
Noname manuscript No.
(will be inserted by the editor)

Logically Scalable and Efficient Relational Learning

Jose Picado · Arash Termehchy · Alan Fern · Parisa Ataei

Received: date / Accepted: date

Abstract Relational learning algorithms learn the def-

inition of a new relation in terms of existing relations in

the database. The same database may be represented

under different schemas for various reasons, such as ef-

ficiency, data quality, and usability. Unfortunately, the

output of current relational learning algorithms tends

to vary quite substantially over the choice of schema,

both in terms of learning accuracy and efficiency. We

introduce the property of schema independence of re-

lational learning algorithms, and study both the theo-

retical and empirical dependence of existing algorithms

on the common class of (de) composition schema trans-

formations. We show theoretically and empirically that

current relational learning algorithms are generally not

schema independent. We propose Castor, a relational

learning algorithm that achieves schema independence.

1 Introduction

Learning novel concepts over relational databases has

attracted a great deal of attention due to its applica-

tions in data management and machine learning [10,

28,16]. Given a relational database and training exam-

ples for some target relation, relational learning algo-

rithms attempt to find a definition of this relation in

terms of the existing relations in the database [10,25,

31]. Learned definitions are usually first-order logic for-

mulas and often restricted to Datalog programs. For

example, consider the UW-CSE database (alchemy.cs.

washington.edu/data/uw-cse), which contains informa-

tion about a computer science department and its schema

fragments are shown in Table 1. Given the UW-CSE

J. Picado · A. Termehchy · A. Fern · P. Ataei
School of EECS, Oregon State University, Corvallis, OR, USA
E-mail: {picadolj,termehca,alan.fern,ataeip}@oregonstate.edu

database and a set of student-advisor pairs, one may

want to predict the new relation advisedBy(stud,prof),

which indicates that the student stud is advised by pro-

fessor prof. A relational learning algorithm may learn

the following Datalog program

advisedBy(x, y)← publication(z, x), publication(z, y),

which indicates that a student is advised by a professor

if they have been co-authors of a publication.

One benefit of relational learning algorithms is that

they can exploit the relational structure of the data.

Moreover, their learned definitions are interpretable and

easy to understand. Relational learning has several ap-

plications in database management and machine learn-

ing, such as learning database queries [2], learning new

features [9], and learning the structure of statistical re-

lational learning (SRL) models [15,16].

Since the space of possible definitions (e.g. all Dat-

alog programs) is enormous, relational learning algo-

rithms must employ heuristics to search for effective

definitions. Unfortunately, such heuristics typically de-

pend on the precise choice of schema of the underlying

database. This is true even if the schemas represent

essentially the same information. As an example, Ta-

ble 1 shows two schemas for the UW-CSE database,

which is used as a common relational learning bench-

mark. The original schema was designed by relational

learning experts. This design is generally discouraged

in the database community, as it delivers poor usabil-

ity and performance in query processing without pro-

viding any advantages in terms of data quality in re-

turn [1]. A database designer may use a schema closer

to the 4NF schema in Table 1. Because each student

stud has only one phase and years, a database designer

may compose relations student, inPhase, and yearsIn-

Program. She may also combine relations professor and

2 Jose Picado et al.

Original Schema 4NF Schema
student(stud) student(stud,phase,years)
inPhase(stud,phase) professor(prof,position)
yearsInProgram(stud,years) publication(title,person)
professor(prof) courseLevel(crs,level)
hasPosition(prof,position) taughtBy(crs,prof,term)
publication(title,person) ta(crs,stud,term)
courseLevel(crs,level)
taughtBy(crs,prof,term)
ta(crs,stud,term)

Table 1 Schemas for the UW-CSE dataset.

hasPosition. This would result in a more understand-

able schema with shorter query execution time, without

introducing any redundancy.

Example 1 We use the classic relational learning al-

gorithm FOIL [26] to learn a definition for the ad-

visedBy(stud, prof) relation over the Original and 4NF

schemas of the UW-CSE database, shown in Table 1.

FOIL learns the following Datalog rule over the UW-

CSE database with the Original schema:

advisedBy(x, y)←yearsInProgram(x, 7),

publication(z, x), publication(z, y),

which covers 5 positive examples and 0 negative ex-

amples. On the other hand, FOIL learns the following

Datalog rule over the 4NF schema:

advisedBy(x, y)← student(x, post generals, 5),

professor(y, facul), publication(z, y), taughtBy(v, y, w),

which covers 12 positive examples and 10 negative ex-

amples. Intuitively, the definition learned over the orig-

inal schema better expresses the relationship between

an advisor and advisee.

Generally, there is no canonical schema for a partic-

ular set of content in practice and people often rep-

resent the same information in different schemas [1,

13]. For example, it is generally easier to enforce in-

tegrity constraints over highly normalized schemas [1].

On the other hand, because more normalized schemas

usually contain many relations, they are hard to under-

stand and maintain. It also takes a relatively long time

to answer queries over database instances with such

schemas [1]. Thus, a database designer may sacrifice

data quality and choose a more denormalized schema

for its data to achieve better usability and/or perfor-

mance. Further, as the relative priorities of these ob-

jectives change over time, the schema will also evolve.

Users generally have to restructure their databases,

in order to effectively use relational learning algorithms,

i.e., deliver definitions for the target relations that a

domain expert would judge as correct and relevant.

These algorithms do not normally offer any clear de-

scription of their desired schema and database users

have to rely on their own expertise and/or do trial

and error to find such schemas. Nevertheless, we ide-

ally want our database analytics algorithms to be used

by ordinary users, not just experts who know the in-

ternals of these algorithms. Further, the structure of

large-scale databases constantly evolves, and we want

to move away from the need for constant expert atten-

tion to keep learning algorithms effective. Researchers

often use (statistical) relational learning algorithms to

solve various important core database problems, such

as query processing [2], schema mapping [6], and entity

resolution [15]. Thus, the issue of schema dependence

appears in other areas of database management.

One approach to solving the problem of schema de-

pendence is to run a learning algorithm over all possible

schemas for a validation subset of the data and select

the schema with the most accurate answers. Nonethe-

less, computing all possible schemas of a DB is generally

undecidable [13]. One may limit the search space to a

particular family of schemas to make their computa-

tion decidable. For instance, she may choose to check

only schemas that can be transformed via join and

project operations, i.e. composition and decomposition

[1]. However, the number of possible schemas within a

particular family of a data set are extremely large. For

example, a relational table may have exponential num-

ber of distinct decompositions. As many learning algo-

rithms need some time for parameter tunning under a

new schema, it may take a prohibitively long time to

find the best schema. Further, since relational learning

algorithms need to access the content of the database,

one has to transform the underlying data to the desired

schema, which may not be practical for a large and/or

constantly evolving database.

In this paper, we introduce the property of schema

independence for relational learning algorithms, i.e., the

ability to deliver the same answers regardless of the

choices of schema for the same data. We propose a for-

mal framework to evaluate the property of schema inde-

pendence of a relational learning algorithm for a given

family of schema changes. Since none of the current

relational learning algorithms are schema independent,

we leverage concepts from database literature to design

a schema independent algorithm. The main contribu-

tions of this paper are:

• We define the property of schema independence (Sec-

tion 3), which formalizes the notion of a learning al-

gorithm returning equivalent answers over schema

transformations that preserve information content.

• We analyze the property of schema independence

for the popular families of top-down [21,26] (Sec-

tion 5) and bottom-up [22,23] learning algorithms

(Section 6). We prove that they are not schema in-

dependent under (de) composition transformations.

Logically Scalable and Efficient Relational Learning 3

• We introduce Castor, a bottom-up algorithm that

is provably schema independent under (de) compo-

sition (Section 7). Castor achieves schema indepen-

dence by integrating database constraints into the

learning algorithm. Castor uses various techniques

to learn efficiently over large databases.

• We formalize the notion of schema independence

for query-based learning algorithms, which learn the

target concepts by asking queries to an oracle, e.g.,

a database user [18,2]. We prove that algorithms in

this family are not schema independent (Section 8).

• We empirically compare the schema independence,

effectiveness, and efficiency of Castor to some pop-

ular relational learning algorithms under (de) com-

position using a widely used benchmark and three

real-world databases (Section 9). Our empirical re-

sults generally confirm our theoretical results and

show that Castor is more efficient and as effective

as, or more effective than, current algorithms.

2 Background

2.1 Related Work

There has been a growing interest in developing rela-

tional learning algorithms that scale to large databases

[14,7,31]. AMIE [14] and Ontological Pathfinding [7] fo-

cus on learning first-order rules from RDF-style knowl-

edge bases. They impose several restrictions to the learned

rules to be able to learn over large knowledge bases.

QuickFOIL [31] provides an in-RDBMS implementa-

tion of a modified version of FOIL. Besides efficiency,

we also focus on schema independence.

Davis et al. [9] use a relational learning algorithm

to learn new features, which are used to improve the

performance of the SRL model. The proposed system

in this paper can also be used to learn these features

as well as the structure of the SRL models, with the

added benefit of efficiency and schema independence.

We build upon the body of work on transforming

databases without modifying their content by explor-

ing the sensitivity of relational learning algorithms to

such transformations [17,13]. Another notable group of

database transformations is schema mapping for data

exchange [12]. But, these transformations generally lose

information and introduce incomplete information to a

database. Researchers have defined the property of de-

sign independence for keyword query processing over

XML [30]. We extend this line of work by exploring the

schema independence for relational learning algorithms.

This paper extends previous work [25] in several di-

rections. First, it contains the proofs for some of our

theoretical results. The proofs for other results are in

[24]. Second, it analyzes the schema independence of

Golem [22], a well-known bottom-up relational learn-

ing system. Third, it provides the theoretical and em-

pirical analyses of query-based relational learning algo-

rithms. Fourth, it explains an extension of Castor [25]

that forces learned definitions to be safe, i.e., all head

variables must appear in the body. This allows Castor

to learn from positive examples only. Finally, it empir-

ically evaluates the impact of Castor’s design choices,

namely parallelization and stored procedures.

2.2 Basic Definitions

We fix two disjoint (countably) infinite sets of relation

and attribute symbols. Each relation symbol R is as-

sociated with a set of attribute symbols denoted as

sort(R). Let D be a countably infinite domain of val-

ues, i.e., constants. An instance IR of relation symbol

R with n = |sort(R)| is a (finite) relation over Dn.

Schema R is a pair (R, Σ), where R and Σ are finite

sets of relation symbols and constraints, respectively.

A constraint restricts the properties of data stored in

a database. Examples of constraints are functional de-

pendencies (FD) and inclusion dependencies (IND), i.e.,

referential integrity. Let πX(IR), X ⊆ sort(R), denote

the projection of relation IR on attribute set X. Rela-

tion IR satisfies FD X → Y , where X,Y ⊂ sort(R), if

for each pair s, t of tuples in IR, πX(s) = πX(t) implies

πY (s) = πY (t). Given relation symbols R and S and

sets of attributes X ∈ sort(R) and Y ∈ sort(S), rela-

tions IR and IS satisfy IND R[X] ⊆ S[Y] if πX(IR) ⊆
πY (IS). If both INDs R[X] ⊆ S[X] and S[X] ⊆ R[X]

hold in a schema, we denote them as R[X] = S[X] and

call it an IND with equality. An instance of schema R is

a mapping I overR that associates each relation R ∈ R
to an instance IR that satisfies all constraints in Σ. The

set Σ may logically imply other constraints, e.g., FD

X → Y and Y → Z imply X → Z [1]. The set of all

constraints implied by Σ is shown as Σ+. To simplify

our notations, we use Σ and Σ+ interchangeably.

An atom is a formula in the form of R(u1, . . . , un)

where R is a relation symbol, n = |sort(R)|, and each

ui, 1 ≤ i ≤ n, is a variable or constant. If all ui’s are

constants, the atom is a ground atom. A literal is an

atom, or the negation of an atom. A ground literal is a

literal whose atom is a ground atom. A definite Horn

clause (Horn clause for short) is a finite set of literals

that contains exactly one positive literal. The positive

literal is called the head of the clause, and the set of

negative literals is called the body. A clause has the

form: T (u) ← L1(u1), · · · , Ln(un). Horn clauses are

also called conjunctive queries [1]. A Horn definition,

i.e., union of conjunctive queries, is a set of Horn clauses

4 Jose Picado et al.

with the same head literal. A Horn definition is defined

over a schema if the bodies of all clauses in the definition

contain only literals whose relations are in the schema.

In this paper, we use Horn definitions to define new

target relations that are not in the schema. The heads

of all clauses in these definitions are the target relation.

3 Framework

3.1 Relational Learning

Relational learning algorithms learn first-order defini-

tions from training examples and a relational database.

Training examples E are usually tuples of a single tar-

get relation T , which express positive (E+) or negative

(E−) examples. The input database instance I is also

called background knowledge. The learned definition is

called the hypothesis H, which is usually restricted to

Horn definitions for efficiency reasons. In the following

sections we provide concrete definitions of several rela-

tional learning algorithms.

Example 2 Consider using a relational learning algo-

rithm and the UW-CSE database with the Original

schema shown in Table 1 to learn a definition for the

target relation collaborated(x, y), which indicates that

person x has collaborated with person y. The algorithm

may return definition

collaborated(x, y)← publication(p, x), publication(p, y),

which indicates that two persons have collaborated if

they are co-authors.

In this paper, we study relational learning algorithms

for Horn definitions. We denote the set of all Horn def-

initions over schema R by HDR. This set can be very

large, which means that algorithms would need a lot of

resources (e.g. time and space) to explore all definitions.

Because resources are limited in practice, algorithms

accept parameters that either restrict the hypothesis

space or the search strategy. For instance, an algorithm

may consider only clauses whose number of literals are

fewer than a given number, or may follow a greedy ap-

proach where only one clause is considered at a time.

Let the parameters for a learning algorithm be a tuple

of variables θ = 〈θ1, ..., θr〉, where each θi is a param-

eter for the algorithm. We denote the parameter space

by Θ. We denote the hypothesis space (or language) of

algorithm A over schema R with parameters θ as LAR,θ.
The hypothesis space LAR,θ is a subset of HDR [21,26].

Example 3 Continuing Example 2, consider restricting

the hypothesis space to clauses whose number of liter-

als are fewer than a given number, which we call clause-

length. Assume that we are now interested in learning a

definition for the target relation collaboratedProf(x,y),

which indicates that professor x has collaborated with

professor y, under the Original schema. If we set clause-

length = 5, the learning algorithm is able to learn the

definition

collaboratedProf (x, y)← professor(x), professor(y),

publication(p, x), publication(p, y).

However, if we set clause-length = 3, the previous defi-

nitions is not in the hypothesis space of the algorithm.

3.2 Schema Independence

3.2.1 Mapping Database Instances

One may view a schema as a way of representing back-

ground knowledge used by relational learning algorithms

to learn the definitions of target relations. Intuitively,

in order to learn essentially the same definitions over

schemas R and S, we should make sure that R and S
represent basically the same information. Let us denote

the set of database instances of schema R as I(R). In

order to compare the ability of R and S to represent

the same information, we would like to check whether

for each database instance I ∈ I(R) there is a database

instance J ∈ I(S) that contains basically the same in-

formation as I. We adapt the notion of equivalency be-

tween schemas to precisely state this idea [17,13].

Given schemasR and S, a transformation is a (com-

putable) function τ : I(R) → I(S). For brevity, we

write transformation τ as τ : R → S. Transformation

τ is total iff it is defined for every element of I(R).

Transformation τ is invertible iff it is total and there

exists a transformation τ−1 : S → R such that the

composition of τ and τ−1 is the identity mapping on

I(R), that is τ−1(τ(I)) = I for I ∈ I(R). The trans-

formation τ−1 may or may not be total. We call τ−1

the inverse of τ and say that τ is invertible. If transfor-

mation τ is invertible, one can convert every instance

I ∈ I(R) to an instance J ∈ I(S) and reconstruct

I from the available information in J . If τ : R → S
is bijective, schemas R and S are information equiva-

lent via τ . Informally, if two schemas are information

equivalent, one can convert the databases represented

using one of them to the other without losing any infor-

mation. Hence, one can reasonably argue that equiva-

lent schemas essentially represent the same information.

Our definition of information equivalence between two

schemas is more restricted that the ones proposed in

[17,13]. We assume that in order for schemas R and S
to be information equivalent via τ , τ−1 has to be total.

Although more restricted, this definition is sufficient to

cover the transformations discussed in this paper.

Logically Scalable and Efficient Relational Learning 5

Example 4 In addition to the functional dependencies

shown in Table 1, let the following inclusion dependen-

cies hold over the relations of Original schema in this

table: student[stud] = inPhase[stud], student[stud] =

yearsInProgram[stud], professor[prof] = hasPosition[prof],

One may join relations student, inPhase, and yearsIn-

Programs and join relations professor and hasPosition

to map each instance of the Original schema to an in-

stance of the 4NF schema. Also, each instance of the

4NF schema can be mapped to an instance of the Orig-

inal schema by projecting relation student to relations

student, inPhase and yearsInProgram and projecting re-

lation professor to relations hasPosition and professor.

Hence, these schemas are information equivalent.

3.2.2 Mapping Definitions

Let HDR be the set of all Horn definitions over schema

R. In order to learn semantically equivalent definitions

over schemas R and S, we should make sure that the

sets HDR and HDS are equivalent. That is, for every

definition hR ∈ HDR, there is a semantically equivalent

Horn definition in HDS , and vice versa. If the set of

Horn definitions overR is a superset or subset of the set

of Horn definitions over S, it is not reasonable to expect

a learning algorithm to learn semantically equivalent

definitions in R and S.

Let LR be a set of Horn definitions over schema

R such that LR ⊆ HDR. Let hR ∈ LR be a Horn

definition over schema R and I ∈ I(R) be a database

instance. The result of applying a Horn definition hR
to database instance I is the set containing the head

of all instantiations of hR for which the body of the

instantiation belongs to I(R). hR(I) shows the result
of hR on I.

Definition 1 Transformation τ : R → S is defini-

tion preserving w.r.t. LR and LS iff there exists a total

function δτ : LR → LS such that for every definition

hR ∈ LR and I ∈ I(R), hR(I) = δτ (hR)(τ(I)).

Intuitively, Horn definitions hR and δτ (hR) deliver the

same results over all corresponding database instances

in R and S. We call function δτ a definition mapping

for τ . Transformation τ is definition bijective w.r.t. LR
and LS iff τ and τ−1 are definition preserving w.r.t. LR
and LS .

If τ is definition bijective w.r.t. equivalent sets of

Horn definitions, one can rewrite each Horn definition

over R as a Horn definition over S such that they re-

turn the same results over all corresponding database

instances of R and S, and vice versa. We call these def-

initions equivalent. We use the operator ≡ to show that

two definitions are equivalent.

3.2.3 Relationship Between Bijective and Definition

Bijective Transformations

In order for a learning algorithm to learn equivalent

definitions over schemas R and S, where τ : R → S, τ

should be both bijective and definition bijective w.r.t.

HDR and HDS . If τ is bijective, the learning algorithm

takes as input the same background knowledge. Also,

a definition bijective transformation ensures that the

learning algorithm can output equivalent Horn defini-

tions over both schemas. Nevertheless, it may be hard

to check both conditions for given schemas. Next, we

extend the results in [13] to find the relationship be-

tween the properties of bijective and definition bijective

transformations. In this paper, we consider only trans-

formations that can be written as sets of Horn defini-

tions. We call these Horn transformations. Composi-

tion/ decomposition are well-known examples of Horn

transformations [1].

Example 5 Let R be the Original schema and S be the

4NF schema in Example 4. The transformation from

the Original schema to the 4NF schema can be written

as the following set of Horn definitions:

student(x, y, z)←student(x), inPhase(x, y),

yearsInProgram(x, z).

professor(x, y)←professor(x), hasPosition(x, y).

publication(x, y)←publication(x, y).

The inverse of this transformation from the 4NF to

Original schema is a set of projection operators, which

can also be written as a set of Horn definitions.

Let transformation τ : R → S and its inverse τ−1 : S →
R be Horn transformations. Clearly, the head of each

Horn definition in τ−1 will be a relation in R. Let hR
be a Horn definition in HDR. The composition of hR
and τ−1, denoted by hR ◦ τ−1, is a Horn definition that

belongs toHDS , created by applying hR to the heads of

clauses in τ−1 [1]. That is, hR ◦ τ−1(J) = hR(τ−1(J)),

for all J ∈ I(S).

Proposition 1 Given schemas R and S, if transfor-

mation τ : R → S is bijective and both τ and τ−1

are Horn transformations, then τ is definition bijective

w.r.t HDR and HDS .

Intuitively, if τ : R → S is bijective and both τ and

τ−1 are Horn transformations, every Horn definition in

HDR can be rewritten as a Horn definition in HDS
such that they return the same results over equivalent

database instances. Hence, in the rest of this paper, we

consider only the bijective Horn transformations whose

inverses are Horn transformations.

6 Jose Picado et al.

Example 6 Let R be the Original schema and S be

the 4NF schema in Example 4, and τ : R → S and

τ−1 : S → R are the Horn transformation explained in

Example 5. According to Proposition 1, τ is definition

bijective w.r.t. HDR and HDS .

3.2.4 Schema Independence Property

The hypothesis space determines the set of possible

Horn definitions that the algorithm can explore. Ex-

ample 3 showed that an algorithm is able to learn a

definition for a target relation with some hypothesis

space but not in another more restricted space. In or-

der for an algorithm to learn semantically equivalent

definitions for a target relation over schemas R and S,

it should have equivalent hypothesis spaces over R and

S. We call this property hypothesis invariance. Let Θ

be the parameter space for algorithm A.

Definition 2 Algorithm A is hypothesis invariant un-

der transformation τ : R → S iff τ is definition bijective

w.r.t. LAR,θ and LAS,θ, for all θ ∈ Θ.

AlgorithmA is hypothesis invariant under a set of trans-

formations iff A is hypothesis invariant under every

transformation in the set. We now define the notion of

schema independence for relational learning algorithms

over a bijective transformation. A relational learning

algorithm A(I, E, θ) takes as input a database instance

I, training examples E, and parameters θ ∈ Θ, and

outputs a hypothesis in LAR,θ.

Definition 3 Algorithm A is schema independent un-

der bijective transformation τ : R → S iff A is hypoth-

esis invariant under τ and for every I ∈ I(R) and all

θ ∈ Θ, we have: A(τ(I), E, θ) ≡ δτ (A(I, E, θ)), where

δτ is the definition mapping for τ .

Algorithm A is schema independent under the set of

transformations iff it is schema independent under each

transformation in the set. Note that if an algorithm is

schema independent under transformation τ , it is hy-

pothesis invariant under τ . However, it is possible for

an algorithm not to be schema independent, but be hy-

pothesis invariant. In such cases, the cause of schema

dependence must necessarily be related to the search

process of the algorithm, rather than hypothesis repre-

sentation capacity.

Example 7 Consider the Original schema and the 4NF

schema in in Example 4. The Original schema is the

result of a decomposition of the 4NF schema. Con-

sider the learning algorithm FOIL. If the target rela-

tion is collaboratedProf(x,y), as in Example 3, FOIL is

able to learn equivalent definitions under the Original

schema and the 4NF schema. But, if the target rela-

tion is advisedBy(x,y), FOIL learns non-equivalent def-

initions under these schemas, as seen in Example 1, and

is not schema independent.

4 Decomposition and Composition

There are many bijective Horn transformations between

relational schemas [17,1]. It takes more space than a

single paper to explore the behavior of relational learn-

ing algorithms over all such transformations. In this pa-

per, we explore the schema independence of relational

learning algorithms under two widely used Horn trans-

formations called decomposition, where the transforma-

tion is projection, and composition, where the trans-

formation is natural join [1]. Our reasons for selecting

these transformations are two fold. First, they are used

in most normalizations and de-normalizations, e.g., 3rd

normal form. which are arguably one of the most fre-

quent schema modifications and their importances have

been recognized from the early days of relational model

[1]. Database designers often normalize schemas to re-

move redundancy and insertion/ deletion anomalies and

denormalize them to improve query processing time and

schema readability [1]. We also observe several cases of

them in relational learning benchmarks, one of which is

presented in Section 1.

We define decomposition as follows [1]. Let Si ./

Sj and ISi
./ ISj

denote the natural join between Si
and Sj and their instances, respectively. We restrict the

definition of natural join for the cases where Si and Sj
have at least one attribute symbol in common to avoid

Cartesian product. Let ./ni=1 Si show the natural join

between S1, . . ., Sn. Recall that if both INDs S1[A] ⊆
S2[B] and S2[B] ⊆ S1[A] hold in a schema, we denote

them as S1[A] = S2[B] and call it an IND with equality.

Definition 4 A decomposition of schemaR = (R, ΣR)

with single relation symbol R is schema S = (S, ΣS)

with relation symbols S1 . . . Sn such that sort(R) =

∪1≤i≤nsort(Si) and

1. For each relation IR there is one and only one in-

stance (IS1 . . . ISn) of S such that πsort(Si)(IR) =

ISi
, 1 ≤ i ≤ n, and ./ni=1 ISi

= IR.

2. For all Si, Sj , 1 ≤ i, j ≤ n, such that X = sort(Si)∩
sort(Sj) 6= ∅,ΣS contains IND with equality Si[X] =

Sj [X].

3. We have ΣS = ΣR ∪ λ, where λ is the set of INDs

with equality in the second condition.

The first and third conditions in Definition 4 are gener-

ally known as lossless join and dependency preservation

properties, respectively. The second condition in Defini-

tion 4 ensures that the natural join of relations in every

Logically Scalable and Efficient Relational Learning 7

instance IS of S does not lose any tuples in IS . Ta-

ble 1 depicts an example of a decomposition. Relation

symbol student in the 4NF schema is decomposed into

student, inPhase, and yearsInProgram in the origi-

nal schema. The conditions of Definition 4, e.g., lossless

join property, hold in this example due to the FDs in

original and 4NF schemas [1]. These conditions may

also be satisfied because of other types of constraints

in the schema, such as multi-valued dependencies. A

composition is the inverse of a decomposition, which is

expressed by natural join.

Consider again schema S in Definition 4. The join

./ni=1 ISi
is globally consistent if for each j, 1 ≤ j ≤ n,

πsort(Sj) ./
n
i=1 ISi

= ISj
[1]. Intuitively speaking, a join

is globally consistent if none of its relations has a dan-

gling tuple regarding the join. For example, the join

between the relations of S in the first condition of Defi-

nition 4 is globally consistent. The join ./ni=1 ISi is pair-

wise consistent if for each 1 ≤ i, j ≤ n, πsort(Si)(ISi
./

ISj
) = ISi

. In other words, ISi
does not lose any tu-

ple after joining with ISj . The join ./ni=1 Si is acyclic

if each instance ./ni=1 ISi
that is pairwise consistent is

globally consistent [1]. For example, the join S1 ./ S2

in schema S1 :{S1(A,B), S2(A,C)} is acyclic. But, the

join S3 ./ S4 ./ S5 in schema S2 : {S3(A,B), S4(B,C),

S5(B,A), } is cyclic. In this paper, we consider only the

decompositions where the join in the first condition of

Definition 4 is acyclic [1]. Acyclic joins cover most de-

compositions in real-world [1]. For examples, most nor-

mal forms, e.g., 3NF, BCNF, 4NF, have acyclic joins.

For simplicity, we consider leaving a relation un-

changed as a special case of decomposition. We define

the decomposition (composition) of a schema with more

than one relation as the set of decompositions (compo-
sitions) of all its relations. We define a decomposition/

composition of a schema as a finite set of applications of

composition and/or decomposition to the schema. Ev-

ery decomposition is bijective [1]. Because each decom-

position is bijective, every composition is also bijective.

Because both projection and natural join can be writ-

ten as Horn definitions, each decomposition/ composi-

tion and its inverse are Horn transformations. Hence,

they are definition bijective. We explore the property

of schema independence only for decomposition/ com-

position in this paper.

5 Top-down algorithms

Many relational learning algorithms follow a covering

approach [26,21]. The covering approach consists in

constructing one clause at a time. After building a clause,

the algorithm adds the clause to the hypothesis, dis-

cards the positive examples covered by the clause, and

moves on to learn a new clause. Algorithm 1 sketches

a generic relational learning algorithm that follows a

covering approach. In top-down algorithms, the Learn-

Clause function searches the hypothesis space from gen-

eral to specific. The hypothesis space in top-down al-

gorithms is a tree in which nodes represent clauses and

each edge is the application of a basic refinement oper-

ator, which generally consists of adding a new literal to

the clause. Top-down algorithms start from the most

general clause, which corresponds to the root of the

tree, and repeatedly refine it until reaching some stop-

ping condition.

Algorithm 1: Generic relational learning algorithm

following a covering approach.

Input : Database instance I, positive examples E+,
negative examples E−

Output: A Horn definition H

H ← {} ; U ← E+

while U is not empty do
C ← LearnClause(I, U,E−)
if C satisfies minimum condition then

H ← H ∪ C

U ← U − {c ∈ U |I ∪H |= c}
return H

The strategy of searching the tree varies between

different top-down algorithms. For instance, FOIL [26,

31] is an efficient and popular top-down algorithm that

follows a greedy best-first search strategy. Given the

current clause, FOIL specializes a clause by adding the

literal that provides the most information gain. FOIL

stops adding literals to the clause when the number

of bits required to encode the clause exceeds the num-

ber of bits required to indicate the number of positive

examples covered by the clause. Progol [21] is another

well-known top-down algorithm similar to FOIL, except

that it does not follow a greedy search strategy, and it

restricts the literals that can be added to the clause.

Further, Progol limits the length of the clause, i.e., the

maximum number of literals in a clause.

Intuitively, because composition/decompositions mod-

ify the number of relations in a schema, equivalent clauses

over the original and transformed schemas may have

different lengths and would require different number of

bits to be encoded. Hence, the stopping conditions used

by FOIL and Progol may produce different hypothesis

spaces over different schemas.

Theorem 1 FOIL is not hypothesis invariant.

Proof Let R be a schema, E be the training data, C

be a clause, n be the number of variables in C, and p

be the number of positive examples covered by C. The

number of bits required to indicate that these examples

are covered by C is be(C) = log2(|E|)+ log2(
(|E|
p

)
) [26].

8 Jose Picado et al.

The number of bits bc(C) required to encode clause C

is equal to the sum of the number of bits required to

encode each literal in C, reduced by log2(m!), where

m is the number of literals in C. The number of bits

required to encode a literal is 1+log2(|R|)+log2(n) [26].

A clause C is in hypothesis space L if bc(C) ≤ be(C).

Let relation R1(A,B,C) be in R and τ : R → S
decompose R1 to S1(A,B) and S2(B,C). Let T (A) be

the target relation. Consider hypothesis hR: T (x) ←
R1(x, y, z) over schema R, whose mapped hypothesis

is hS = δτ (hR) = T (x) ← S1(x, y), S2(y, z). Then,

bc(hR) = 1 + log2(1) + log2(3)− log2(1!) and bc(hS) =

(1+log2(2)+log2(3))+(1+log2(2)+log2(3))− log2(2!).

Let |E| = 5 and hR cover p = 2 examples. Because

hR ≡ hS , then be(hR) = be(hS). Let LFOILR and LFOILS
be the hypothesis spaces overR and S, respectively. Hy-

pothesis hR is in LFOILR because bc(hR) ≤ be(hR), but

hS is not in LFOILS because bc(hS) > be(hS). There-

fore, the hypothesis spaces over schemas R and S are

not equivalent.

One may want to fix the problem of schema de-

pendence in Progol by choosing different values for the

maximum lengths over the original and transformed

schemas. The following theorem proves that it is not

possible to achieve equivalent hypothesis spaces by re-

stricting the maximum length of clauses no matter what

values are used over the original and transformed schemas.

The proof can be found in [24].

Theorem 2 Progol is not hypothesis invariant.

6 Bottom-up Algorithms

Bottom-up algorithms also follow the covering approach
shown in Algorithm 1. However, their LearnClause func-

tion searches the hypothesis space from specific to gen-

eral hypotheses. Given a positive example, bottom-up

algorithms attempt to find the most specific clause in

the hypothesis space, called bottom-clause, that covers

the example, relative to the database instance [22,23].

Then, they generalize these bottom-clauses to find def-

initions that cover as most positive and as fewest nega-

tive examples as possible. There are multiple bottom-up

algorithms whose differences lie mainly in their general-

ization operator [22,23,4]. We consider two algorithms

that are representative of the family of bottom-up al-

gorithms: Golem [22] and ProGolem [23].

6.1 Bottom-clause Construction

Let IR be a database instance over schema R. The

bottom-clause associated with positive example e, rela-

tive to IR, denoted by ⊥e,IR , is the most specific clause

over R that covers e, relative to IR. A typical algo-

rithm for computing bottom-clauses using inverse en-

tailment is given in [21]. The algorithm starts with an

empty clause, and iteratively adds literals to the clause.

Given positive example T (a1, . . . , an), it assigns a fresh

variable ui to each distinct constant and adds literal

T (u1, . . . , un) to the head of the bottom-clause. The al-

gorithm maintains the mapping between constants and

variables. It then finds all tuples in the database that

contain constants a1, . . . , an. For each tuple, the algo-

rithm adds a new literal to the bottom-clause, where

the predicate symbol is the tuple relation symbol and

the terms are variables obtained by replacing a1, . . . , an
in the tuple to their corresponding variables and assign-

ing new variables to newly encountered constants in the

tuple.In the following iterations, the algorithm searches

the database for tuples that contain new constants and

adds new literals to the bottom-clause. This algorithm

may generate very long clauses after multiple iterations

over a large database. A common method to restrict

the number of iterations is to limit the maximum depth

of the bottom-clause [21]. The depth of a variable x,

denoted by d(x), is 0 if it appears in the head of the

clause, otherwise it is minv∈Ux
(d(v)) + 1, where Ux are

the variables of literals in the body of the clause con-

taining x. The depth of a literal is the maximum depth

of the variables appearing in the literal. The depth of a

clause is the maximum depth of the literals appearing

in the clause. The algorithm creates literals of depth at

most i in iteration i.

Example 8 This clause over the Original UW-CSE schema

in Table 1 has depth 1: taLevel(x, y) ← ta(c, x, t) ,

courseLevel(c, y). The following clause for target rela-

tion commonLevel(x, y), which says that students x and

y assist with courses at the same level has depth 2:

commonLevel(x, y)← ta(c1, x, t1), ta(c2, y, t2),

courseLevel(c1, l), courseLevel(c2, l).

Bottom-clauses determine the hypothesis space of a bottom-

up algorithm: longer bottom-clauses allow the algorithm

to explore larger number of definitions. To be schema

independent, bottom-up algorithms must get equiva-

lent bottom-clauses associated with the same exam-

ple, relative to equivalent instances of the original and

transformed schemas. Otherwise, these algorithms will

not be hypothesis invariant. Using the depth parame-

ter does not result in such equivalent bottom-clauses

because the original and transformed schemas need dif-

ferent depths to create equivalent bottom-clauses.

Example 9 Let us compose and replace relations course-

Level(crs,level) and ta(crs, stud, term) in the Original

UW-CSE schema with courseLevelTa(crs,level,stud,term).

Logically Scalable and Efficient Relational Learning 9

commonLevel from Example 8 has the following defini-

tion over this schema, which has depth 1:

commonLevel(x, y)←courseLevelTa(c1, l, x, t1),

courseLevelTa(c2, l, y, t2).

If we set the maximum depth to 1, in the Original

schema, the clause in Example 8 is not in the hypoth-

esis language. But, under the new schema, the clause

presented above is in the hypothesis language.

The following lemma proves that the bottom-clause con-

struction algorithm is schema dependent even if differ-

ent depth values are used across schemas.

Lemma 1 Bottom-clause construction is not schema

independent.

6.2 Golem

In this section, we consider a bottom-up learning algo-

rithm called Golem [22]. Golem, like other learning al-

gorithms, follows a covering approach, as the one shown

in Algorithm 1. Golem’s LearnClause function follows a

bottom-up approach, which is based on the least general

generalization (lgg) operator. Given clauses C1 and C2,

the lgg of C1 and C2 is the clause C that is more general

than C1 and C2, but the least general such clause. The

notion of generality is defined by θ-subsumption. There-

fore, clause C is more general than C1 if and only if C

θ-subsumes C1 (and similarly for C2). This notion of

generality gives a computable generality relation. Fur-

ther, the lgg of two clauses is unique. Because of the

lack of space, for further details we refer the readers

to [22].

Golem uses a special case of bottom-clause, where

all literals of the clause are grounded. We call this type

of clause the saturation. A saturation can be computed

using the bottom-clause construction algorithm described

above. Given the saturations for a pair examples, the

operator that computes the lgg for the pair of satura-

tions is called the relative least general generalization

(rlgg). The lgg of a set of saturations is defined via

pairwise operations, that is

lgg({C1, ..., Cn}) = lgg(lgg({C1, ..., Cn−1}), Cn)

The order of pairwise lggs does not matter as the lgg

operator is commutative and associative.

Given a database instance I and training examples

E+ and E−, Golem’s LearnClause function learns a

clause that covers the most positive and the fewest neg-

ative examples as possible. Algorithm 2 sketches this

function. Intuitively, the algorithm first randomly se-

lects a subset E+
S of positive examples E+. It then gen-

erates candidate clauses by computing the rlgg between

every pair of examples in E+
S . The algorithm consid-

ers only candidate clauses that satisfy some minimum

condition, e.g., minimum precision of a clause. It then

greedily includes new examples into the generalization

to create new candidate clauses. This algorithm uses

the function Covers(C,E), which returns the examples

in E covered by clause C. The algorithm stops when no

improvement can be done.

Algorithm 2: Golem’s LearnClause algorithm.

Input : Database instance I, positive examples E+,
negative examples E−, parameter K.

Output: A new clause C∗.
E+

S ← K randomly selected positive examples from E+

C = {C = lgg(⊥e,I ,⊥e′,I) | e, e′ ∈
E+

S , C satifies minimum condition}
while C is not empty do

C∗ = argmaxC∈C Score(C,E+
S , E−)

E+
S = E+

S − Covers(C∗, E+
S)

C = {C = lgg(C∗,⊥e,I) | e ∈
E+

S , C satifies minimum condition}
return C∗

Theorem 3 The rlgg operator is schema independent.

Proof Let τ : R → S be a bijective transformation

that is a vertical composition/ decomposition between

schemas R = (R, ΣR) and S = (S, ΣS). Let I and J be

instances of R and S, respectively, such that τ(I) = J .

Let T be the target relation, and e1 = T (a1, · · · , al) and

e2 = T (b1, · · · , bl) be two positive examples. Let (e1 ←
I ′1) and (e2 ← I ′2) be the saturations under schema R
for e1 and e2, respectively, such that I ′1, I

′
2 ⊆ I. Simi-

larly, let (e1 ← J ′1) and (e2 ← J ′2) be the saturations

under schema S for e1 and e2, respectively, such that

J ′1, J
′
2 ⊆ J .

We show that the result of the rlgg operator for

examples e1 and e2 is equivalent under schemas R and

S. That is

rlggR(e1, e2) ≡ rlggS(e1, e2)

lgg((e1 ← I ′1), (e2 ← I ′2)) ≡ lgg((e1 ← J ′1), (e2 ← J ′2))

We know that (e1 ← I ′1) and (e2 ← I ′2)) are clauses.

Therefore, lgg((e1 ← I ′1), (e2 ← I ′2)) is the set of pair-

wise lgg operations of compatible ground atoms in (e1 ←
I ′1) and (e2 ← I ′2). Two atoms are compatible if they

have the same relation name. We show that the lgg

of compatible ground atoms under schema R delivers

equivalent results under schema S.

Let R ∈ R be a relation in R such that τ(R) =

S1, · · · , Sm, 1 ≤ m ≤ |S|. Because of Corollary 4.3.2 in

[5], we know that if τ is bijective, ΣS contains inclusion

dependencies between the join attributes of S1, · · · , Sm.

Let r1 = R(a1, · · · , ak) and r2 = R(a′1, · · · , a′k) be two

ground atoms in I. Then, τ(r1) = S1(t1), · · · , Sm(tm)

and τ(r2) = S1(t′1), · · · , Sm(t′m) are ground atoms in J ,

10 Jose Picado et al.

where ti and t′i, 1 ≤ i ≤ m, are tuples. Then, the lgg of

ground atoms r1 and r2 is defined as

lgg(r1, r2) = R(lgg(a1, a
′
1), · · · , lgg(ak, a

′
k))

By applying transformation τ , this is equivalent to

S1(s1), S2(s2), · · · , Sm(sm)

where sj is a tuple that contains a subset of attributes

in {lgg(a1, a
′
1), · · · , lgg(ak, a

′
k)} for 1 ≤ j ≤ m. By

definition of the lgg operator, we get

S1(s1),S2(s2), · · · , Sm(sm)

=lgg(S1(t1), S1(t′1)), · · · , lgg(Sm(tm), Sm(t′m))

=lgg(τ(r1), τ(r2))

�

In Section 7.1 we show that the bottom-clause con-

struction algorithm can be modified to be schema in-

dependent. Because the rlgg operator is also schema

independent, Golem can achieve schema independence.

However, Golem may generate very large clauses after

each application of the rlgg operator. The reason is that

the size of a clause generated by lgg(C1, C2), where C1

and C2 are clauses, is bounded by |C1| · |C2|. Let n

be the number of positive examples to generalize and

m be the maximum length of a bottom-clause. Then,

the length of the clause generated by rlgg is bounded

by O(mn), i.e., it grows exponentially in the number

of positive examples covered. This results in exponen-

tial running time. Therefore, an algorithm that uses

the rlgg operator, such as Golem [22], cannot learn ef-

ficiently without making assumptions that do not hold

over most real-world databases [23].

6.3 ProGolem

ProGolem is a bottom-up algorithm that can run effi-

ciently over small or medium databases without making

generally unrealistic assumptions [23]. To explore the

hypothesis space and generalize clauses efficiently, Pro-

Golem assumes that clauses are ordered. An ordered

clause is a clause where the order and duplication of

literals matter. If clause C is considered an ordered

clause, then it is denoted as
−→
C . For instance, clauses−→

C = T (x) ← P (x), Q(x),
−→
D = T (x) ← Q(x), P (x),

and
−→
E = T (x)← P (x), P (x), Q(x) are all different.

ProGolem uses the asymmetric relative minimal gen-

eralization (armg) operator to generalize clauses. Pro-

Golem’s LearnClause function first generates the bottom-

clause associated with some positive example. Then, it

performs a beam search to select the best clause gener-

ated after multiple applications of the armg operator.

More formally, given clause
−→
C , ProGolem randomly

picks a subset E+
S of positive examples to generalize

−→
C .

For each example e′ in E+
S , ProGolem uses the armg op-

erator to generate a candidate clause
−→
C ′, which is more

general than
−→
C and covers e′. It then selects the highest

scoring candidate clauses to keep in the beam and it-

erates until the clauses cannot be improved. The beam

search requires an evaluation function to score clauses.

One may select an evaluation function that is agnostic

of the schema used, such as coverage, which is the num-

ber of positive examples minus the number of negative

examples covered by the clause.

Algorithm 3: ARMG algorithm.

Input : Bottom-clause ⊥e,IR , positive example e′.
Output: An ARMG of ⊥e,IR that covers e′.
−→
C is ⊥e,IR= T ← L1, · · · , Ln

while there is a blocking atom Li w.r.t. e′ in the body of
−→
C do

Remove Li from
−→
C

Remove atoms from
−→
C which are not

head-connected

Return
−→
C

We now explain the armg operator in detail. Let

⊥e,IR be the bottom-clause associated with example e,

relative to IR. Let
−→
C = T ← L1, · · · , Ln be the or-

dered version of ⊥e,IR . Let e′ be another example. Li is

a blocking atom iff i is the least value such that for all

substitutions θ where e′ = Tθ, the clause
−→
C ′θ = (T ←

L1, · · · , Li)θ does not cover e′, relative to IR [23]. Algo-

rithm 3 shows the ARMG algorithm, which implements

the armg operator. Given the bottom-clause ⊥e,IR and

a positive example e′, armg drops all blocking atoms

from the body of ⊥e,IR until e′ is covered. After re-

moving a blocking atom, some literals in the body may

not have any variable in common with the other liter-

als in the body and head of the clause, i.e., they are

not head-connected. ARMG also drops those literals.

For ProGolem to be schema independent, the armg op-

erator must return equivalent clauses given equivalent

input clauses over original and transformed databases.

Example 10 Consider the following equivalent defini-

tions for target relation hardWorking over the Original

and 4NF UW-CSE schema in Table 1, respectively:

hardWorking(x)←student(x), inPhase(x, prelim),

yearsInProgram(x, 3)

hardWorking(x)←student(x, prelim, 3).

Assume that armg wants to generalize these clauses to

cover example e′. Let e′ satisfy literal student(x) but

does not satisfy inPhase(x , prelim). The armg opera-

tor keeps literal student(x) in the first clause, but it

eliminates student(x , prelim, 3) from the second clause.

Hence, it delivers non-equivalent generalizations.

Logically Scalable and Efficient Relational Learning 11

Thus, neither bottom-clause construction nor general-

ization phases in ProGolem are schema independent.

Theorem 4 ProGolem is not schema independent.

7 Castor

This section presents Castor, a bottom-up relational

learning algorithm. Castor uses the covering approach

presented in Algorithm 1. It follows the same search

strategy as ProGolem, but integrates INDs into the

bottom-clause construction and generalization algorithms

to achieve schema independence. If we apply the INDs

in schemaR to Horn clause hR overR, we get an equiv-

alent Horn clause that has a similar syntactic struc-

ture to its equivalent Horn clauses in decomposition/

compositions of R [1]. For example, consider schema

R2 :{R1(A,B), R2(A,C)} with the IND R1[A] = R2[A]

and the clause hR2
: T (x) ← R1(x, y). Because each

value in R1[A] also appears in R2[A], we can rewrite

hR2 as gR2 : T (x) ← R1(x, y), R2(x, z). Now, consider

a composition of R, S2 :{S1(A,B,C)}. The clause hS2 :

T (x) ← S1(x, y, z) over S2 is equivalent to both hR2

and gR2 . gR2 and hS2 have also similar syntactic struc-

tures: there is a bijection between the distinct variables

in gR2
and hS2 . However, such bijection does not exist

between hR2
and hS2 . As learning algorithms modify

the syntactic structure of clauses to learn a target def-

inition and hR2
and hS2 have different syntactic struc-

tures, these algorithms may modify them differently

and generate non-equivalent clauses. For instance, as-

sume that an algorithm renames variable z to x in hS2
to generate clause h

′

S2 : T (x) ← S1(x, y, x). This al-

gorithm cannot apply a similar change to hR2 as hR2

does not have any corresponding variable to z. But, the

algorithm can apply the same modification to gR2
and

generate an equivalent Horn clause to h
′

S2 . Moreover,

as INDs generally reflect important relationships, they

can be used by the algorithm for improving the effec-

tiveness of the learned definitions.

Castor’s LearnClause function is shown in Algo-

rithm 4. It first generates the bottom-clause associated

with some positive example using the modified bottom-

clause construction algorithm presented in Section 7.1.

It minimizes the bottom-clause using the procedure ex-

plained in Section 7.5. Then, it performs a beam search

to select the best candidate after multiple applications

of the modified ARMG algorithm, explained in Sec-

tion 7.2.1. Finally, it reduces the best candidate using

the algorithm explained in Section 7.2.2.

7.1 Castor Bottom-Clause Construction

Castor selects a positive example and constructs its

bottom-clause by following the normal procedure of

Algorithm 4: Castor’s LearnClause algorithm.

Input : Database instance I, positive examples E+,
negative examples E−, parameters K and N .

Output: A new clause C.
−→
C ← Castor BottomClause(first example in E+)
−→
C ← Minimize(

−→
C) ; BC ← {

−→
C }

repeat
BestScore ← highest score of candidates in BC

E+
S ← K randomly selected positive examples
from E+

NC = {}
foreach clause C ∈ BC do

foreach e′ ∈ E+
S do

C′ ← Castor ARMG(C, e′)
if Score(C′) > BestScore then

NC ← NC ∪ C′

BC ← highest scoring N candidates from NC

until NC = {}
C′ ← highest scoring candidate in BC

Return Castor Reduce(C′, I, E−)

bottom-clause construction: at each iteration, it selects

a relation and adds one or more literals of that rela-

tion to the bottom-clause. Let relation symbol R in the

schema R be decomposed to relation symbols S1 . . . Sn
in the transformed schema S. If the bottom-clause con-

struction algorithm considers tuple r in an instance of

R, IR, it must also examine tuples s1, . . . , sn in in-

stances IS1
, . . . , ISn

, respectively, such that ./ni=1 [si]

= r, to ensure the produced bottom-clauses over both

schemas are equivalent. After the bottom-clause con-

struction algorithm replaces the constants with vari-

ables in these bottom-clauses, it generates equivalent

bottom-clauses over R and S. Hence, if Castor exam-

ines tuple sj ∈ ISj , it should find tuples si ∈ ISi whose

natural join with sj creates tuple r. One approach is to

find all relations Si that have some common attributes

with Sj as they have some tuples that join with si
and produce r. However, designers may rename the at-

tributes on which S1 . . . Sn join. For instance, relations

student, inPhase, and yearsInProgram in the original

schema join over attribute stud to create relation stu-

dent in the 4NF schema in Table 1. The database de-

signer may rename attribute stud to name in relation

student. Hence, this approach is not robust against at-

tribute renaming. According to Definition 4, there are

INDs with equality between the join attributes of re-

lation symbols S1 . . . Sn. We use INDs with equality

between the attributes in schema S to find tuples si.

To simplify our notations, we assume that the join be-

tween relations in S is still natural join. Our results

extend for composition joins that are equi-join.

Definition 5 The inclusion class N in schema S is the

maximal set of relation symbols in S such that for each

12 Jose Picado et al.

Si, Sj ∈ N, i 6= j, there is a sequence of INDs Sk[Xk] =

S′k[Xk], i ≤ k ≤ j, in S such that

• Xk = sort(Sk) ∩sort(S′k).

• Sk+1 = S′k for i ≤ k ≤ j − 1.

Castor first constructs the inclusion classes in the in-

put schema S. Assume that the algorithm generates

a bottom-clause relative to an instance of schema S.

Also, assume that the algorithm has just selected rela-

tion ISi
and added literal Li to the bottom-clause based

on some tuple si of ISi . Let Si be a member of inclu-

sion class N in S. For each constraint Sj [X] = Si[X]

between the members of N, Castor selects all tuples

sj of relation ISj , i 6= j such that πX(sj) = πX(si).

It applies the same process for sj until it exhausts the

INDs between the members of N. As the join between

S1 . . . Sn is pairwise consistent, this method efficiently

finds the all tuples s1, . . . , sn that participate in the

join and none of them is a dangling tuple with regard

to the full join. Otherwise, Castor must check the join

condition for each pair of tuples.

Example 11 Consider an instance of the original UW-

CSE schema in Table 1 with tuples s1 :student(Abe),

s2 :inPhase(Abe,prelim) and s3 :yearsInProgram(Abe,2).

Given INDs student[stud] = inPhase[stud] and

student[stud] = yearsInProgram[stud] hold in this schema,

student, inPhase, and yearsInProgram constitute an in-

clusion class. Let Castor select tuple s1 during the bottom-

clause construction. As πstud(s1) = πstud(s2) and πstud(s1)

= πstud(s3), Castor adds tuples s2 and s3 to the bottom-

clause.

The INDs between relations in a inclusion class may

form a cycle.

Definition 6 A set of INDs with equality λ over schema

S is cyclic if there is a sequence Si[Xi] = S′i[Yi], 1 ≤
i ≤ n, in λ such that

• Si+1 = S′i for 1 ≤ i ≤ n− 1 and S1 = S′n.

• There is an i where Yi 6= Xi+1.

If the INDs induced by the inclusion class N are cyclic,

Castor may have to examine a lot more tuples than the

case where the INDs of N are not cyclic. For example,

consider schema S1 with relations S1(A,B), S2(B,C),

and S3(C,A). The set of INDs S1[B] = S2[B], S2[C] =

S3[C], and S3[A] = S1[A] is cyclic. Consider tuples s1,

s2, and s3 such that πB(s1) = πB(s2) and πC(s2) =

πC(s3). We may not have πA(s3) = πA(s1). Hence, Cas-

tor has to scan many tuples in S3 to find a tuple s′3 that

satisfies both πC(s2) = πC(s′3) and πA(s′3) = πA(s1).

The following proposition shows that if the composition

join in Definition 4 is acyclic, the INDs with equality

in the decomposed schema are not cyclic. Thus, Castor

does not face the aforementioned issue.

Proposition 2 Give schema R with a single relation

symbol R and its decomposition S with relation symbols

S1, . . . , Sn, if the join ./nj=1 [S1, . . . , Sn] is acyclic, the

INDs with equality λ in Definition 4 are not cyclic.

Proof Because the join is acyclic, there is a join tree

for it whose nodes are Si, 1 ≤ i ≤ n such that (i) every

edge (Si, Sj) is labeled by the set of attributes sort(Si)∩
sort(Sj) and (ii) for every pair Si, Sj of distinct nodes,

for each attribute A ∈ sort(Si) ∩ sort(Sj), each edge

along the unique path between Si and Sj includes label

A. As the IND with equalities λ are defined over the

common attributes of Si and Sj , λ are acyclic. �

Given Si, Sj ∈ N, too many tuples from a relation ISj

may join with the current tuple si ∈ ISi
, which may

result in an extremely large bottom-clause. One may

limit the maximum number of tuples that can join with

the current tuple to a reasonably large value. We use

the value of 10 in our reported experiments. After find-

ing the joint tuples, for each tuple sj , Castor creates a

ground literal Lj . If a constant in Lj has been already

seen, the algorithm replaces it in Lj with the variable

that was assigned to that constant. Otherwise, it assigns

a fresh new variable for that constant in Lj . Finally,

the algorithm adds Lj to the bottom-clause. Because

inclusion classes are maximal, each relation symbol be-

longs to at most one inclusion class. After exhausting all

INDs with equality between the members of N, Castor

returns to the typical procedure of bottom-clause con-

struction. Castor may scan more relations than other

bottom-clause construction algorithms to find tuples

that satisfy the INDs at the end of each iteration. But,

a schema usually has a relatively small number of INDs.

We show in Sections 7.5 and 9 that using an RDBMS

implementation, Castor bottom-clause construction al-

gorithm runs faster than other algorithms.

As explained in Section 6.1, the bottom-clauses may

get too large. We propose a modification of the original

bottom-clause construction algorithm so that the stop-

ping condition is based on the maximum number of dis-

tinct variables in a bottom-clause. At the end of each

iteration, Castor checks how many distinct variables are

in the bottom-clause. If this number is less than an in-

put parameter, Castor continues to the next iteration

and stops otherwise. Intuitively, since the number of

distinct variables in equivalent Horn clauses over com-

position/ decomposition are equal, this condition helps

Castor to return equivalent bottom-clauses over com-

position/ decomposition. The following Lemma states

that Castor bottom-clause construction algorithm is schema

independent.

Lemma 2 Let τ : R → S be a composition/ decompo-

sition, I be an instance of R, and ⊥e,I and ⊥e,τ(I) are

Logically Scalable and Efficient Relational Learning 13

bottom-clauses generated by Castor for example e rela-

tive to I and τ(I), respectively. We have ⊥e,I≡⊥e,τ(I).

Proof Assume that τ decomposes IR to relations IS1
,

. . . , ISm
. Let the constants in e appear in a subset of

relation IR denoted as IeR. Thus, the constants in e

must also appear in at least a subset of one relation in

τ(I)S1
, . . . , τ(I)Sm

, shown as τ(I)eSi
, 1 ≤ i ≤ m. The

algorithm examines all tuples in IeR and τ(I)eSi
at the

same iteration. Let L be the set of literals that the algo-

rithm adds to ⊥e,I based on tuples in IeR. By applying

INDs at the end of iteration, the algorithm considers

all tuples sj in IS1
, . . . , ISm

such that ./nj=1 [si] = r for

every r ∈ IeR. Hence, it will create equivalent clauses at

the end of iteration. In the following iterations, as the

algorithm selects tuples in I and τ(I) using the same

set of constants, it adds equivalent literals to the clauses

over I and τ(I). Because the algorithm uses a one-to-

one mapping from variables to constants, the clauses

over I and τ(I) will be equivalent when the algorithm

stops. The theorem is similarly proved for composition.

Hence, it holds for composition/ decomposition. �

7.2 Castor Generalization

7.2.1 ARMG Algorithm

Castor modifies Algorithm 3 to compute equivalent armgs

over composition/ decomposition. Before we explain the

Castor generalization algorithm, we define some con-

cepts. Given clause
−→
C and literal R(u) in

−→
C , we call

u that may contain both variables and constants a free

tuple. We extend the definitions of projection π and nat-

ural join ./ operators over free tuples in natural man-

ner. A canonical database instance of clause
−→
C , shown

as I
−→
C , is the database instance whose tuples are the

free tuples in
−→
C [1]. In other words, relation IR in I

−→
C

has free tuple u if literal R(u) is in
−→
C . In each itera-

tion of the algorithm, Castor ensures that the canonical

database instance of clause
−→
C always satisfies the INDs

of the schema. Assume the algorithm is applied on in-

stance IR of schema R = (R, Σ). Immediately after

removing a blocking atom Li from clause
−→
C in Algo-

rithm 3, Castor examines all remaining literals in
−→
C and

finds the ones whose relation symbols participate in an

IND with equality in Σ. More precisely, let R1(u1) be

a literal and λR1
⊆ Σ be the set of INDs with equality

in which R1 participates. For each IND R1[X] = R2[X]

in λR1
, if there is not a literal with relation symbol R2

in
−→
C , Castor eliminates literal R1(u1) from

−→
C . Oth-

erwise, assume that
−→
C contains literal R2(u2). If for

all literals R2(u2), we have πX(u1) 6= πX(u2), Castor

removes literal R1(u1). Castor checks these conditions

for every literal in
−→
C and all its corresponding INDs.

Castor increases the time complexity of Algorithm 3 by

a factor of O(|Cmax|2|λ|), where the |Cmax| is the size

of the largest candidate clause and |λ| is the number of

INDs with equality in the schema.

Example 12 Consider again the definitions for target

relation hardWorking from Example 10 over the Orig-

inal and 4NF UW-CSE schemas in Table 1. Let the

INDs student[stud] = inPhase[stud] and student[stud]

= yearsInProgram[stud] hold in the Original schema.

Assume that Castor wants to generalize these clauses

to cover example e′, which satisfies student(x) but does

not satisfy inPhase(x , prelim). Castor removes inPhase

literal from the first clause and then removes literals

with relation symbols student and yearsInProgram due

to the INDs in the Original schema. It also removes

student(x , prelim, 3) from the second clause. Hence, it

returns equivalent generalizations.

Lemma 3 Castor’s ARMG is schema independent.

Proof Let τ : R → S be a decomposition from schema

R = (R, ΣR) and S = (S, ΣS). Let τ map each rela-

tion Ri ∈ R to relations Si1 . . . Sim ∈ S. Assume that

the input to the ARMG algorithm over schema R is the

bottom-clause for seed example e, denoted as
−→
CR, which

is in the form of T (w)← L1(u1), · · · , Ln(un). The input

to the algorithm over schema S is the bottom-clause for

seed example e, denoted as
−→
CS , which is in the following

form: T (w)← P1(v1), · · · , Pk(vk).
−→
CR and

−→
CS are gen-

erated by the Castor bottom-clause construction algo-

rithm and according to Lemma 2 are equivalent. They

also do not contain any redundant literal.

The mapping between equivalent clauses overR and
S, δτ , that is associated with τ projects each literal with

relation symbol Ri in
−→
CR to literals with relation sym-

bols Si1 . . . Sim in the clause
−→
CS . Hence, there is a bi-

jective mapping M that maps each literal Ri(ul) in the

body of
−→
CR to a set of literals Si1(vj) . . . Sim(vj+(im−i1))

in the body of
−→
CS . Moreover, according to Lemma 2, a

literal Ll appears before Lo in the body of
−→
CR iff all lit-

erals in M(Ll) appear before the ones in M(Lo) in
−→
CS .

The mapping δ only projects each literal with relation

symbol Ri(ul) to a set of literals in M(Ri(ul)). Hence,

the free tuples in every pair of literals Ll and Lo in
−→
CR

have a variable in common iff the sets of free tuples in

M(Ll) and M(Lo) have a shared variable. Otherwise,
−→
CR and

−→
CS are not equivalent.

Assume that Castor removes literal Lb in
−→
CR be-

cause it is the blocking atom in the current iteration.

Let the positive example considered for this iteration

of the algorithm be e′. If Lb is the blocking atom, the

sub-clause of
−→
CR up to and excluding Lb covers e′ and

14 Jose Picado et al.

the one up to and including Lb does not cover e′. Be-

cause mapping M preserves the order of literals, the

sub-clause of
−→
C S up to and excluding Lb covers e′ and

the one up to and including literals in M(Lb) does not

cover it. Hence, at least one literal in M(Lb) is a block-

ing atom in
−→
C S . If the algorithm removes this literal,

it also drops the rest of literals in M(Lb). This is be-

cause the free tuples of these literals do not satisfy the

IND between relation symbols of M(Lb) in the canoni-

cal database instance of
−→
C S after removing the blocking

atom in
−→
C S . Similarly, if one of the literals in M(Lb)

is a blocking atom, Lb will be also a blocking atom.

In this case, the ARMG algorithm will also remove the

non-blocking atoms in M(Lb) that are not member of

M(Lo), Lb 6= Lo as they do not satisfy any IND after

removing the blocking atom.

Assume that a literal Ll is removed because it does

not satisfy any IND in the canonical database instance

of
−→
CR immediately after dropping the blocking atom

Lb. Let the IND between the relation symbol of Lb and

the relation symbol of Ll be Σ1. Because τ preserves

the INDs between relations in R, there is also an IND

Γ1 between the relation symbol of a literal Pl in M(Ll)

and the relation symbol of a literal in M(Lb). Because

Lb is a blocking atom, ARMG algorithm has already re-

moved all literals in M(Lb) from
−→
C S . Assume that the

free tuples of Pl and another literal Po in
−→
C S satisfy

Γ1. If Po has not been already removed from
−→
C S , the

free tuples of Ll and Lo satisfy the IND constraint Σ1

in the canonical database of
−→
CR. Thus, Ll should not

have been removed from
−→
CR. Therefore, Po is removed

from
−→
C S . Hence, Pl must also be removed from

−→
C S as

it does not satisfy any IND. After removing P1, all lit-

erals in M(Ll) will be removed from
−→
C S . Using similar

argument, we show that if the ARMG algorithm re-

moves a literal Lr from
−→
CR because its free tuple does

not satisfy any IND after dropping another literal, the

algorithm removes the literals in M(Lr) that are not

member of M(Lo), Lr 6= Lo. Also, we prove that if

the algorithm eliminates a literal Pr from
−→
C S because

its free tuple does not satisfy any IND, the algorithm

also removes the literals Lr, where Pr ∈ M(Lr) from
−→
CR. We similarly prove that if Castor removes a lit-

eral because it is not head-connected, it also removes

its corresponding literals over the decomposition and

vice versa. �

7.2.2 Negative Reduction

Castor further generalizes clauses produced by ARMG

by removing non-essential literals from clauses. A lit-

eral is non-essential if after it is removed from a clause,

the number of negative examples covered by the clause

Algorithm 5: Castor negative reduction algo-

rithm.

Input : Clause
−→
C = T ← L1, · · · , Ln, database

instance I, negative examples E−.

Output: Reduced clause
−→
C′.

E−c ← subset of E− covered by
−→
C

I← list containing all instances of inclusion classes in
−→
C

while true do
Ii ← first inclusion instance in I such that clause
T ← B, where B contains literals in inclusion
instances I1, · · · , Ii, has negative coverage E−c

H← inclusion instances in I that connect Ii with
T

N← literals from inclusion instances I1, · · · , Ii not
in H

I′ ← H ∪ [Ii] ∪N
if length(I′) = length(I) then

C′ = T ← B, where B contains all literals in I′

Return C′

I← I′

does not increase [22,23]. This step is called negative

reduction and reduces the generalization error of the

produced definitions to the training data. Castor uses

INDs with equality to compute equivalent reductions

of clauses over composition/ decomposition. Given a

clause
−→
C and inclusion class N = {Si | 1 ≤ i ≤ m}

over schema S, an instance YN of N is a set of liter-

als S1(u1), · · · , Sm(um) in
−→
C such that for every IND

Si[X] = Sj [X], 1 ≤ i, j ≤ m, there are literals Si(ui)

and Sj(uj) in YN such that πX(ui) = πX(uj). An in-

stance YN over a clause
−→
C is non-essential if after re-

moving all literals in YN from
−→
C , the number of nega-

tive examples covered by the clause does not increase.

First, for each literal Lj in the input clause
−→
C , Castor

computes the instances of inclusion classes in
−→
C that

start with Lj . It creates a list containing all found in-

stances, in the order in which they are found. Then,

it iteratively removes non-essential instances from this

list. In each iteration, it finds the first inclusion instance

Yi such that the sub-clause of
−→
C that contains all lit-

erals in every inclusion instance up to Yi has the same

negative coverage as
−→
C . A head-connecting inclusion in-

stance for Yi contain literals that connect a literal in Yi
to the head of the clause by a chain of variables. Castor

moves Yi and its head-connecting inclusion instances

to the beginning of the list, and discards the inclusion

instances after Yi. These instances can be discarded be-

cause they are non-essential. Note that some literals in

the discarded instances may also belong to other in-

stances before or in Yi. The algorithm iterates until

the number of inclusion instances in the clause does

not change after one iteration. At the end, it creates a

Logically Scalable and Efficient Relational Learning 15

clause whose head literal is the same as
−→
C and body

contains all literals in the remaining instances of inclu-

sion classes. Because negative reduction only removes

literals from the clause, it does not decrease the num-

ber of positive examples covered by the clause. More

details can be found in Algorithm 5.

Lemma 4 Castor’s negative reduction is schema inde-

pendent.

Proof Let τ : R → S be a composition/ decomposi-

tion between schemas R = (R, ΣR) and S = (S, ΣS).

Let R[U] ∈ R and τ map relation R[U] to relations

S1[V1], · · · , Sm[Vm], 1 ≤ m ≤ |S|. Let N be the in-

clusion class in ΣS that contains relations S1[V1], · · · ,
Sm[Vm]. Assume that

−→
CR is a clause over schema R

and contains k literals R(ui), 1 ≤ i ≤ k. Let
−→
C S be the

equivalent clause of
−→
CR over S. Let Reduce(C) be the

function that performs negative reduction on clause C.

We show that Reduce(
−→
CR) ≡ Reduce(

−→
C S).

Because
−→
CR contains k literals R(ui), 1 ≤ i ≤ k,

and
−→
CR ≡

−→
C S , then

−→
C S must contain k instances

of inclusion class N. These instances of inclusion class

may or may not share literals. Let n be the number

of instances of inclusion class N in
−→
C S that share lit-

erals. Without loss of generality, we assume that in-

stances can only share the first literal. That is, in-

stances INi and INj share a literal if they have the

form INi = S1(v 1), S2(vi2), · · · , Sm(vim) and INj =

S1(v 1), S2(vj2), · · · , Sm(vjm). We prove by induction

on n.

Base case: let n = 1. Clause
−→
CR contains literal

R(u) and
−→
C S contains an instance of inclusion class

N with literals S1(v1), · · · , Sm(vm) such that ./ml=1 [vl]

= u. Notice that
−→
CR may contain other literals with

relation R and
−→
C S may contain other instances of inclu-

sion class N. However, because n = 1, these instances

do not share literals and can be treated independently.

Then, Castor removes literal R(u) in
−→
CR iff it removes

literals S1(v1), · · · , Sm(vm) in
−→
C S .

Assumption step: let n = k.
−→
CR contains liter-

als [R(ui)], 1 ≤ i ≤ k,
−→
C S contains literals S1(v 1),

[S2(vi2), · · · , Sm(vim)], 1 ≤ i ≤ k and
−→
CR ≡

−→
C S .

Induction step: let n = k+ 1. Let
−→
C S contain k+ 1

instances of inclusion class N, which share the first lit-

eral. Let
−→
CR be the equivalent clause, which contains

k+1 literals R(ui), 1 ≤ i ≤ k+1. We divide instances in
−→
C S in two: IN(1..k) = S1(v 1), [S2(vi2), · · · , Sm(vim)],

1 ≤ i ≤ k and IN(k+1) = S1(v 1), S2(v(k+1)2), · · · ,
Sm(v(k+1)m). We also divide literals in

−→
CR in two:

R1..k = [R(ui)], 1 ≤ i ≤ k and R(uk+1).

Let
−→
C ′S contain all literals in IN(1..k) and

−→
C ′R con-

tain all literals in R1..k. We examine the cases where we

add literalR(uk+1) to
−→
C ′R such that

−→
C ′R∪{R(uk+1)} =

−→
CR, and we add all literals in instance IN(k+1) to

−→
C ′S

such that
−→
C ′S ∪ IN(k+1) =

−→
C S .

Castor removes all literals in R1..k and literalR(uk+1)

iff it removes all literals in IN(1..k) and IN(k+1). Then,

Reduce(
−→
CR) ≡ Reduce(

−→
C S).

Castor removes all literals in R1..k but not literal

R(uk+1) iff it removes all literals in IN(1..k), but not

literals in IN(k+1). Notice that literal S1(v 1) stays in

clause Reduce(
−→
C S) because it is in instance IN(k+1).

Because τ(R(uk+1)) = S1(v 1), S2(v(k+1)2), · · · ,
Sm(v(k+1)m), then Reduce(

−→
CR) ≡ Reduce(

−→
C S).

Castor removes literal R(uk+1) but not literals in

R1..k iff it removes all literals in IN(k+1), but not liter-

als in IN(1..k). Again, notice that literal S1(v 1) stays in

clause Reduce(
−→
C S) because it is in instances IN(1..k).

Because we know that Reduce(
−→
C ′R) ≡ Reduce(

−→
C ′S)

(assumption step), then Reduce(
−→
CR) ≡ Reduce(

−→
C S).

�

Based on Lemmas 2, 3, and 4, Castor is schema inde-

pendent.

7.3 Generating Safe Clauses

Let the head-variables of a clause be the ones that ap-

pear in its head literal. A clause is safe if every head-

variable appears in some literal in the body of the clause.

A definition is safe if all its clauses are safe. The re-

sults of safe clauses and definitions are finite over a

(finite) database. By default, current relational learn-

ing algorithms, including Castor, may learn unsafe Dat-

alog definitions [1]. Because an unsafe definition pro-

duces infinitely many answers over a (finite) database,

it is not desirable in many relevant applications, such

as learning database queries from examples [20,2]. Fur-

thermore, a relational learning algorithm that learns

only safe clauses can learn a definition from positive

examples only. In this section, we describe how Castor

can be modified to generate only safe definitions. As

we have explained, Castor first constructs the bottom-

clause associated with some positive example e, and

then generalizes this clause using ARMG and negative

reduction.

Bottom-clause Construction: The bottom-clause

construction uses the positive example e as the initial

head-literal for the bottom-clause. Castor picks every

literal in body of the bottom-clause based on the con-

stants/ variables in the head-literal. Thus, the bottom-

clause is guaranteed to be safe.

Safe ARMG Algorithm: Let the ARMG algo-

rithm take as input clause
−→
C and positive example e,

16 Jose Picado et al.

and produce as output clause
−→
C ′. Clause

−→
C ′ may not

be safe. Castor checks whether
−→
C ′ is safe. If

−→
C ′ is safe,

Castor considers it as a candidate; otherwise, Castor

simply ignores it.

Safe Negative Reduction: In negative reduction,

Castor first computes all instances of inclusion classes,

and then iteratively removes non-essential instances.

In order to output a safe clause, Castor first sorts all

instances of inclusion classes by the number of head-

variables appearing in the instance in descending or-

der. Then, in each iteration, Castor finds the first in-

clusion instance Yi such that the sub-clause of
−→
C that

contains all literals in every inclusion instance up to

Yi has the same negative coverage as
−→
C . Castor then

finds the head-connecting inclusion instances for Yi. Let

these instances be called HYi
. Next, from the instances

of inclusion classes that will be discarded, Castor finds

the first instances that contain head-variables that do

not appear in Yi or HYi
. Let these instances be SYi

The goal is to find literals needed to make the result-

ing clause safe. These literals are guaranteed to exist

because the clauses produced by ARMG are forced to

be safe. Castor then moves Yi, HYi
, and SYi

to the be-

ginning of the list, and discards the inclusion instances

after Yi, except the ones in SYi
. The algorithm contin-

ues its normal operation until the number of inclusion

instances in the clause does not change. Finally, it cre-

ates a clause whose body contains all literals in the

remaining instances of inclusion classes.

7.4 General Decomposition/ Composition

Castor is robust over schema variations caused by bi-

jective decompositions and compositions as defined in

Section 4. Bijective decompositions and compositions

need at least one IND with equality in the transformed

and original schemas, respectively. We have observed

several examples of these transformations in real-world

databases, some of which we report in Section 9. How-

ever, in addition to INDs with equality, schemas often

have INDs in the general form of subset or equality.

One can use these INDs to define a more general de-

composition. More precisely, a general decomposition of

schema R with single relation symbol R is schema S
with relation symbols S1 . . . Sn that satisfies all condi-

tions in Definition 4 but at least one IND in S (in the

second condition of Definition 4) is an IND in form of

subset or equality. A general decomposition of a schema

with multiple relations is the union of general decom-

positions over each relation symbol in the schema.

A general decomposition is invertible but not bi-

jective [1]. Consider the general decomposition from

R1 :{R1(A,B,C)} to S1 :{S1(A,B), S2(A,C)} with

IND S2[A] ⊆ S1[A], and the instance of S1 I1S1 : I1S1
=

{(a1, b1), (a2, b2)}, I1S2
= {(a1, c1)}. There is not any

instance of R1 that represents the same information as

I1S1 . Hence, it is not clear how to define schema inde-

pendence for I1S1 . Also, the composition from S1 to R1

is not invertible as I1S1
./ I1S2

loses tuple (a2, b2), which

cannot be recovered. As some original and transformed

databases in this composition do not have the same

information, it is not reasonable to expect equivalent

learned definitions over these databases.

One may resolve these issues by considering databases

with labeled nulls, e.g., by using weak universal rela-

tion assumption [1,11]. For example, one can compose

instance I1S1 in the last example to I1R1
: {(a1, b1, c1),

(a2, b2, x)} where x is a labeled null that reflects the

existence of an unknown value. However, it takes more

than a single paper to define the semantic of learning

over databases with labeled nulls and schema indepen-

dence over transformations that introduce labeled nulls,

so we leave this direction for future work. Instead, we

define schema independence for general decompositions

by ignoring the instances in the transformed schema

that do not have any corresponding instance in the

original schema. Hence, the mapping between the in-

stances in the original and the remaining instances of

the transformed schemas is bijective, thus, it is defi-

nition bijective. We define hypothesis invariance and

schema independence as defined in Section 3 for this

mapping. An algorithm is schema independent over a

general decomposition if it is schema independent over

its mapping between the corresponding instances of the

original and decomposed schemas.

A general composition is the inverse of a general de-

composition. As we have shown, general compositions

lose information. Thus, it is not reasonable to expect

algorithms to be schema independent over them. We

limit the instances of its original schema so that it be-

comes invertible. For simplicity, we define schema inde-

pendence for a general composition whose transformed

schema has a single relation. Our definition extends for

schemas with multiple relations. Let schema R with a

single relation symbol R be a general composition of

schema S with relation symbols S1 . . . Sn such that for

all Si, Sj , 1 ≤ i, j ≤ n, X = sort(Si) ∩ sort(Sj) 6= ∅,
S has IND Si[X] ⊆ Sj [X]. Natural join between S1 . . .

Sn does not lose any tuple in an instance of S, IS , iff

for each IND Si[X] ⊆ Sj [X] in S we have πX(ISi
) =

πX(ISj
), where ISi

and ISj
are relations of Si and Sj

in IS , respectively. Let J(S) denote instances with the

aforementioned property in S. The mapping from J(S)

to I(R) is bijective, therefore, it is definition bijective.

Thus, hypothesis invariance and schema independence

properties in Section 3 can be defined for this mapping.

Logically Scalable and Efficient Relational Learning 17

An algorithm over the general composition from S to R
is schema independent if it is schema independent over

the mapping between J(S) to I(R). We call a finite ap-

plication of general decompositions and compositions

a general decomposition/ composition. An algorithm

is schema independent over a general decomposition/

composition if it is schema independent over its general

decompositions and general compositions.

Consider again schema S with relation symbols S1 . . .

Sn. To achieve schema independence over general com-

position/ decomposition, given instance IS , Castor finds

each INDs Si[X] ⊆ Sj [X] in S where πX(ISi
) = πX(ISj

)

and adds the IND to its list of IND with equality in a

preprocessing step. It then proceeds to its normal ex-

ecution. The proofs of Lemmas 2, 3, and 4 extend for

the corresponding instances of R and S that have the

same information in non-bijective decompositions. Us-

ing a similar argument, these proofs also hold for the

corresponding instances that have the same information

over general decomposition. Thus, Castor is schema in-

dependent over general decompositions/ compositions.

Using this method, Castor also handles combinations

of INDs in general form and INDs with equality.

The pre-processing step of checking for each IND

Si[X] ⊆ Sj [X] in schema S whether πX(ISi) = πX(ISj)

holds, may take a long time and some users may not

want to wait for this pre-processing phase to finish. An-

other approach is to use INDs in form of subset or equal-

ity in Castor directly as follows. We extend Castor to

use both INDs with equality and in general form. In

the rest of this section, we refer to both type of INDs

simply as IND and write them by ⊆ for brevity. We

redefine an inclusion class N in schema S as a set of

relation symbols Si, Sj in S such that there is a se-

quence of INDs Sk[Xk] ⊆ S′k[Xk] or S′k[Xk] ⊆ Sk[Xk]

i ≤ k ≤ j, in S where Xk = sort(Sk) ∩sort(S′k) and

Sk+1 = S′k for i ≤ k ≤ j − 1. Assume that Castor picks

a tuple si from relation Si in inclusion class N dur-

ing the bottom-clause construction. For each Si[X] ⊆
Sj [X] in N, Castor selects all tuples sj of relation ISj

,

i 6= j such that πX(sj) ⊆ πX(si). Castor repeats this

process for sj until it exhausts all INDs in N. After this

step, Castor follows the bottom-clause construction al-

gorithm explained in Section 7.1. Since the natural join

between relations in S is acyclic, the pairwise consis-

tency implies the global consistency of the joint tuples.

For the same reason, the proof of Proposition 2 extends

for INDs. Hence, the INDs in each inclusion class are

not cyclic and Castor efficiently finds the tuples that

join according to the INDs. We also extend Castor’s

ARMG algorithm to ensure that the free tuple of each

literal S(u), u, satisfies all INDs in which S participates

after a blocking atom is removed. If u does not satisfy

any of its corresponding INDs, it is removed. Finally, we

redefine the instance of an inclusion class N, YN, in an

ordered clause
−→
C as a set of literals S1(u1), · · · , Sm(um)

in
−→
C such that for each IND Si[X] ⊆ Sj [X], 1 ≤

i, j ≤ m, there are literals Si(ui) and Sj(uj) in YN
where πX(ui) = πX(uj). We modify our negative re-

duction algorithm in Section 7.2.2 to use the new defi-

nition of inclusion class instance. This extension of Cas-

tor may not be schema independent as it may miss

some tuples in bottom-up construction or ignore some

literals in ARMG algorithms. For example, consider

the general decomposition from R1 :{R1(A,B,C)} to

S1 :{S1(A,B), S2(A,C)} with IND S2[A] ⊆ S1[A] and

instances J1
R1

: J1
R1

= {(a1, b1, c1)} and J1
S1 : J1

S1
=

{(a1, b1)}, J1
S2

= {(a1, c1)}. Assume that the modi-

fied Castor bottom-clause construction over J1
S1 starts

with tuple (a1, b1). IND S2[A] ⊆ S1[A] does not force

Castor to select (a1, c1) for the bottom-clause. Hence,

Castor delivers non-equivalent bottom-clauses over J1
S1

and J1
R1

. But, our empirical results in Section 9 show

that this extension of Castor is more schema indepen-

dent than other algorithms over general decomposition/

composition.

7.5 Castor System Design Choices and Implementation

Current bottom-up algorithms do not run efficiently

over medium or large databases because they produce

many long bottom-clauses to generalize [23]. Also, these

clauses are time-consuming to evaluate. A relational

learning algorithm evaluates a clause by computing the

number of positive and negative examples covered by

the clause. These tests dominate the time for learn-

ing [10]. It is generally time-consuming to evaluate clauses

with many literals. Castor implements several optimiza-

tions to run efficiently over large databases.

In-memory RDBMS: Castor is implemented on

top of the in-memory RDBMS VoltDB (voltdb.com).

Relational databases are usually stored in RDBMSs.

Therefore, it is natural to implement a relational learn-

ing algorithm on top of an RDBMS. Using an RDBMS

also provides access to the schema constraints, e.g., in-

clusion dependencies, which we use to achieve schema

independence. Castor performs bottom-clause construc-

tion multiple times during the learning process. The

bottom-clause construction algorithm queries the database

multiple times each of which selects all tuples in a table

that match given constants from the training data. We

leverage RDBMS indexing to improve the running time

of these queries.

Stored Procedures: We implement the bottom-

clause construction algorithm inside a stored procedure

to reduce the number of API calls made from Castor to

18 Jose Picado et al.

the RDBMS. Castor makes only one API call per each

bottom-clause. The first time that Castor is run on a

schema, it creates the stored procedure that implements

the bottom-clause construction algorithm for the given

schema. Castor reuses the stored procedure when the

algorithm is run again, with either new training data

or updated database instance.

Efficient Clause Evaluation: One approach to

computing the number of positive (negative) examples

covered by a clause is to join the table containing the

positive (negative) examples with the tables correspond-

ing to all literals in the body of the clause. If two

literals share a variable, then a natural join between

the two columns corresponding to the shared variable

in the literals is used. This strategy works well when

clauses are short, as in top-down algorithms [31]. How-

ever, our empirical studies show that the time and space

requirements for this approach are prohibitively large

on large clauses generated by bottom-up algorithms.

Thus, we perform coverage tests by using a subsump-

tion engine. Clause C θ-subsumes C ′ iff there is some

substitution θ such that Cθ ⊆ C ′. A ground bottom-

clause is a bottom-clause that only contains constants.

A candidate clause C covers example e iff C θ-subsumes

the ground bottom-clause ⊥e associated with e. Castor

uses the efficient subsumption engine Resumer2 [19].

Resumer2 efficiently checks if clause C covers exam-

ple e by deciding the subsumption between C and the

ground bottom-clause ⊥e of e. Given clause C and a set

of examples E, Castor checks if C covers each e ∈ E

separately. Castor divides E in subsets and performs

coverage testing for each subset in parallel.

Coverage Tests: Castor optimizes the generaliza-

tion process by reducing the number of coverage tests.

Castor first generates the bottom-clause relative to a

positive example. Then, Castor generalizes this clause.

If clause C covers example e, then clause C ′′, which

is more general than C, also covers e. If Castor knows

that C covers e, it does not check if C ′′ covers e.

Minimizing Clauses: Bottom-up algorithms such

as Castor produce large clauses, which are expensive to

evaluate. Castor minimizes bottom-clauses by removing

syntactically redundant literals. A literal L in clause

C is redundant if C is equivalent to C ′ = C − {L}.
Clause equivalence between C and C ′ can be deter-

mined by checking whether C θ-subsumes C ′ and C ′

θ-subsumes C. Castor minimizes clauses using theta-

transformation [8]. It uses a polynomial-time approx-

imation of the clausal-subsumption test, which is ef-

ficient and retains the property of correctness. Given

clause C, for each literal L in C, the algorithm checks

if C ⊆ C ′ = C − {L}. If this holds, then L is redun-

dant and will be removed. Minimizing bottom-clauses

reduces the hypothesis space considered by Castor. It

also makes coverage testing faster. Castor also mini-

mizes learned clauses before adding them to the defi-

nition. This ensures that clauses are concise and inter-

pretable.

8 Query-based algorithms

In this section, we consider query-based learning algo-

rithms, which learn exact definitions by asking queries

to an oracle [18,27,4,2]. This type of algorithms have

been recently used in various areas of database manage-

ment, such as finding schema mappings and designing

usable query interfaces [6,2]. Queries can be of multiple

types, however the most common types are equivalence

queries and membership queries. In equivalence queries

(EQ), the learner presents a hypothesis to the oracle

and the oracle returns yes if the hypothesis is equal

to the target relation definition, otherwise it returns

a counter-example. In membership queries (MQ), the

learner asks if an example is a positive example, and

the oracle answers yes or no.

Because query-based algorithms follow a different

learning model, Definition 3 is not suited for evaluating

their schema (in)dependence. Since a query-based algo-

rithm can ask the oracle whether candidate definitions

are correct, the algorithm will always learn the correct

definitions by asking sufficient number of queries from

the oracle. As it takes time and/or resources to answer

queries, a desirable query-based algorithm should not

ask too many queries [4]. For instance, some database

query interfaces use query-based algorithms to discover

users’ intents [2]. Because the oracle for these algo-

rithms is the user of the database, a more desired al-

gorithm should figure out the user’s intent by asking

fewer queries from the user.

Query-based algorithms are theoretically evaluated

by their query complexity – the asymptotic number of

queries asked by the algorithm [18]. Therefore, we ana-

lyze the impact of schema transformations on the query

complexity of these algorithms. Generally, if an algo-

rithm has different asymptotic behavior over equivalent

schemas, then the algorithm is schema dependent. One

way to show that an algorithm has different asymp-

totic behavior over different schemas is by comparing

the lower bound on the query complexity of the algo-

rithm against the upper bound on its query complexity.

If the lower bound under one of the schemas is greater

than the upper bound under another schema, then the

algorithm is highly schema dependent. Of course, this is

not a desirable property, as this means that the choice of

representation has a huge impact on the performance of

Logically Scalable and Efficient Relational Learning 19

the algorithm. However, we prove that a popular query-

based algorithm called A2 suffers from this property.

A2 [18] is a query-based learning algorithm that

learns function-free, first-order Horn expressions. The

reasons for choosing this algorithm are three fold: i)

A2 is representative of query-based learning algorithms

that work on the relational model, ii) there is an im-

plementation of the algorithm [4], iii) A2 is a general-

ization to the relational model of a classic query-based

propositional algorithm [3].

Let pR be the number of relations in schema R and

aR be the largest arity of any relation in schema R.

Let k be the largest number of variables in a clause, m

be the number of clauses in the definition of the target

relation, and n be the largest number of constants (i.e.

objects) in any example. Parameters k, m, and n are in-

dependent of the schema. The upper bound on the num-

ber of EQs and MQs made by the A2 algorithm over

schemaR is O(m2(pR)k(aR)+3k+nm(pR)k(aR)+k), and

the lower bound is Ω(m(pR)k(aR)) [18].

Theorem 5 There is a schema R and decomposition

τ , where τ(R) = S, such that

Ω(m(pR)k(aR)) > O(m2(pS)k(aS)+3k+nm(pS)k(aS)+k).

Proof Let schema R = (R, ΣR) contain the single re-

lation R(A1, · · · , Al). Assume that l ≥ 2 and there are

l − 1 functional dependencies A1 → Ai, 2 ≤ i ≤ l,

in ΣR. Let τ(R) = S = (S, ΣS) be a vertical decom-

position of R, such that relation R(A1, · · · , Al) ∈ R

is decomposed into l − 1 relations in S in the form of

Si(A1, Ai), 2 ≤ i ≤ l. For each relation Si(A1, Ai) ∈ S,

ΣS contains the functional dependency A1 → Ai. For

each set of relations Si(A1, Ai), 2 ≤ i ≤ l, ΣS also

contains 2(l − 1) inclusion dependencies in the form of

S2[A1] ⊆ Sj [A1] and Sj [A1] ⊆ S2[A1], 2 < j ≤ l. Be-

cause the number of relations in R is pR = 1 and the

maximum arity is aR, then the maximum number of re-

lations in S is pS = aR − 1. We also have that aS = 2.

Let L be the hypothesis language that consists of the

subset of Horn definitions that contain a single clause in

which no self-joins are allowed. All definitions in L un-

der schema R have the form T (u)← R(x1, x2, · · · , xl),
where T is the target relation and u is a subset of

{x1, x2, · · · , xl}.
Any clause in a definition hR ∈ L under schema R

has at most l distinct variables, which corresponds to

the arity of relation R. Therefore the largest number of

variables in a clause k = l. As schema S is a vertical de-

composition of schema R, and no self-joins are allowed

in L, the definition δ(hR) = hS ∈ L also has at most

k = l variables. Because definitions in L consist of a

single clause, then the maximum number of clauses in

a definition is m = 1.

In order to prove our theorem, the following should

hold for R and S
Ω(m(pR)k(aR)) >O(m2(pS)k(aS)+3k + nm(pS)k(aS)+k)

where the left side of the inequality is the lower bound

on the query complexity under schema R and the right

side is the upper bound on the query complexity under

schema S. The operator > means that A2 will always

ask asymptotically more queries under schema R than

under schema S. We have that k and m are the same for

both schemas. We can also ignore n as it is independent

of the hypothesis space and the schemas. Therefore, by

canceling out some terms, the previous inequality can

be rewritten as

Ω(k(aR)) > O(m(aR − 1)k2+3k + (aR − 1)k2+k).

The first term in the upper bound dominates the second

term, then we have

Ω(k(aR)) > O(m(aR − 1)k2+3k)

Assuming that m = 1, as in L, we get

Ω(k(aR)) > O((aR − 1)k2+3k)

This inequality holds for sufficiently large k and aR. �

The lower bound of A2 is the Vapnik-Chevonenkis

dimension (VC-Dim) of the hypothesis language that

consists of function-free, first-order Horn expressions.

Therefore, we have proven in Theorem 5 that there are

cases where the lower bound on the query complexity of

any algorithm under this hypothesis language is greater

than the upper bound on the query complexity of A2.

This means that any algorithm that is as good as A2

(does not ask more queries thanA2) is highly dependent

on the schema details.

9 Experiments

9.1 Experimental Settings

We use three datasets whose statistics are shown in

Table 2. The HIV-Large dataset contains informa-

tion about 42,000 chemical compounds obtained from

the National Cancer Institute’s AIDS antiviral screen

(wiki.nci.nih.gov/display/NCIDTPdata). The schema con-

tains relation compound(comp,atm), which indicates that

compound comp contains atom atm. It also has rela-

tions that indicate the chemical element that an atom

represents, e.g., element C(atm), as well as relations to

indicate properties of each atom, e.g., p2 1(atm). The

schema represents a bond between two atoms by rela-

tion bonds(bd,atm1,atm2), and it has a relation for each

type of a bond, e.g., bondType1(bd,t1). The goal is to

learn the relation hivActive(compound), which indicates

that compound has anti-HIV activity. The original HIV

dataset is stored in flat files and does not have any infor-

mation about its constraints. We explored the database

20 Jose Picado et al.

Name Schema #R #T #P #N

HIV-Large
Initial 80 14M

5.8K 36.8K4NF-1 77 7.8M
4NF-2 81 16M

UW-CSE

Original 9 1.8K

102 204
4NF 6 1.4K

Denormalized-1 5 1.3K
Denormalized-2 4 1.3K

IMDb
JMDB 46 8.4M

1.85K 3.6KStanford 41 10.5M
Denormalized 33 7.2M

Table 2 Numbers of relations (#R), tuples (#T), positive
examples (#P), and negative examples (#N) for each dataset.

for possible dependencies. We have used these depen-

dencies to compose relations bonds, bondType1, bond-

Type2, and bondType3 into a single relation bonds and

create a schema in 4NF, named 4NF-1. We also decom-

pose relation bonds in the initial schema to relations

bondSource and bondTarget to create another schema,

called 4NF-2. The schemas and imposed INDs can be

found in [24]. In the HIV-2K4K dataset, we keep the

same background knowledge, but reduce the number of

examples to 2K positive and 4K negative examples.

The UW-CSE dataset contains information about

an academic department and has been used as a bench-

mark in the relational learning literature [28]. The goal

is to learn the target relation advisedBy(stud,prof), as

explained in Section 1. The dataset comes with a set

of constraints in form of first-order logic clauses that

should hold over the dataset domain. If there are more

INDs with equality in the schema, one can generate

more schemas from the original UW-CSE schema us-

ing composition transformation. To evaluate the effec-

tiveness of algorithms over more varieties of schemas,

we added added INDs to the schema. Details about

the original and additional INDs can be found in [24].

We enforce the constraints by removing a small frac-

tion of tuples, 159 tuples, from the original dataset.

We transform the original schema to three other dif-

ferent schemas. The original and a composed schema,

called 4NF, are shown in Table 1. We compose course-

Level and taughtBy relations in 4NF schema to cre-

ate a more denormalized schema, named Denormalized-

1, and compose courseLevel, taughtBy, and professor

in 4NF schema to generate the fourth schema, named

Denormalized-2.

The IMDb (imdb.com) dataset contains informa-

tion about movies. We learn the target relation dra-

maDirector(director), which indicates that director has

directed a drama movie. JMDB (jmdb.de) provides a

relational database of IMDb data under a 4NF schema.

We create a subset of JMDB database by selecting the

movies produced after year 2000 and their related en-

tities, e.g., actors, directors, producers. The relation-

ships between relation movie(id,title,year) and its re-

lated relations, e.g., director(id,name), are stored in re-

lations movies2X where X is the name of the related

entity set, e.g., movies2director(id,directorid). The re-

sulting database has 11 INDs with equality in the form

of movies2X[Xid] =X[id]. To test over more transfor-

mations, we have changed 5 INDs in the form of sub-

set to INDs in the form of equality, e.g., movies2X[id]

⊆ movie[id] to movies2X[id] = movie[id], by removing

some tuples from the database. We use the first set of

11 INDs with equality to compose 11 pairs of relations

in JMDB schema to create a new schema, called Denor-

malized. We use the second set of INDs with equality

to compose 5 relations in JMDB schema, and create a

schema called Stanford that follows a structure simi-

lar to the one used in the Stanford Movie DB (info-

lab.stanford.edu/pub/movies). The three schemas and

the full list of INDs in IMDb data can be found in [24].

In the UW-CSE and IMDb datasets, we generate neg-

ative examples by using the closed-world assumption,

and then sample to obtain twice as many negative ex-

amples as positive examples.

We compare Castor to three relational learning sys-

tems: FOIL [26], Aleph [29], and GILPS [23]. FOIL

system implements FOIL algorithm but does not scale

to medium and large datasets. Therefore, we also em-

ulate FOIL using Aleph by forcing Aleph to follow a

greedy strategy and call it Aleph-FOIL. Aleph is a

well known ILP system that implements Progol [21]. To

differentiate the two variations of Aleph used in our ex-

periment, we call the default implementation of Aleph

Aleph-Progol. GILPS implements ProGolem, which

is a bottom-up algorithm.

Aleph contains the parameter clauselength, which

restricts the size of the learned clauses. Over HIV-Large

and HIV-2K4K, the definition for the target relation

must contain long clauses. With the default value of

clauselength = 4, Aleph-FOIL and Aleph-Progol do not

learn any clause. Therefore, we set this parameter to

have values of 10 and 15. Details about parameters used

in all systems can be found in [24].

There are far fewer query-based relational learn-

ing systems available than the ones that use samples

for learning. To empirically evaluate the schema inde-

pendence of query-based learning methods, we use the

LogAn-H system [4], which is an implementation of

the A2 algorithm [18].

We compare the quality of the learned definitions

using the metrics of precision and recall. Let the set

of true positives for a definition be the set of positive

examples in the testing data that are covered by the

definition. The precision of a definition is the propor-

tion of its true positives over all examples covered by

the definition. The recall of a definition is the number

of its true positives divided by the total number of pos-

itive examples in the testing data. Precision and recall

Logically Scalable and Efficient Relational Learning 21

are between 0 and 1, where an ideal definition delivers

both precision and recall of 1. Similar to other machine

learning tasks, it is not often possible to learn an ideal

definition for a target concept due to various reasons,

such as the hardness of the target concept or the lack of

sufficient amount of training data. In these situations,

the values of reasonable precision and recall for a defi-

nition depend on the underlying applications, e.g., 5%

improvement in precision may not be important in a

financial application but vital in a medical application.

Nevertheless, definitions with higher precision and/or

recall are generally more desirable [26,23,29]. We per-

form 5-fold cross validation for UW-CSE and 10-fold

cross validation for HIV and IMDb datasets. We eval-

uate precision, recall, and running times, showing the

average over the cross validation.

Experiments were run on a server containing 32

2.6GHz Intel Xeon E5-2640 processors, running Cen-

tOS Linux 7.2 with 50GB of main memory.

9.2 Sample-based Algorithms

Castor is schema independent over all datasets and de-

livers equal precision and recall across all schemas of

each dataset in our experiments. However, other algo-

rithms are schema dependent.

HIV datasets. Aleph-FOIL, Aleph-Progol and Cas-

tor are the only algorithms that scale to the HIV-2K4K

dataset. Aleph-FOIL and Castor also scale to the HIV-

Large dataset. The definitions learned by Aleph-FOIL

and Aleph-Progol over different schemas are not equiva-

lent as shown by their precision and recall values across

schemas in Table 3. Different schemas cause Aleph-

FOIL and Aleph-Progol to explore different regions of

the hypothesis space. Aleph-FOIL and Aleph-Progol

are not able to find any definition over the 4NF-2 schema

of HIV-Large and HIV-2K4K datasets. The reason is

that any good clause must contain information about

bonds. In the 4NF-2 schema, this information is rep-

resented by two relations, bondSource and bondTarget,

and three more to indicate their types. With a top-

down search, these algorithms are not able to find a

clause that contains these relations. Aleph-FOIL ter-

minates without learning anything and Aleph-Progol

does not terminate after 75 hours. Aleph-Progol does

not terminate after 75 hours over the 4NF-2 schema of

HIV-2K4K. FOIL crashes on both HIV datasets. Pro-

Golem does not learn anything after 5 days running,

even on smaller subsets of the HIV dataset.

UW-CSE dataset. As shown in Table 4, all al-

gorithms except for Castor are schema dependent and

HIV-Large
Algorithm Metric Initial 4NF-1 4NF-2
Aleph-FOIL Precision 0.58 0.72 0

(clauselength = 10) Recall 0.42 0.91 0
Time (h) 3 0.9 6

Aleph-FOIL Precision 0.68 0.68 0
(clauselength = 15) Recall 0.41 0.85 0

Time (h) 11.7 3.7 47

Castor
Precision 0.81 0.81 0.81
Recall 0.85 0.85 0.85

Time (h) 3.5 1.9 56
HIV-2K4K

Aleph-FOIL Precision 0.72 0.78 0
(clauselength = 10) Recall 0.69 0.81 0

Time (m) 6.2 7.9 20.6
Aleph-FOIL Precision 0.70 0.78 0

(clauselength = 15) Recall 0.79 0.89 0
Time (m) 6.72 7.07 122.2

Aleph-Progol Precision 0.70 0.79 -
(clauselength = 10) Recall 0.85 0.90 -

Time (m) 58.5 72.2 > 75 h
Aleph-Progol Precision 0.72 0.75 -

(clauselength = 15) Recall 0.89 0.87 -
Time (m) 155.51 13.56 > 75 h

Castor
Precision 0.80 0.80 0.80
Recall 0.87 0.87 0.87

Time (m) 15.1 6.5 335.5

Table 3 Results of learning relations over HIV-Large and
HIV-2K4K data.

learn non-equivalent definitions over different schemas

of UW-CSE. As this dataset is smaller than HIV and

IMDb datasets, it has a relatively smaller hypothesis

space. Hence, the degree of schema dependence for these

algorithms over this dataset is generally lower than other

datasets. This is reflected in their precision and recall,

which are not significantly different across schemas. Over

denormalized schemas, Aleph-FOIL learns definitions

consisting of many clauses, each covering a few ex-

amples. This results in low generalization, hence very

low precision and recall. On the other hand, over the

Original schema, it learns definitions consisting of a

lower number of clauses, each covering a greater num-

ber of examples. Note that Aleph-FOIL does not ex-

actly emulate FOIL. FOIL uses a different evaluation

function and explores an unrestricted hypothesis space.

Therefore, FOIL does not suffer from the same prob-

lems as Aleph-FOIL. However, it is less effective than

other algorithms. Castor’s effectiveness is comparable

to Aleph-Progol and ProGolem over the Original and

4NF schemas. Nevertheless, Aleph-Progol and ProGolem

perform worse on other schemas. On the other hand,

Castor is effective over all schemas.

IMDb dataset. The target relation for the IMDb

dataset has an exact Datalog definition given the back-

ground knowledge and training examples. Castor finds

this definition over all schemas and obtains precision

and recall of 1, as shown in Table 5. Aleph-FOIL fails to

find this definition over all schemas. Aleph-Progol finds

this definition only over the Stanford schema. The def-

initions learned by Aleph-FOIL and Aleph-Progol over

22 Jose Picado et al.

Algorithm Metric Original 4NF Den-1 Den-2

FOIL
Precision 0.84 0.79 0.77 0.85
Recall 0.35 0.36 0.42 0.47

Time (s) 18.7 20.84 30.72 30.64

Aleph-FOIL
Precision 0.78 0.50 0.36 0.19
Recall 0.17 0.18 0.13 0.11

Time (s) 3.5 4.3 14.8 398.1

Aleph-Progol
Precision 0.95 0.97 0.98 0.55
Recall 0.54 0.45 0.36 0.29

Time (s) 9.7 13.2 27.9 334.8

ProGolem
Precision 0.95 0.95 0.80 0.82
Recall 0.54 0.54 0.48 0.48

Time (s) 24.4 28.8 26.7 54.1

Castor
Precision 0.93 0.93 0.93 0.93
Recall 0.54 0.54 0.54 0.54

Time (s) 7.2 7.4 7.9 12.4

Table 4 Results of learning relations over UW-CSE data.

Algorithm Metric JMDB Stanford Denormalized

Aleph-FOIL
Precision 0.66 0.92 0.67
Recall 0.44 1 0.45

Time (m) 6.4 1,229 476.4

Aleph-Progol
Precision 0.66 1 0.69
Recall 0.47 1 0.52

Time (m) 312.9 1,248 937.4

Castor
Precision 1 1 1
Recall 1 1 1

Time (m) 15.14 108.15 32.4

Table 5 Results of learning relations over IMDb data.

different schemas are largely different.

Relationship between style of design and ef-

fectiveness. Our results show that there is not any sin-

gle style of design, e.g., 4NF, on which all algorithms,

except for Castor, are effective over all datasets. Gen-

erally, the style of design on which a relational learning

algorithm delivers its most effective results varies based

on the metric of effectiveness, the dataset, and the al-

gorithm. For example, Aleph-Progol delivers its highest

precision over a denormalized schema, Denormalized-1,

for UW-CSE, but its highest recall over the original

schema, which is more normalized than 4NF. Aleph-

Progol also delivers its lowest precision on UW-CSE

data over another denormalized schema, Denormalized-

2, for this dataset. Hence, it is generally hard to find

a straightforward relationship between the style of de-

sign and the precision or recall of an algorithm over

a given dataset. Furthermore, each algorithm prefers a

different style of design over each dataset. For example,

Aleph-Progol has higher overall precision and recall on

the most normalized schema, original schema, for UW-

CSE. But, it delivers its highest overall precision and

recall over the most denormalized schema, Stanford,

for IMDb. Finally, different algorithms prefer distinct

styles of design over the same dataset. For example,

FOIL delivers both its highest precision and highest

recall over a denormalized schema for UW-CSE data,

Denormalized-2, over which Aleph-Progol delivers both

its lowest precision and lowest recall. Over the same

database, ProGolem achieves both its highest precision

and highest recall for the most normalized schema, i.e.,

original schema.

Efficiency. Besides being schema independent, Cas-

tor offers the best trade-off between effectiveness and

efficiency. Generally, Aleph-FOIL is more efficient than

Castor, but less effective. Aleph-Progol is usually ef-

fective, but becomes very inefficient as the size of data

grows. FOIL and ProGolem only scale to small datasets.

Aleph-FOIL and Castor are the only algorithms that

scale to the HIV-Large dataset. Aleph-FOIL with clause-

length = 10 is more efficient than Castor. However,

when clauselength is set to 15, it becomes less efficient,

as shown in Table 3. Aleph-FOIL with both clauselength

= 10 and 15 is also faster than Castor over the HIV-

2K4K dataset. In general, top-down algorithms that fol-

low greedy search strategies are expected to be more

efficient than bottom-up algorithms. Top-down algo-

rithms have a search bias for shorter clauses, which are

cheaper to compute. They usually limit the maximum

length of the clauses to be learned. Further, algorithms

that follow greedy search strategies can be more effi-

cient. This is exploited by related work that focuses

on efficiency [31,14]. However, as the maximum clause

length is increased, the hypothesis space grows, and

these algorithms become less efficient. Top-down algo-

rithms that do not follow a greedy search strategy, such

as Progol, are generally not efficient. This is reflected in

our empirical studies, where Aleph-Progol did not scale

to the HIV-Large dataset, and is the slowest algorithm

on the HIV-2K4K dataset.

Castor is able to scale to large databases such as

HIV-Large and HIV-2K4K because of the optimizations

explained in Section 7.5. By reusing information about
previous coverage tests, Castor reduces the number of

coverage tests on new clauses. This is particularly useful

on large databases with complex schemas, such as the

HIV datasets, where generated clauses are large and

expensive to evaluate. Parallelization also helps Cas-

tor on reducing the time spent on coverage testing. For

these experiments, Castor parallelized coverage testing

by using 32 threads. Finally, minimization helps in re-

ducing the size of clauses. For instance, over both of

HIV datasets, Castor reduces the size of bottom-clauses

over the Initial schema by 19%, over the 4NF-1 schema

by 13%, and over the 4NF-2 schema by 18%, on average.

Castor removes redundant literals from the bottom-

clause, which results in reducing the search space and

the cost of performing coverage tests. Note that the

running time of all algorithms increases significantly

over the 4NF-2 schema of the HIV-Large and HIV-

2K4K datasets. As the bond relation is decomposed into

bondSource and bondTarget in this schema, the number

of tuples to represent bonds is doubled compared to

Logically Scalable and Efficient Relational Learning 23

HIV-2K4K
Metric Initial 4NF-1 4NF-2

Precision 0.77 0.79 0.73
Recall 0.63 0.87 0.76

Time (m) 27 14.8 576
UW-CSE

Metric Original 4NF Denorm-1 Denorm-2
Precision 0.93 0.93 0.93 0.93
Recall 0.54 0.54 0.54 0.54

Time (s) 8 8.9 9.1 13.3
IMDb

Metric JMDB Stanford Denormalized
Precision 1 0.98 1
Recall 1 0.84 1

Time (m) 7.3 90.8 8.1

Table 6 Results of Castor learning relations over HIV-2K4K,
UW-CSE and IMDb data using INDs in the form of subset.

the Initial schema. Therefore, algorithms must explore

clauses with a large number of literals, hundreds, whose

coverage tests take a very long time. We plan to opti-

mize the coverage testing engine of Castor to efficiently

process such datasets.

The efficiency of Castor is comparable to that of

Aleph-FOIL and Aleph-Progol over the Original and

4NF schemas of the UW-CSE dataset. The running

time of Aleph-FOIL and Aleph-Progol is heavily im-

pacted over the Denormalized-2 schema, as shown in

Table 4. Castor is efficient over all schemas of this dataset.

UW-CSE is the only dataset for which FOIL and Pro-

Golem scale. However, in general, they are less efficient.

Castor is significantly more efficient and effective

than Aleph-FOIL and Aleph-Progol on the IMDb dataset,

as shown in Table 5. In general, top-down algorithms

are efficient if they take the correct first steps when

searching for the definition. In this case, Aleph-FOIL

and Aleph-Progol (over two schemas) take the wrong

steps and focus on a section of the hypothesis space

that does not contain the correct definition.

General decomposition/ composition. As it is

explained in Section 7.4, there are two methods to achieve

robustness over the schema variations created by the

INDs in general forms. One can use a preprocessing step

to check whether the IND holds in the form of equal-

ity over the available instance. Then, one can apply the

original Castor algorithm and achieve complete schema

independence. The empirical results of this method are

exactly the same as the ones of the original Castor al-

gorithm with the overhead of its preprocessing step.

Another method is to use the INDs in general form di-

rectly without any preprocessing. We empirically eval-

uate the robustness of the latter method in this sec-

tion. To explore general decomposition/ compositions

of HIV, UW-CSE, and IMDb, we restore the INDs with

equality that we have enforced on their schemas to

their original forms. For instance, we restore the en-

forced INDs with equality movies2X[id] = movie[id] in

IMDb schemas to movies2X[id] ⊆ movie[id] in IMDb

schemas. We also modify the INDs with equality that

are originally found in these datasets to INDs in form

of foreign key to primary key referential integrities in

their schemas. For example, we have changed INDs

movies2X[Xid] = X[id] to movies2X[Xid] ⊆ X[id] over

IMDb schemas. Hence, the transformations explained

in Section 9.1 for these datasets are general decom-

position/ composition and not bijective. We run the

extended version of Castor from Section 7.4 using the

aforementioned INDs and all other regular INDs in each

schema. Table 6 shows the results of Castor learning re-

lations over the HIV-2K4K, UW-CSE and IMDb datasets,

using only INDs in the form of subset. The extension of

Castor gets the same results as in Table 4 over UW-CSE

and is schema independent. It is also robust and delivers

the same results as in Table 5 for JMDB and Denor-

malized schemas of IMDb. But, it returns precision of

0.98 and recall of 0.84 over the database with Stanford

schema. Overall, it is more effective and schema inde-

pendent than other algorithms over IMDb. However,

the results of the extension of Castor vary with the

schema over the HIV-2K4K dataset: it delivers preci-

sion of 0.77, 0.79, and 0.73 and recall of 0.63, 0.87, and

0.76 over the Initial, 4NF-1, and 4NF-2 schemas, re-

spectively. This is because it cannot access some tuples

in the bottom-clause construction in these databases

as explained in Section 7.4. Its precisions are equal or

higher than the those of Aleph-FOIL and Aleph-Progol

over all schemas and its recall is higher than that of

Aleph-FOIL and Aleph-Progol in 4NF-2 schema. But,

its recall is lower than the recall of Aleph-FOIL and

Aleph-Progol over the Initial and Aleph-Progol over

4NF-1 schemas.

9.3 Impact of Castor Design Choices

We evaluate the impact of parallelization and the use

of stored procedures on Castor’s running time. There

are some variations in the running times of Castor com-

pared to the experiments in the previous section. This

is because we run experiments again, and the running

times may fluctuate.

Impact of parallelization. Castor performs cov-

erage tests in parallel to improve its running time. Fig-

ure 1 shows the impact of parallelization on Castor’s

running time over HIV-Large (Initial schema), HIV-

2K4K (Initial schema) and IMDb (JMDB schema). Over

both HIV-Large and HIV-2K4K datasets, Castor ben-

efits from parallelization. Over the HIV-Large dataset,

the best performance is obtained by using 32 threads,

which reduces the running time by half compared to

using 1 thread. Over the HIV-2K4K dataset, the run-

ning time also reduces significantly with parallelization

24 Jose Picado et al.

Fig. 1 Impact of parallelization on Castor’s running time
over the HIV-Large (top-left), HIV-2K4K (top-right), and
IMDb datasets (bottom).

Dataset With stored procedures W/o stored procedures
HIV-Large 3.79h 4.75h
HIV-2K4K 15.28m 25.23m

IMDb 10.27m 19.49m

Table 7 Impact of stored procedures on Castor’s running
time over the HIV-Large, HIV-2K4K, and IMDb datasets

and the best performance is obtained with 16 threads.

Over the IMDb dataset, there is no benefit in using

parallelization. This is because Castor does not need

to perform many coverage tests, as it is able to find

the perfect definition very quickly. In this case, most of

Castor’s running time is spent in creating the ground

bottom-clauses, as explain in Section 7.5. Because the

UW-CSE dataset is very small, there is no need for par-

allelization. Notice that sequential Castor (1 thread)

is more efficient than Aleph-FOIL with clauselength =

15 over the HIV-Large dataset and more efficient than

Aleph-Progol over the HIV-2K4K and IMDb datasets.

This shows that besides parallelization, the techniques

explained in Section 7.5 allow Castor to run efficiently.

Impact of using stored procedures. Castor uses

the bottom-clause construction algorithm to generate

bottom-clauses in the LearnClause procedure, as well

as to generate ground bottom-clauses, used to test cov-

erage. As mentioned in Section 7.5, we implement the

bottom-clause construction algorithm inside a stored

procedure. To evaluate the benefit of using stored pro-

cedures, we also implement a version of Castor that

does not use stored procedures. Table 7 shows the run-

ning time of the versions of Castor with and without

stored procedures over the HIV-Large (Initial schema),

HIV-2K4K (Initial schema) and IMDb (JMDB schema)

datasets. The version of Castor that uses stored proce-

dures obtains between 1.25x and 1.9x speedup over the

version that does not use stored procedures.

9.4 Query-based Algorithms

We used the interactive algorithm with automatic user

mode in the LogAn-H system. In this mode, the sys-

tem is told the Horn definition to be learned, so that it

can act as an oracle. Then the algorithm’s queries are

answered automatically until it learns the exact defi-

nition. When answering EQs, the counter-examples are

produced by the system. Therefore, LogAn-H only takes

as input the schema of the dataset, but not the database

instance. We performed experiments using the schemas

of the UW-CSE dataset. We generated random Horn

definitions over the Denormalized-2 schema of the UW-

CSE dataset. The definition generator has a parameter

to indicate the number of variables in each clause. To

generate the head of each clause, we created a new re-

lation of random arity, where the minimum arity is 1

and the maximum arity is the maximum arity of the

relations in the Denormalized-2 schema. The body of

each clause can be of any length as long as the number

of variables in the clause is equal to the specified pa-

rameter and all variables appearing in the head relation

also appear in any relation in the body. The body of the

clause is composed of randomly chosen relations, where

each relation can be the head relation or any relation

in the input schema. Head and body relations are pop-

ulated with variables, where each variable is randomly

chosen to be an existing or new variable.

After generating each random Horn definitions over

the Denormalized-2 schema, we transformed these ex-

pressions to the Denormalized-1, 4NF and Original schemas

by simply doing vertical decomposition to each of the
clauses in a definition. We varied the number of clauses

in a definition to be between 1 and 5, each containing

between 4 and 8 variables. Therefore, we generated 50

random definitions for each setting. We ran the LogAn-

H system and recorded the number of queries required

to learn each definition under each schema. The number

of EQs and MQs asked by the algorithm is presented

in Figure 2. The average number of EQs required by

the A2 algorithm is constant for different number of

variables and similar throughout all schemas. However,

this is not the case for MQs. Particularly, the number

of MQs is greater for more decomposed schemas, e.g.,

Original schema. Further, the number of MQs also in-

creases with the number of variables. This difference

of MQs between the schemas originates from a step

in the A2 algorithm that removes non-essential liter-

als in ground bottom-clauses generated from negative

examples. This process is similar to Castor’s negative

reduction. It removes a literal and asks an MQ to ver-

ify whether the example is still negative. Therefore, the

Logically Scalable and Efficient Relational Learning 25

Fig. 2 Average number of equivalence (left) and membership
(right) queries for the A2 algorithm.

more decomposed the schema is, the more literals can

be removed, hence more MQs are asked.

10 Conclusion

We defined the property of schema independence for

relational learning algorithms, which states that the

output of these algorithms should not depend on the

schema used to represent their input databases. We

proved that current well-known relational learning al-

gorithms are not schema independent over composi-

tion/decomposition. We proposed a new algorithm, Cas-

tor, that leverages schema constraints to achieve schema

independence. Our empirical results on benchmark and

real datasets validated our theoretical results and showed

that Castor is efficient and more or as effective as cur-

rent relational learning algorithms.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases: The Logical Level. Addison-Wesley, 1994.
2. A. Abouzied, D. Angluin, C. Papadimitriou, J. Heller-

stein, and A. Silberschatz. Learning and verifying quan-
tified boolean queries by example. In PODS, 2013.

3. D. Angluin, M. Frazier, and L. Pitt. Learning conjunc-
tions of Horn clauses. Mach. Learn., 9(2-3):147–164, 1992.

4. M. Arias, R. Khardon, and J. Maloberti. Learning Horn
expressions with LOGAN-H. J. Mach. Learn. Res., 8:549–
587, 2007.

5. P. Atzeni, G. Ausiello, C. Batini, and M. Moscarini.
Inclusion and Equivalent Between Relational Database
Schemata. TCS, 1982.

6. B. T. Cate, V. Dalmau, and P. G. Kolaitis. Learning
schema mappings. TODS, 38(4):28:1–28:31, 2013.

7. Y. Chen, S. Goldberg, D. Z. Wang, and S. S. Johri. On-
tological pathfinding : Mining first-order knowledge from
large knowledge bases. In SIGMOD, 2016.

8. V. S. Costa, A. Srinivasan, R. Camacho, H. Blockeel,
B. Demoen, G. Janssens, J. Struyf, H. Vandecasteele, and
W. V. Laer. Query transformations for improving the
efficiency of ILP systems. J. Mach. Learn. Res., 4:465–
491, 2003.

9. J. Davis, E. S. Burnside, I. de Castro Dutra, D. Page,
R. Ramakrishnan, V. S. Costa, and J. W. Shavlik. View
learning for statistical relational learning: With an appli-
cation to mammography. In IJCAI, 2005.

10. L. De Raedt. Logical and Relational Learning. Springer
Publishing Company, Incorporated, 1st edition, 2010.

11. R. Fagin. Inverting schema mappings. TODS, 32(4),
2007.

12. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: Semantics and query answering. In ICDT,
pages 207–224, 2003.

13. W. Fan and P. Bohannon. Information Preserving XML
Schema Embedding. TODS, 33(1), 2008.

14. L. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek.
Fast Rule Mining in Ontological Knowledge Bases with
AMIE+. In VLDB Journal, 2015.

15. L. Getoor and A. Machanavajjhala. Entity resolution in
big data. In KDD, 2013.

16. L. Getoor and B. Taskar. Introduction to Statistical Rela-

tional Learning. MIT Press, 2007.
17. R. Hull. Relative Information Capacity of Simple Rela-

tional Database Schemata. In PODS, 1984.
18. R. Khardon. Learning function-free Horn expressions.

Machine Learning, 37(3):241–275, 1999.
19. O. Kuželka and F. Železný. A restarted strategy for ef-

ficient subsumption testing. Fundam. Inf., 89(1):95–109,
2009.

20. H. Li, C.-Y. Chan, and D. Maier. Query from examples:
An iterative, data-driven approach to query construction.
PVLDB, 8(13), 2015.

21. S. Muggleton. Inverse Entailment and Progol. New Gen-

eration Computing, Special issue on Inductive Logic Pro-
gramming, 13:245–286, 1995.

22. S. Muggleton and C. Feng. Efficient induction of logic
programs. In New Generation Computing. Academic
Press, 1990.

23. S. Muggleton, J. C. A. Santos, and A. Tamaddoni-
Nezhad. Progolem: A system based on relative minimal
generalisation. In ILP, volume 5989, 2009.

24. J. Picado, A. Termehchy, A. Fern, and
P. Ataei. Schema independent relational learning.
http://arxiv.org/abs/1508.03846, 2015.

25. J. Picado, A. Termehchy, A. Fern, and P. Ataei. Schema
Independent Relational Learning. In SIGMOD, 2017.

26. J. R. Quinlan. Learning Logical Definitions From Rela-
tions. Machine Learning, 5, 1990.

27. C. Reddy and P. Tadepalli. Learning Horn definitions:
Theory and an application to planning. New Generation

Computing, 17:77–98, 1998.
28. M. Richardson and P. Domingos. Markov logic networks.

Machine Learning, 62(1-2):107–136, Feb. 2006.
29. A. Srinivasan. The Aleph Manual, 2004.
30. A. Termehchy, M. Winslett, and Y. Chodpathumwan.

How Schema Independent Are Schema Free Query In-
terfaces? In ICDE, 2011.

31. Q. Zeng, J. M. Patel, and D. Page. QuickFOIL: Scalable
inductive logic programming. PVLDB, 2014.

