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Roadmap Learning for Probabilistic Occupancy
Maps with Topology-Informed Growing Neural Gas

Manish Saroya1,2, Graeme Best1, and Geoffrey A. Hollinger1

Abstract—We address the problem of generating navigation
roadmaps for uncertain and cluttered environments represented
with probabilistic occupancy maps. A key challenge is to generate
roadmaps that provide connectivity through tight passages and
paths around uncertain obstacles. We propose the topology-
informed growing neural gas algorithm that leverages estimates
of probabilistic topological structures computed using persistent
homology theory. These topological structure estimates inform
the random sampling distribution to focus the roadmap learning
on challenging regions of the environment that have not yet been
learned correctly. We present experiments for three real-world
indoor point-cloud datasets represented as Hilbert maps. Our
method outperforms baseline methods in terms of graph connec-
tivity, path solution quality, and search efficiency. Compared to
a much denser PRM*, our method achieves similar performance
while enabling a 27× faster query time for shortest-path searches.

Index Terms—Motion and path planning, computational ge-
ometry, probability and statistical methods.

I. INTRODUCTION

A fundamental requirement of all robotic systems is the
ability to perform collision-free and cost-effective nav-

igation between locations in an environment. Path planning
for reliable navigation is a prerequisite for achieving suc-
cess at high-level tasks including information gathering [1],
package delivery [2], and manipulation [3]. Current path
planning approaches typically assume perfect knowledge of
the world, which is an unrealistic assumption for physical
robot systems operating in challenging environments [4]. We
propose algorithms for generating navigation roadmaps of
uncertain environments by leveraging probabilistic topological
information to inform sampling-based graph generation.

Imperfection and uncertainty are inherent to robotic map-
ping systems, which arise from a variety of sources, including
sensor noise, localization error, line-of-sight occlusions, and
dynamic environmental changes [5], [6]. Imperfect maps pose
an inherent challenge to reliable navigation as the precise
locations of obstacles are unknown to the robot. Probabilistic
occupancy maps, such as the Hilbert map [5] illustrated in
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Fig. 1. A roadmap (grey graph) generated by our topology-informed growing
neural gas algorithm. The probabilistic occupancy grid (colored image) is
generated using a Hilbert map [5] from point-cloud observations of the Intel
Research Lab [8]. The white path is a solution path planned over the roadmap
through uncertain obstacles and narrow doorways.

Fig. 1, model these imperfections with probability distribu-
tions. This information is useful to navigation, particularly
in cluttered environments and tight corridors, as it provides
uncertainty estimates for the location of obstacles and free
space. Existing state-of-the-art path planning algorithms, such
as RRT and PRM [7], are unable to exploit this information as
they typically assume the map is deterministic, where mapping
noise causes fallacious connectivity estimates.

We propose a new algorithm for generating navigation
roadmaps over probabilistic occupancy maps. The key in-
novation of our approach is to inform roadmap generation
with probabilistic estimates of topological structures of the
environment. This topological feedback within the roadmap
generation is employed to guide the learning towards critical
and challenging regions of the environment, such as uncertain
doorways and obstacles, and repair mistakes in the current
graph. The topological feedback comes in the form of per-
sistent homology features [9], which are compared between
the currently-learned roadmap and the probabilistic world
map. The roadmaps are generated with a growing neural
gas (GNG) [10], which is a sampling-based graph learning
algorithm that generalizes self-organizing maps [11] to have
a dynamic topology. The topological feedback is used to
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generate a dynamic sampling distribution that informs the
growth of the GNG during the learning process.

We perform experiments with probabilistic occupancy
maps generated from point-cloud data collected from real
robots [8] and Hilbert mapping [5]. Our results demonstrate
that roadmaps generated by our proposed algorithm exhibit
several key benefits over standard PRMs [7] and GNG al-
gorithms that do not explicitly consider probabilistic topo-
logical information. Specifically, we show that our method
has superior success rate and average path length, while also
producing relatively sparse roadmaps to accommodate efficient
graph search. Similar performance is achieved to a dense
PRM*, but requires only 4% of the computation time to
compute shortest paths. The generated roadmaps, such as the
one illustrated in Fig. 1, provide a useful tool for navigating
uncertain environments, as well as enabling efficient multi-
query path-cost estimates for graph search algorithms such as
informative path planning solvers. We have released our code
publicly on our repository1.

II. RELATED WORK

Path planning is the problem of finding collision-free and
cost-effective trajectories from one location to another. This
capability is critical to robot navigation and therefore is one
of the most studied problems in robotics research. Many
approaches form single-query solutions, such as RRT [7],
where the focus is on finding solutions from the current
location to a goal location. Multi-query solutions involve a
precomputation step, such as generating a roadmap graph [7],
which enables efficiently finding paths for multiple start and
goal locations. This is particularly advantageous for planning
algorithms that optimize sequences of goals [1], [2].

Most existing path planning methods assume the avail-
ability of perfect knowledge of the world [7]; in practice,
this is an unrealistic assumption. Existing techniques that
attempt to overcome the challenge of map uncertainty involve
weighting edge costs by collision probabilities during the
query phase [12], [13], but the preprocessing step to generate
roadmaps is still challenging. Missiuro and Roy [13] propose
biasing the sampling such that the roadmap has greater cov-
erage in highly-certain free-space regions. We propose similar
ideas here, in conjunction with topological cues that bias the
sampling towards critical and challenging regions.

Biased sampling techniques for roadmap generation in de-
terministic maps have been proposed to increase the chance of
making connections through challenging tight passages [14].
Hsu et al. [15] propose successive dilation of obstacles to
increase the probability of sampling in critical regions. Deep
learning [16] and geometric [17] methods have been proposed
to learn the location of critical regions. For single-query
planning, techniques have been proposed for sampling only in
regions that are likely to improve the current solution [18],
[19], [20]. Our algorithm also utilizes a biased sampling
approach, but unlike the above methods, it also accounts for
uncertainty by leveraging probabilistically-defined topological
features. Other work also focuses on increasing the sparsity of

1https://github.com/manishsaroya/GNG

roadmaps [21], [22], which is a property that inherently arises
from our GNG algorithm.

Our roadmap generation algorithm is a generalization of
the GNG algorithm [10]. GNG is an unsupervised learn-
ing method that learns a graph-based representation of an
underlying distribution. GNGs are closely related to self-
organizing maps [11], except that GNGs do not enforce a strict
topology, but rather it evolves during the learning process. To
make GNGs effective at generating navigation roadmaps, we
propose using biased sampling that focuses on growing the
graph in critical regions.

Our algorithm borrows ideas from persistent homology the-
ory [9], which provides estimates of probabilistic topological
features, to guide the growth of the GNG. These ideas have
not previously been used for building navigation roadmaps
from probabilistic occupancy maps, but have been leveraged
for other robot planning tasks, including single-query path
planning [23], trajectory clustering [24], map prediction [25],
and informative path planning [26].

III. PROBLEM FORMULATION

We address the problem of generating a navigation roadmap
over a probabilistic occupancy map that facilitates finding
cost-effective and collision-free paths between all pairs of
locations. We are particularly interested in achieving this
for environments that contain topological structures such as
rooms, tight corridors, and narrow passages. The roadmap
should be well connected, contain cost-effective paths, and be
relatively sparse. We define this problem formally as follows.

The environment is represented by a 2-dimensional proba-
bilistic occupancy map that defines a probability of occupancy
P (ζ) at every location ζ ∈ R2 in the environment. One
example of how to generate these probabilistic occupancy
maps from point-cloud observations is to use the Hilbert
mapping technique [5], as illustrated earlier in Fig. 1. The
uncertainty encoded by P (ζ) may arise from a variety of
sources, such as sensor noise and localization error.

Let G(V, E) be a roadmap graph with vertices V and edges
E . Each vertex v ∈ V refers to a location wv ∈ R2 in the
occupancy map. Each edge e = (vi, vj) ∈ E connects two
vertices vi, vj ∈ V where a straight-line collision-free path
exists between vi and vj . Each edge e has a cost ce defined
as the Euclidean distance between the two vertices.

Given a start and goal location represented by vs, vg ∈
V , a path X corresponds to a sequence of vertices X =
(v1, v2, ..., vn) such that (vi, vi+1) ∈ E ,∀i, and also that
v1 = vs and vn = vg . The overall path cost C(X) is given by
the sum of the edge costs, i.e.,

C(X) =

|X|−1∑
i=1

c(vi,vi+1). (1)

We address the problem of finding collision-free and cost-
effective paths for multiple start ζs and goal ζs positions.
In order to solve this multi-query shortest-path problem on
a probabilistic occupancy map, we aim to learn a sparse,
topologically-accurate roadmap of the environment. More
formally, we aim to generate a roadmap that satisfies the
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(a) The death locations of the most-persistent topological structures. 0-dim: blue circles; 1-
dim: red diamonds. The three cutouts show topologically-challenging regions: (top) a narrow
passage connects two parts of a room; (middle) an obstacle lies in the middle of a room;
(bottom) a cluttered region consists of several 0-dim and 1-dim structures.

(b) Persistent homology diagram. Shown are the birth and
death intensities for the 50 most persistent structures. We
only use structures that are less than the two dotted lines
since these structures correspond to free-space.

Fig. 2. Persistent homology structures in the Intel environment probabilistic map. (a) shows the death location of the most persistent structures, where 0-dim
structures (blue circles) are connected components that correspond to difficult narrow passages, and 1-dim structures (red diamonds) are loops around uncertain
obstacles. (b) shows the birth and death probability intensity values for these structures. The sampling for our GNG algorithm is biased towards topological
structures that have not been learned correctly in the navigation roadmap.

following three properties for all (ζs, ζg) pairs. Define X ′ as
the shortest path over the roadmap from ζs to ζg . Similarly,
define X∗ as the shortest path over a ground-truth map from
ζs to ζg . Given these definitions, the desirable properties are:

1) Connectivity: If the path X∗ exists, then the path X ′

should also exist.
2) Path quality: The cost C(X ′) should be approximately

equal to C(X∗).
3) Search efficiency: The roadmap is sparse, such that

Dijkstra’s graph search finds X ′ by expanding a small
number of vertices.

IV. TOPOLOGY-INFORMED GROWING NEURAL GAS

We propose the topology-informed growing neural gas al-
gorithm for generating roadmaps over probabilistic occupancy
maps. Our method leverages persistent homology features to
inform the sampling process of a GNG graph algorithm. This
topology-informed sampling guides the growth of the GNG
towards challenging regions of the environment in order to
ensure connectivity of the roadmap through all noisy narrow
passages.

This section begins by introducing the persistent homology
features of the probabilistic map and how they correspond to
features in the currently-learned roadmap. Then we define the
dynamic sampling distribution, followed by a description of
the GNG algorithm that combines all of these components.

A. Topology of Probabilistic Occupancy Map

We begin by computing topological structures of the en-
vironment, such as rooms, corridors, and narrow passages,

via persistent homology theory [9]. Identifying these features
allows us to bias the learning of navigation roadmaps (dis-
cussed later in Sec. IV-D) towards regions containing these
challenging structures.

Persistent homology theory is a branch of computational
topology that robustly extracts topological features from noisy
representations. The 0-dimensional topological structures of
an environment correspond to connected components, such
as free space connections between rooms. The 1-dimensional
topological structures correspond to free space loops around
obstacles. Persistent homology involves the computation of
these topological structures and tracks their existence over a
spectrum of intensity thresholds.

We generate persistent homology diagrams [9] such as the
one shown in Fig. 2. This is achieved by converting the prob-
abilistic map into a binary map by thresholding all probability
values. This threshold is varied over the spectrum of 0 to
1. The existence of topological structures are tracked as this
threshold varies. Every topological structure has associated
birth and death thresholds. The birth of a structure is defined
as the lowest threshold where this structure exists in the
thresholded binary map. Similarly, the death is defined as the
highest threshold where this structure exists. A structure exists
for all thresholds between its birth and death probabilities.
Structures with longer lifespans are said to be more persistent.

Every feature that is tracked in the persistent homology
diagram has an associated location that causes the birth event,
and another location that causes the death event. These two
locations cause these events because their associated proba-
bility values are equal to the birth or death threshold. In
this work, we focus only on the death locations because
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they represent regions that are likely to be challenging for a
roadmap generation algorithm to learn correctly. For the 0-dim
features, these locations contain noise that hinder the ability
to connect two regions of free space. For the 1-dim features,
these locations contain noise that hinder the ability to find
paths around an obstacle.

In Fig. 2a we show death locations associated with the
death of structures given in the persistence diagram in Fig. 2b.
For the 0-dim features, we only include features where the
death is below a threshold. For the 1-dim features, we only
include features where the birth is below a threshold. This
filtering ensures we focus on features that are most relevant
to possible free space. Out of the remaining features, for
each dimension we use the 25 most persistent features, i.e.
have longest lifespan. We use the death locations to bias the
sampling distribution for our roadmap generation algorithm,
which is introduced in Sec. IV-C.

B. Topological Features Within Learned Roadmap

Our topology-informed sampling distribution, defined fur-
ther below, favors sampling in regions around the death
locations of topological features. However, once a topological
feature has been correctly learned by our roadmap, further
sampling in this region is unnecessary. For this to occur, we
need a way of determining when a topological feature has
been correctly learned in the current roadmap. We do this by
searching for nearby features in the roadmap that correspond
to 0-dim and 1-dim features.

For 0-dim features, we identify if they exist in the learned
roadmap by looking at a region of radius ρ0 around the death
location. Within the subgraph of the roadmap in this region,
we count how many connected components there are, while
ignoring isolated single vertices. If there is only 1 connected
component, then we determine that this topological feature has
been correctly learned in the roadmap.

For 1-dim features, which correspond to loops, we identify
if they exist in the learned roadmap by searching for the
existence of loops that surround the death location. We first
select the closest vertex in the roadmap to this location. A
breadth-first graph traversal is performed from this vertex
without exceeding a distance of ρ1 from the death location. In
this traversal, loops are detected, and checked to see if they
enclose the death location. If the death location is enclosed
then we determine that this topological feature has been
correctly learned in the roadmap.

C. Topology-Informed Sampling Distribution

We introduce two sampling distributions that are combined
to aid the learning of topologically-accurate roadmaps. We
leverage topological structures present in the environment to
define these sampling distributions. Firstly, we create a map
probability distribution and, secondly, we create a Gaussian
mixture distribution using structure locations from the persis-
tent homology features defined above.

The map probability distribution M(ζ) is obtained directly
from the probabilistic occupancy map. First, all locations ζ
that have occupancy probability above a threshold are set

to M(ζ) = 0. All other locations are assigned a sampling
probability ofM(ζ) = 1−P(ζ), where P (ζ) is the occupancy
probability (see Sec. III). The distribution M(ζ) is then
normalized to sum to 1.

The topological sampling distribution T (ζ) is defined by a
masked Gaussian mixture model. The Gaussian mixture is cre-
ated with mixture components with means defined at the death
locations of topological features that have not yet been satisfied
by the current roadmap. This satisfaction is determined as
described in Sec. IV-B. 0-dim feature components have a fixed
standard deviation of σ0, and 1-dim features have a smaller
standard deviation of σ1. Periodically, we randomly select two
of these features to be defined as mixture components, so that
the learning spends several iterations at a small number of
features before moving on. The distribution T (ζ) is masked by
multiplying the Gaussian mixture by M(ζ) so that occupied
locations are not sampled.

The combined sampling distribution is defined such that at
every iteration of the GNG algorithm, we sample from M(ζ)
with some probability or otherwise sample from T (ζ). In
our implementation, we sample from the topological sampling
distribution T (ζ) with 0.25 probability.

D. Growing Neural Gas
We propose using the growing neural gas learning proce-

dure [10] for generating navigation roadmaps. However, the
standard GNG formulation fails to produce a topologically-
accurate roadmap, which we show empirically in Sec. V.
Therefore, we propose a generalization of the standard GNG to
incorporate the topologically-informed sampling distribution
introduced above.

The GNG algorithm incrementally grows a graph that
represents a solution roadmap. The algorithm consists of an
initialization step followed by a series of epochs, where in
each epoch we draw samples and grow the graph towards these
samples. Pseudocode is provided in Alg. 1.

The initialization step (lines 1-7) first samples two locations
from the map distribution M(ζ). The graph vertex set is
initialized with these two locations.

Within each epoch (lines 9-47), first the topological sam-
pling distribution T is updated by receiving feedback regard-
ing the presence of topological features in the current roadmap,
as described earlier in Sec. IV-C.

Then, at each iteration of the inner loop, a sample location
ζ drawn from the combined sampling distribution is used
to grow the graph. Each sample ζ is used to select two
nearby vertices, update the corresponding edge, and move
neighbouring vertices towards ζ. The agee of edge e measures
how many times one of its neighboring edges have been
selected as the winner since the last time edge e was a winner.
The errorv of vertex v is defined as the accumulated distance
from ζ for all occasions that v was the winner vertex.

At the end of each iteration (lines 34-35), any edges that
have an age beyond a threshold amax are removed. Any
disconnected vertices are also removed. This edge removal
process helps remove erroneous connections and maintain
sparsity. Both of these benefits are important in the context
of navigation roadmap generation.
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Algorithm 1 Topology-Informed Growing Neural Gas.
Input: probabilistic occupancy map P(ζ)
Parameters: loop limits λ1, λ2, λ3,

step and decay rates εb, εn, α, β,
edge age limit amax

Output: roadmap graph G(V, E)
1: . Generate map sampling distribution (see Sec. IV-C)
2: M(ζ)← distribution derived from P(ζ)
3: . Initialize roadmap with two sampled points
4: Sample (ζ1, ζ2) from M(ζ)
5: Create vertex v1 with location wv1 = ζ1
6: Create vertex v2 with location wv2 = ζ2
7: V ← {v1, v2}, E ← {}
8: for λ1 epochs do
9: . Update the topological sampling distribution

10: f ← topological features not satisfied by G
11: T (ζ)← sum of Gaussians around f
12: for λ2 iterations do
13: . Grow graph towards λ3 samples
14: for λ3 iterations do
15: . Draw from combined sampling distribution
16: Sample ζ from {M(ζ), T (ζ)}
17: . Find closest vertices to ζ
18: v1 ← closest v ∈ V to ζ
19: v2 ← 2nd closest v ∈ V to ζ
20: . Update edge
21: if (v1, v2) /∈ E then
22: E ← E ∪ {(v1, v2)}
23: age(v1,v2) ← 0

24: . Increment the error of winner vertex
25: errorv1 ← errorv1 + ‖wv1 − ζ‖
26: . Move winner and neighbors towards ζ
27: Vv1 ← neighboring vertices of v1
28: wv1 ← wv1 + εb(wv1 − ζ)
29: wn ← wn + εn(wn − ζ),∀n ∈ Vv1
30: . Update ages and errors
31: age(v1,n) ← age(v1,n) + 1,∀n ∈ Vv1
32: errorv ← β × errorv,∀v ∈ V
33: . Remove old edges and isolated vertices
34: E ← E \ {e},∀e ∈ E : agee > amax
35: V ← V \ {v},∀v ∈ V : neighbors of v = {}

36: . Add new vertex
37: v1 ← argmaxv∈V [errorv]
38: Vv1 ← neighboring vertices of v1
39: v2 ← argmaxv∈Vv1

[errorv]
40: errorv1 ← α× errorv1
41: errorv2 ← α× errorv2
42: create vnew with wvnew ← (wv1 + wv2)/2
43: V = V ∪ {vnew}
44: . Update edges
45: e1 ← (v1, vnew) with agee1 ← 0
46: e2 ← (vnew, v2) with agee2 ← 0
47: E ← E ∪ {e1, e2} \ {(v1, v2)}

Periodically, a new vertex is added (lines 36-47) in areas
that are frequently sampled but have high error. The existing
vertex with the highest error is selected and a neighboring
vertex. A new vertex is inserted halfway between these two
vertices. The original edge is replaced with two new edges.
This vertex insertion process helps grow the graph in free-
space regions that have not yet been learned correctly.

This learning process continues for a predefined number of
epochs. The generated graph directly corresponds to a solution
navigation roadmap.

V. EXPERIMENTS

We present results for experiments with a real-world dataset
of indoor environments that demonstrate the behavior and per-
formance of our algorithm. The following results demonstrate
that our method achieves similar solution quality and success
rate as dense roadmaps while enabling much more efficient
graph search. We also highlight the performance benefits of
using the topological feedback within the GNG to repair
challenging and uncertain regions of the roadmap.

A. Experimental Setup

1) Probabilistic occupancy maps: We perform experiments
using three real-world 2D point-cloud datasets named Intel,
Freiburg, and FHW [8], which are illustrated in Fig. 3. These
datasets are from indoor office and laboratory environments,
and their topology consists of various structures such as rooms,
corridors, narrow passages and obstacles. As the data was
recorded from onboard real robots, there is inherent noise
in the generated maps, such as occluded regions and noisy
obstacles. We generate probabilistic occupancy maps from
the point cloud observations using Hilbert maps [5], and our
method generates navigation roadmaps with respect to these
probabilistic maps.

2) Comparison methods: We compare the following
roadmap generation methods:
(a) dense PRM*: Probabilistic roadmap using the PRM* al-

gorithm [7] with 4000 vertices is used as baseline high-
density roadmap.

(b) topological GNG: Proposed topology-informed GNG.
(c) no feedback: Same as our method except the topological

features remain constant such that the feedback defined in
Sec. IV-B is not used.

(d) standard GNG: A baseline GNG algorithm [10] that does
not use the topological sampling distribution T .

(e) PRM*-2000: A PRM* with 2000 vertices.
(f) PRM*-1000: A sparser PRM* with 1000 vertices, which

is the same number of vertices as gets generated by the
GNG algorithms.

(g) PRM*-500: A sparser PRM* with 500 vertices.
The GNG algorithms learn with respect to the probabilistic
Hilbert map, while the PRM* methods use a deterministic
map generated by thresholding the probabilistic map.

3) Evaluation metrics: We evaluate the quality of the
generated roadmaps with three metrics for 500 random start-
goal pairs per map:
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(a) Intel Research Lab (b) Freiburg-Building 079 (c) FHW

Fig. 3. An illustration of the probabilistic occupancy maps used in the experiments, generated from the point-cloud datasets [8] recorded by robots in three
indoor environments and the Hilbert mapping technique [5]. The environments have varying configurations of rooms, doorways, narrow passages, and noisy
obstacles, and are between 20 m and 80 m across.

(a) Roadmap generated with a standard GNG. (b) Roadmap generated with our topology-informed GNG.

Fig. 4. Two roadmaps generated for the FHW environment. The three cutouts show uncertain narrow passages where the standard GNG in Fig. (a) failed
to make a connection and therefore cannot be used for finding paths. Our topology-informed GNG in Fig. (b) biases the sampling towards these challenging
regions and therefore can be used to successfully generate a path from one side of the environment to the other (white path).

(i) Success rate is a measure of the connectivity of the
roadmap, computed as the number of start-goal pairs
where a feasible solution is found divided by the total
number of start-goal pairs.

(ii) Success-weighted path cost (SPC) measures the quality
of the paths generated from a roadmap [27]. SPC is a
measure of normalized average path cost, such that any
unsuccessful start-goal pairs get penalized with a score of
0, and successful and short paths get scores near 1. SPC
is formed by averaging these scores over all start-goal
pairs. Formally, SPC is defined as

SPC =
1

N

N∑
i=1

Si
C(X∗i )

C(Xi)
(2)

where N denotes the total number of start-goal pairs,
C(Xi) denotes the path cost, C(X∗i ) denotes the path
cost achieved by the baseline dense PRM*, and Si is
a binary indicator for path success. Higher SPC values
correspond to a high quality roadmap.

(iii) Success-weighted vertices explored (SVE) measures the
amount of computation required to search for a path.
SVE is a measure of how many vertices get explored by
a Dijkstra graph search while searching for shortest paths
over the roadmap. SVE is computed in the same way as

SPC except with number of vertices explored replacing
the path costs C(Xi). Higher SVE values correspond
to roadmaps that can be efficiently searched over, while
SVE values near 0 indicate the roadmap is dense and
therefore slow to search over. The numerator of the ratio
uses dense PRM* again, which has a relatively high
number of vertices explored.

4) Implementation details: Parameters used for the GNG
methods are: εb = 0.2, εn = 0.005, λ2 = 6, λ3 = 100,
α = 0.5, β = 0.995, and the maximum vertices allowed is
1000. The maximum edge amax varied between maps as 70,
56, and 56. The number of GNG epochs λ1 varied between
maps as 200, 300, and 400, due to the different sizes. For
the PRM* methods: the constant γPRM used to determine the
variable connection radius (see [7]) varied between maps as
30, 25, 45, and the probability threshold as 0.25, 0.5, and 0.45.
All GNG parameters were selected using the default values
from the NeuPy library [28] and tuned empirically.

The Hilbert map implementation is from [29]. The Hilbert
map is converted into a simplicial complex using Freudenthal
triangulation [30] and the GUDHI library [31] computes
persistent homology. We use the NeuPy GNG library [28].
Experiments were performed with an Intel i7 8th-gen CPU.
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Fig. 5. The success rate achieved by the comparison methods for 500 start-
goal pairs in the three maps of Fig. 3. Higher success rates indicate the
roadmap has good connectivity across the environment. Our topological GNG
achieves a similar success rate to dense PRM* and enables much more efficient
search (see Fig. 7).

B. Results

1) Illustrative example: Fig. 4b presents an illustrative
example of roadmaps generated by the GNG methods. The
standard GNG algorithm generates the roadmap in (a), which
achieves sufficient coverage and connectivity of the open and
certain areas of the environment. However, it fails to find
connections through narrow and uncertain areas, as shown
in the three cut-outs. These disconnects mean that a graph
search will not find a path through these regions. Our topology-
informed GNG improves on this by dynamically biasing the
sampling toward these regions to repair errors in the roadmap.
This results in the improved roadmap shown in (b), which
successfully connects the narrow and uncertain corridors,
and therefore can be used to find a path across the map.
Another topology-informed GNG roadmap is presented earlier
in Fig. 1, where we can see that the roadmap achieves good
coverage and connectivity by being guided by the topological
structures illustrated in Fig. 2a.

2) Numerical results: Fig. 5 compares the achieved success
rates. The baseline dense PRM* had the highest success rate
(average 75%) since it has a very high density of vertices
and edges. We note that the success rate is below 100% since
some start-goal pairs are disconnected in the environment. Our
topological GNG performed almost as well (72%). The two
comparison GNG algorithms performed worse (54%, 52%),
particularly in the FHW environment where there is a lot
of noisy narrow passages as they could not make use of
the topological feedback to repair mistakes in these regions
(see Fig. 4b). We note that in Freiburg, standard GNG (59%)
performed better than no feedback (56%), which indicates
that no feedback spent too many iterations sampling near
features that had already been correctly learned. In contrast,
our proposed algorithm does not continue to sample a feature
once it has been learned correctly. The PRM*-2000 achieved
similar success rate (72%) to our method, but this comes at a
cost of higher computation time (discussed below). The sparser

Fig. 6. The success-weighted path cost (defined in Sec. V-A3) achieved by
the methods. Higher SPC values indicate that the roadmap generates better
quality paths and has a high success rate. Our topological GNG finds similar
quality paths to dense PRM* and outperforms the sparser PRMs.

PRMs performed worse (61%, 22%) as these roadmaps were
disconnected.

Fig. 6 compares the success-weighted path cost. Similar
trends can be observed and conclusions drawn as for the suc-
cess rate metric discussed above. The results here demonstrate
that not only does topological GNG achieve a similar success
rate to dense PRM*, but also that the quality of these paths
are similar in terms of path cost (average 0.87 SPC).

Fig. 7 compares the success-weighted vertices explored.
Dense PRM* performs relatively poorly (1.0 SVE) since
Dijkstra’s algorithm requires a larger number of expansions to
search over this denser graph. Our topological GNG generated
roadmaps were much more efficient to search over in terms of
vertex expansions (9.2). The two comparison GNG algorithms
had a similar number of vertices explored as topological GNG,
but a lower SVE (7.2, 6.8) is achieved due to the lower success
rate. The comparison PRMs have a higher SVE (2.0, 3.9, 3.0)
than dense PRM* due to generating sparser roadmaps, but are
outperformed by our method.

The computation time for each query (to find a path or report
a failure) was consistently faster for the GNG methods due to
the improved sparsity compared to the PRM* methods. The
query times in milliseconds over the 500 queries and 3 maps
had mean µ and standard error σµ: dense PRM*: µ = 647,
σµ = 4.0; topological GNG: µ = 28, σµ = 0.5; no feedback:
µ = 32, σµ = 0.5; standard GNG: µ = 27, σµ = 0.5; PRM*-
2000: µ = 252, σµ = 1.8; PRM*-1000: µ = 111, σµ =
1.0; and PRM*-500: µ = 60, σµ = 0.6. The offline learning
time for GNG methods with topology averaged 260 s, standard
GNG averaged 100 s, and the PRM* methods were 4 to 15 s.

VI. DISCUSSION AND FUTURE WORK

Overall, our results demonstrate that our proposed topology-
informed GNG achieves a similar success rate and path
quality to a dense PRM* while providing a 27× speedup
when performing Dijkstra graph searches. In comparison to
baseline GNG and sparse PRM* approaches, our method
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Fig. 7. The success-weighted vertices explored (defined in Sec. V-A3)
achieved by the methods. Higher SVE values indicate that the roadmaps are
relatively sparse and therefore can be efficiently searched over by Dijkstra’s
graph search. The baseline dense PRM* performed relatively poorly here due
to the increased number of vertices.

achieved higher performance in all three evaluation metrics.
This improvement in performance is due to how our method
successfully uses topological feedback to focus the learning in
regions of the map that are challenging due to high clutter and
uncertainty. These results show that our method is an effective
algorithm for generating high-quality, sparse roadmaps of
cluttered and uncertain environments.

Our results motivate several avenues of future work. We
would like to extend our algorithm for online scenarios where
the map is discovered as the robot moves through the world;
GNG and related algorithms are well suited for refining
prior graphs [32]. It would also be interesting to extend
our approach to 3D, which may involve receiving feedback
regarding higher-dimensional persistent homology structures.
Also, the topology-informed sampling may be useful in other
contexts that require processing probabilistic maps, such as
single-query path planning and risk-aware planning. Finally,
we would like to use the roadmaps generated by our approach
for robot planning tasks that depend on reliable and efficient
multi-query graph searches, such as for information gather-
ing [1] and package delivery [2].
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