

Academy of Sciences 99, suppl 3 (2002), 7229–7236.
[47] Christopher Manning, Prabhakar Raghavan, and Hinrich Schutze. 2008. An Introduction to Information Retrieval.

Cambridge University Press.

[48] Ben McCamish, Vahid Ghadakchi, Arash Termehchy, Behrouz Touri, and Liang Huang. 2018. The Data Interaction

Game. In Proceedings of the 2018 International Conference on Management of Data (SIGMOD ’18). ACM, New York, NY,

USA, 83–98. DOI:http://dx.doi.org/10.1145/3183713.3196899
[49] Ben McCamish, Arash Termehchy, and Behrouz Touri. 2016. A Signaling Game Approach to Databases Querying and

Interaction. arXiv preprint arXiv:1603.04068 (2016).
[50] Taesup Moon, Wei Chu, Lihong Li, Zhaohui Zheng, and Yi Chang. 2012. An online learning framework for refining

recency search results with user click feedback. ACM Transactions on Information Systems (TOIS) 30, 4 (2012), 20.
[51] Yael Niv. 2009. The Neuroscience of Reinforcement Learning. In ICML.
[52] Martin A Nowak and David C Krakauer. 1999. The evolution of language. PNAS 96, 14 (1999).
[53] Frank Olken. 1993. Random Sampling from Databases. Ph.D. Dissertation. University of California, Berkeley.

[54] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. 2008. Learning diverse rankings with multi-armed bandits.

In Proceedings of the 25th international conference on Machine learning. ACM, 784–791.

[55] Herbert Robbins and David Siegmund. 1985. A convergence theorem for non negative almost supermartingales and

some applications. In Herbert Robbins Selected Papers. Springer.
[56] Alvin E Roth and Ido Erev. 1995. Learning in extensive-form games: Experimental data and simple dynamic models in

the intermediate term. Games and economic behavior 8, 1 (1995), 164–212.
[57] Lloyd S Shapley and others. 1964. Some topics in two-person games. Advances in game theory 52, 1-29 (1964), 1–2.

[58] Yoav Shoham, Rob Powers, and Trond Grenager. 2003. Multi-agent reinforcement learning: a critical survey. Web
manuscript (2003).

[59] Hanan Shteingart and Yonatan Loewenstein. 2014. Reinforcement learning and human behavior. Current Opinion in
Neurobiology 25 (04/2014 2014), 93–98.

[60] Aleksandrs Slivkins, Filip Radlinski, and Sreenivas Gollapudi. 2013. Ranked bandits in metric spaces: learning diverse

rankings over large document collections. Journal of Machine Learning Research 14, Feb (2013), 399–436.

[61] Richard S. Sutton and Andrew G. Barto. 1998. Introduction to Reinforcement Learning (1st ed.). MIT Press, Cambridge,

MA, USA.

[62] Steve Tadelis. 2013. Game Theory: An Introduction. Princeton University Press.

[63] Q. Tran, C. Chan, and S. Parthasarathy. 2009. Query by Output. In SIGMOD.
[64] Peter Trapa and Martin Nowak. 2000. Nash equilibria for an evolutionary language game. Journal of Mathematical

Biology 41 (2000).

[65] Aleksandr Vorobev, Damien Lefortier, Gleb Gusev, and Pavel Serdyukov. 2015. Gathering additional feedback on

search results by multi-armed bandits with respect to production ranking. In WWW. International World Wide Web

Conferences Steering Committee, 1177–1187.

[66] Robert L Wolpert. 2010. Introduction to Martingales. (2010).

[67] Yahoo! 2011. Yahoo! webscope dataset anonymized Yahoo! search logs with relevance judgments version 1.0. http:

//labs.yahoo.com/Academic_Relations. (2011). [Online; accessed 5-January-2017].

[68] Zhepeng Yan, Nan Zheng, Zachary G Ives, Partha Pratim Talukdar, and Cong Yu. 2013. Actively soliciting feedback

for query answers in keyword search-based data integration. In Proceedings of the VLDB Endowment, Vol. 6. VLDB
Endowment, 205–216.

[69] Ozlem Yanmaz-Tuzel and Kaan Ozbay. 2009. Modeling Learning Impacts on Day-to-day Travel Choice. Springer US,
Boston, MA, 387–401. DOI:http://dx.doi.org/10.1007/978-1-4419-0820-9_19

[70] HH. Peyton Young. 2008. Adaptive Heuristics. In The New Palgrave Dictionary of Economics: Design of Experiments and
Behavioral Economics, L. Blume and S. Durlauf (Eds.). Palgrave Macmillian.

[71] H. Peyton Young. 2010. Strategic Learning and Its Limits. Oxford University Press.

[72] Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. 2012. The K-armed Dueling Bandits Problem. J.
Comput. Syst. Sci. 78, 5 (2012).

[73] Yinan Zhang and ChengXiang Zhai. 2015. Information Retrieval as Card Playing: A Formal Model for Optimizing

Interactive Retrieval Interface. In SIGIR.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.

http://dx.doi.org/10.1145/3183713.3196899
http://labs.yahoo.com/Academic_Relations
http://labs.yahoo.com/Academic_Relations
http://dx.doi.org/10.1007/978-1-4419-0820-9_19

	Abstract
	1 Introduction
	2 A Game-theoretic Framework
	2.1 Intent
	2.2 Query
	2.3 User Strategy
	2.4 DBMS Strategy
	2.5 Interaction & Adaptation

	3 User Learning Mechanism
	3.1 Reinforcement Learning Methods
	3.2 Empirical Analysis
	3.3 Analyzing Individual Users
	3.4 Conclusion

	4 Learning Algorithm for DBMS
	4.1 DBMS Reinforcement Learning
	4.2 Analysis of the Learning Rule
	4.3 User and DBMS Adaptations

	5 Equilibria of the Game
	5.1 Fixed User Strategy
	5.2 Nash Equilibrium
	5.3 Strict Nash Equilibrium
	5.4 Number of Equilibria
	5.5 Efficiency
	5.6 Conclusion

	6 Efficient Query Answering over Relational Databases
	6.1 Maintaining DBMS Strategy
	6.2 Efficient Exploitation & Exploration

	7 Empirical Study
	7.1 Effectiveness
	7.2 Efficiency

	8 Related Work
	9 Conclusion
	References

