Universal-DB: Towards Representation Independent Graph
Analytics

Yodsawalai
Chodpathumwan,
Amirhossein Aleyasen
University of Illinois

ychodpa2,aleyase2@illinois.edu

ABSTRACT

Graph analytics algorithms leverage quantifiable structural
properties of the data to predict interesting concepts and
relationships. The same information, however, can be rep-
resented using many different structures and the structural
properties observed over particular representations do not
necessarily hold for alternative structures. Because these
algorithms tend to be highly effective over some choices of
structure, such as that of the databases used to validate
them, but not so effective with others, graph analytics has
largely remained the province of experts who can find the
desired forms for these algorithms. We argue that in order
to make graph analytics usable, we should develop systems
that are effective over a wide range of choices of structural
organizations. We demonstrate Universal-DB an entity sim-
ilarity and proximity search system that returns the same
answers for a query over a wide range of choices to represent
the input database.

1. INTRODUCTION

Finding similar or strongly related entities is a fundamen-
tal problem in graph data management and analytics [5, 7,
9]. Entity proximity and similarity algorithms are used as a
building block for several important graph analytics tasks,
such as community detection, link prediction, and subgraph
matching [9]. Since the properties of similar or related en-
tities are not precisely defined in the query, similarity and
proximity search algorithms use intuitively appealing link-
based heuristics to choose, from among all possible answers,
those that are most similar or related to the query entity
[5, 7, 9]. The power of these algorithms remains out of
the reach of most users, however, as these tools are usable
only by highly trained database analysts who can predict
which algorithms are likely to be effective for particular
representations of the data, or who are able to customize
these algorithms to satisfy their information needs over a
new database. To see why, consider the following example.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.

Proceedings of the VLDB Endowment, Vol. 8, No. 12

Copyright 2015 VLDB Endowment 2150-8097/15/08.

Arash Termehchy

Oregon State University
termehca@oregonstate.edu yzsun@ccs.neu.edu

Yizhou Sun
Northeastern University

ExaMPLE 1.1. Figure 1a and 1b show excerpts of IMDb
(imdb.com) and Freebase (freebase.com) about the same set
of movies, their characters, and the actors who played them,
respectively. IMDb and Freebase use different representa-
tions to express the same relationships between mowies, char-
acters, and actors. Random Walk with Restart (RWR) [9]
and SimRank [5] are two well-known linked-based similarity
and proximity search algorithms. RWR evaluates how likely
an entity will be visited if a random surfer starts and keeps
re-starting from the query entity. SimRank evaluates the
stmilarity between two entities according to how likely two
random surfers will meet each other if they start from the
two entities. RWR and SimRank find Star Wars III more
similar to Star Wars V than to Jumper in Figure 1a, but
find Star Wars III to be more similar to Jumper than to
Star Wars V in Figure 1b.

A:J.Bell C:David Rice

h

C:Griffin F:Jumper

A:H.Ford C:Han Solo

F:Stallars V A:F.Oz

F:Star Wars II1 A:D.Prowse C:Yoda

(a) IMDb

A:H.Ford C:Han Solo

istensen

C:Anakin Skywalker

A:J.Bell C:David Rice

C:Griffin F:Jumper

C:Anakin Skywalker

F:Star Wars III A:D.Prowse C:Yoda

(b) Freebase
Figure 1: Fragments of IMDb and Freebase, where A, C, F, and

S refer to actor, character, film and starring, respectively.

Thus, users generally have to restructure or wrangle their
databases to some proper representations, to effectively use
similarity and proximity search algorithms,i.e., deliver the
insights that a domain expert would judge as relevant. To
make matters worse, these algorithms do not normally of-
fer any clear description of their desired representations and
database analysts have to rely on their own expertise and/or
do trial and error to find such representations. Neverthe-
less, we want our database analytics algorithms to be used
by ordinary users, not just experts. Further, the structure
of large-scale databases constantly evolve, and we want to
move away from the need for constant expert attention to
keep exploration algorithms effective.

One approach to achieve representation independence is
to define a universal representation to which all possible rep-
resentations of a database can be transformed and develop

algorithms that are effective over this representation. Nev-
ertheless, the experience gained from the idea of universal
relation indicates that such representation may not always
exist [1]. Further, it is not clear if one can successfully en-
force data curators to represent their data in a certain way.

Another method is to run certain algorithm over all rep-
resentations of a database and select the representation(s)
with the most accurate answers. Nonetheless, it is undecid-
able to compute all representations of a database [3]. If one
restricts her search to a particular type of representations,
the database may have still a large number of representa-
tions. For example, a relational table may have exponential
number of vertical decompositions. This number may be
larger for the graph databases that do not follow a fixed
schema. It may take a great deal of time and resources
to convert a large and/or evolving database to various rep-
resentations. Further, this method requires training data,
which is not generally available in many database analytics
tasks, such as entity similarity search.

To cope with organizational heterogeneity and evolution
in large-scale data, it is time to move beyond database an-
alytics algorithms that are effective only over certain repre-
sentations of the database. We demonstrate Universal-DB;
an entity similarity and proximity search system that deliv-
ers the same answers for a query over various representation
of a graph database. In particular,

e We illustrate different types of organizational hetero-
geneity that are observed in real-world databases. We
demonstrate how well-known entity similarity search al-
gorithms deliver different results for the same query over
these representational choices.

e We show that Universal-DB returns the same answers
for a query over a wide range of choices for representing
the data and explain its underlying techniques.

2. RELATED WORK

The architects of relational model have argued for logical
data independence, which oversimplifying a bit, means that
an exact query should return the same answers no matter
which logical schema is chosen for the data [1]. The idea of
representation independence extends the principle of logical
data independence for database analytics algorithms. Re-
searchers acknowledge the growing need for users to trans-
form their data and provide systems to help them with wran-
gling their data [6]. We address the same problem but us-
ing a difference approach: eliminate the need to wrangle the
data. Researchers have developed effective keyword search
techniques that are robust across multiple tree-shaped XML
representations of the same information [8]. We built on this
line of work by developing representation independent sys-
tems over graph data models and entity similar and prox-
imity search problem.

3. REPRESENTATION INDEPENDENCE

Let domain Dom be a countably infinite set of values, e.g.
strings or integers. Also, let L be a finite set of (string) la-
bels, e.g. actor and film. A database D is a graph D =
(V,E, L, A), where V is the set of nodes in the graph, £ C
V x V is the set of edges in the graph, £ is a total function
from V to L, and A is a function from V to Dom. Figure 1
show fragments of some databases. The function £ assigns
a label to every node. The label of a node shows the seman-
tic type of the information that the node represents. Each

node in the database represents an entity, e.g. film:Star
Wars III in Figure 1b, or a relationship between entities,
e.g. starring in Figure 1b.

Database transformations (transformation for short) have
been used to compare the information content of different
databases [3]. Transformation 7 over database D is a (com-
putable) function that maps D to another database 7(D). If
T is invertible, we can reconstruct the information available
in D given 7(D). For example, the transformation between
IMDb and Freebase DBs in Figure 1 is invertible, as it re-
places every triangular subgraph whose nodes represent en-
tities of types film, actor, and character in a graph database
with a star subgraph where these entities are connected via
a single instance of type starring.

Furthermore, we should make sure that users can pose the
same set of queries over databases D and 7(D). Similarity
search queries over a database D are entities of D. We say
that 7 is query preserving iff D and 7(D) essentially contain
the same set of entities. For example the transformation be-
tween IMDb and Freebase DBs in Figure 1 is query preserv-
ing because it does not introduce any new entity or remove
any existing entity in the input databases.

If a transformation is both invertible and query preserv-
ing, it is similarity preserving. A similarity preserving trans-
formation maps a databases D to a database 7(D) that has
the same information and the same set of possible queries.
It possible to design an effective similarity search algorithm
that returns essentially the same answers for every query
over D and 7(D). Given an entity, a similarity search algo-
rithm returns a ranked list of entities that are most similar
to the query entity. Intuitively, a representation indepen-
dent similarity search algorithm should return the same list
of entities to the same query across databases that represent
the same information. More formally, algorithm A is repre-
sentation independent under bijective transformations 7 iff
it returns the same ranked list of entities over databases D
and 7(D) for the same query. Algorithm A is representation
independent under a set of query preserving transformations
T iff it is representation independent under all transforma-
tions in 7.

4. UNIVERSAL-DB
4.1 Representational Shifts

We consider the following two transformations that fre-
quently occur in real-world databases.

Relationship Reorganizing Transformations: Real-
world graph databases may use either edges or nodes to rep-
resent the same relationships. For example, the relationship
between entities actor, character, and film is represented
by connecting them using some edges in Figure la. But
the same relationship between these entities is depicted by
connecting them to a node of label Starring in Figure 1b.
One may also use nodes without values to categorize re-
lated nodes, which help users understand the structure of
the database more easily. For instance, in a movie data set
from the Niagra project!, all actors of a movie are grouped
under a node of label cast. Intuitively, this node does not
add any new information to the database as the actors that
play in a movie are already connected to the movie using
some edges. But it helps users to navigate and explore the

! research.cs.wisc.edu/niagara/data.html

database easier. Using nodes without values to represent re-
lationships between entities or categorize them is prevalent
in real-world graph databases [4].

Entity Rearranging Transformations: Given some
constraints in the database, people may connect same en-
tities in different orders. For example, consider a biblio-
graphical database of Microsoft Academic Search® (MAS)
and its alternative representation as shown in Figure 2. Both
databases contain entities of semantic types paper, confer-
ence, domain, and keyword. The domains of papers and
conferences show their areas, e.g., database and informa-
tion retrieval. The keyword entities contain the keywords
of domains, e.g., indexing and query processing for database
domain. Each paper is published in only one conference
and each conference belongs to only one domain. In original
MAS, the database connects each paper to its conference and
its main domain. However, the alternative representation
connects each paper to its conference and each conference
to its corresponding domain instead. Both representations
connect each domain to all related keywords.

Relationship reorganizing and entity rearranging transfor-
mations are similarity preserving [2].

conf:c

conf:b

confia paperip

conf:a

(a) Original representation (b) Alternative representation

Figure 2: Fragments of some representations for MAS data

4.2 Robustness of Current Algorithms

To the best of our knowledge, the most frequently used
methods for similarity search on graph database are based
on Random Walk, e.g., RWR [9], Pairwised Random Walk,
e.g., SimRank [5], or relationship-constrained framework,
e.g., PathSim [7]). There are other similarity measures,
such as common neighbors, Katzg measure, hitting time,
and commute time, which can be considered as special cases
of aforementioned heuristics. Methods that use random
walk and pairwise random walk leverage the topology of a
graph database to measure the degree of similarities between
entities. Relationship reorganizing and entity rearranging
transformations may remove many of edges in a database
and add a large number of new nodes and edges to the
database. Thus, they may radically modify the topology of
the database. For example, relationship reorganizing trans-
formations may drastically change the degree of a node and
modify the probability that random surfers visit the node.
Hence, these methods cannot always return the same an-
swers over the original and the transformed database for
the same query. Our example in section 1 illustrates that
RWR and SimRank are not representation independent un-
der relationship reorganizing transformations.

PathSim measures the similarity between entities over a
given relationship [7]. For example, it may compute the sim-
ilarity of two movies in a movie database based on the actors

2 . .
academic.research.microsoft.com

that have played in those movies. It defines relationships be-
tween entities as a sequence of labels, i.e., meta-paths. For
example, the relationship between two movies in Figure 1b
according to their common actors is represented by meta-
path (film, starring, actor, starring, film) PathSim com-
putes the score using the number of paths between entities
that follow the given meta-path.

However, the relationship reorganization and entity rear-
ranging transformations can change the number of the in-
stances for a meta-path. Thus, PathSim may not find the
same answers over the database and its transformation. For
example, assume that a user likes to find conferences similar
to conf:b based on their common keywords in the database
fragments in Figures 2a and 2b. She needs to use meta-path
(conf, paper, dom, kw, dom, paper, conf) and meta-path
(conf, dom, kw, dom, conf) in Figure 2a and 2b, respec-
tively. The meta-path (conference, domain, conference)
has only one instance for each pairs of conference entities but
the number of instances of meta-path (conf, dom, kw, dom,
conf) between a pair of conferences varies by the number of
papers published in the related conferences. Hence, Path-
Sim finds confa and confc to be equally similar to confb
in Figure 2b, but it finds confa to be more similar to conf:b
than conf:c in Figure 2a.

4.3 Robust Proximity and Similarity Algorithm

Universal-DB uses a robust relationship-constrained sim-
ilarity and proximity search algorithm. We have observed
that a relationship that is expressed as a simple path in
one representation of a database may be represented us-
ing forms other than simple paths in its transformations.
Hence, Universal-DB considers a richer set of expressions
for relationships in databases. Representational modifica-
tions may convert a simple path to a path with repeating
nodes, i.e., non-simple path. For example, the relation-
ship (conf, paper, dom, kw, dom, paper, conf) in Fig-
ure 2a is represented by (conf, paper, conf, dom, kw, dom,
conf,paper, conf) in Figure 2b. Hence, Universal-DB con-
siders the relationships represented by both simple and non-
simple paths in the database. Further, some relationships
in the original database cannot be represented as neither
simple nor non-simple paths in its transformations. For
example, there is not any path in Figure 2a that repre-
sent the relationship expressed through p = (conference,
domain, conference) in the database fragment of Figure 2b.
The relationship that follow (conference, paper, domain,
paper, conference) contains a bit more information than
p as it contains the set of papers published in each confer-
ence. Hence, Universal-DB considers the relationships in the
database that are represented by paths that may jump over
some nodes in the database. For instance, it considers the
relationships represented by (conference, paper, domain,
paper, con ference) in Figure 2b, where paper indicate that
conference and domain are connected through some enti-
ties of type paper without any regard to the strength of
such connection, i.e., the number of papers published in the
conference. These relationships contain exactly the same
information as p.

Representational shifts may introduce or remove some
spurious relationship instances to or from a database. Fig-
ure 3 shows excerpts of SNAP3 and DBLP databases, where
the citation relationships between papers are expressed by

3snap‘stanford.edu/dauta

RWR SimRank PathSim UnivDB
Top 5 134 578 327 0
Top 10 141 493 .296 0

Table 1: Average ranking difference for DBLP to SNAP
transformation

edges in SNAP and through nodes without any value with
label cite in DBLP. Assume that a use likes to find strongly
related papers by leveraging the fact that these papers may
frequently cite some common papers. There is only one
instance of the relationship (paper, paper, paper) between
paper:pl and paper:p2 in Figure 3a. The same relation-
ship is represented by (paper, cite, paper, cite, paper) Fig-
ure 3b, which has three instances. The additional instances
are (paper:pl, cite, paper:pl, cite, paper:p2) and (paper:pl,
cite, paper:p2, cite, paper:p2). These instances do not pro-
vide any information in addition to the one that the other
instance of this relationship already provides. Universal-
DB recognizes spurious instance by noting that in these in-
stances at least one entity and its closest entity are equal
and ignores them.

Since users may not be familiar with the structure of the
database, Universal-DB aggregates the similarity scores be-
tween each pairs of entities over all relationships between
these entities so users do not need to supply the template of
the relationships. Because Universal-DB considers relation-
ships expressed by structures beyond simple paths, it may
take a long time to compute a similarity score between two
entities. We have shown that it is sufficient to consider a
minimal subset of all such paths in a database to have a
robust similarity search algorithm, and thus, compute the
scores efficiently [2]. Universal-DB is provably representa-
tion independent under relationship reorganizing and entity
rearranging transformations [2]. Tables 1 and 2 show the
average ranking differences for answers of RWR, SimRank,
PathSim, and Universal-DB based on transformations in
Figures 3 and 4 using normalized Kendall’s Tau [8] over
workloads of 100 queries, respectively. The score of 0 indi-
cates that there is no ranking difference between the two lists
from source and transformed databases, and the score of 1
indicates that the two ranked lists are completely opposite.
Universal-DB returns as effective or more effective results
than other similarity and proximity search algorithms [2].

paper:p2 paperipd
paper:p2 paperipd
cite cite @cite
paper:p3
cite paper:pl

(a) DBLP (b) SNAP
Figure 3: DBLP and SNAP Citation graphs.

proc:prl area:arl proc:prl area:arl
papeM paper:p :
author:al author:al

Figure 4: Two representations for a bibliographic database.

paper:pl
paper:p3

5. DEMONSTRATION

In our demonstration, we will present examples of real-
world databases, such as IMDb, Freebase, DBLP, and SNAP
that provide different ways of representing the same infor-
mation. Our demonstration helps the audience to compare
representation independence of well-known similarity search
algorithms: RWR, SimRank, PathSim over the types of rep-
resentational shift discussed in Section 4.1. In addition,

‘ RWR SimRank PathSim UnivDB
Top 5 475 .401 .632 0
Top 10 415 .345 .605 0

Table 2: Average ranking difference for different representa-
tions of the bibliographic database

they will try and examine the robustness of Universal-DB
over several databases. Users will select a database, an en-
tity similarity search algorithm, and submit a query to the
database. Our prototype computes the results for the query
the selected similarity search algorithm. Our user interface
provides two views. In the first view, network view, shown
in Figure 5a, the user can see the graph visualization of the
query entity (shown in orange) as well as the answers (shown
in blue) for the algorithm over different graph representa-
tions of the database. The nodes with higher ranks in the
results have higher color contrast in the network view. This
view helps the user to gain some insight on how the struc-
tures of a representation affect the answers of the query.
Users may also run queries using Universal-DB and observe
how it returns the same answers over different representa-
tions of a database. Users may also compare the rankings
delivered by different similarity search methods over differ-
ent representations of the same dataset using the ranking
view, which is shown in Figure 5b. The same entities in
different ranked lists are connected using some lines. Al-
gorithms that are more robust on a type of transformation
have fewer number of crossing between the connection lines.

=
Sinvank
. [.
(] . (] b4 (] 14
° o o
. .
| . " . .
,,,,,, % g . - . - .
= o o o
75 ° P °

(a) Network View

(b) Ranking View

Figure 5: Universal-DB screenshots

6. REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1994.

[2] Y. Chodpathumwan et al. Representation Independence
of Structural Proximity and Similarity Algorithms.
Technical report, Oregon State University, 2015.

[3] W. Fan and P. Bohannon. Information Preserving XML
Schema Embedding. TODS, 33(1):1-44, 2008.

[4] A. Hogana, M. Arenas, A. Mallea, and A. Polleres.
Everything you always wanted to know about blank
nodes. Web Semantics, pages 42—69, 2014.

[5] G. Jeh and J. Widom. SimRank: A Measure of
Structural-context Similarity. In KDD, pages 538-543,
2002.

[6] S. Kandel et al. Wrangler: Interactive visual
specification of data transformation scripts. In CHI,
2011.

[7] Y. Sun et al. PathSim: MetaPath-Based Top-K
Similarity Search. In VLDB, pages 992-1003, 2011.

[8] A. Termehchy et al. Design Independent Query
Interfaces. TKDE, 24(10):1819-1832, 2012.

[9] H. Tong et al. Fast Random Walk with Restart and its
Applications. In ICDM, pages 613622, 2006.

