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Abstract— Underwater motion planning is challenging due
to environmental conditions such as low visibility, uncertain
environmental disturbances, and complex hydrodynamics. Since
these conditions pose various limitations on sensing, actuation,
power, and communication, state-of-the-art solutions developed
for robotic systems in the ground and aerial domains may
not generalize well to the underwater domain. In this paper,
we present our ongoing work to overcome these challenges
and improve autonomy for underwater vehicle-manipulator
systems on underwater tasks such as object retrieval. We
develop a framework for planning vehicle trajectories that
collect information of an object of interest in the presence
of environmental disturbances. Preliminary results are shown
using a closed-loop rapidly-exploring random tree algorithm.
Alongside vehicle motion planning, we also present a frame-
work for exploratory and exploitative grasp planning using
underwater tactile sensing. Together, these frameworks provide
a promising solution for robust underwater grasping under
uncertainty.

I. INTRODUCTION

Underwater tasks such as ship hull cleaning, pier mainte-
nance, and environmental sampling are commonly completed
with remotely operated vehicles (ROVs) or human divers.
Deploying ROVs is expensive, with even small vehicles
costing tens of thousands of dollars per day to deploy, in
large part due to the high level of expert involvement required
of the human operators, who must constantly monitor and
control the robots. Using human divers is similarly expensive
and carries the additional risk of hazard to life and limb
caused by manned underwater operation at depth. These
extreme monetary and human costs motivate a need for
increased autonomy in underwater intervention and sampling
tasks. By using autonomous robots to perform a greater por-
tion of the work for underwater tasks, underwater operations
can be performed safer and at lower cost than is currently
possible [1].

Although autonomous robots have achieved remarkable
performance at tasks in structured laboratory and industrial
environments, real-world environments often pose unique
challenges to robotic manipulation that cause algorithms
designed for more structured environments to fail. The
underwater domain is particularly challenging in part because
difficult visual conditions, including turbid water and shifting
lighting, cause perception algorithms that were designed
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for terrestrial domains to fail underwater. Additionally, un-
derwater robots face constrained power and computational
resources compared to land-based robots, and the high cost of
underwater deployment has resulted in a comparative dearth
of underwater robotics datasets, which limits the applicability
of deep learning-based approaches that often require large
datasets to train. Finally, uncertain currents and nonlinear
hydrodynamics make it challenging to plan efficient and
dynamically feasible paths.

The Resident Seabed Autonomy (RSA) project [2], a
collaboration between the Applied Physics Laboratory at the
University of Washington and the Collaborative Robotics and
Intelligent System Institute at Oregon State University, aims
to overcome these challenges and improve autonomy for
underwater vehicle-manipulator systems (UVMS). As part
of the project, we are conducting fundamental research in
control, perception, planning, and human interfaces to enable
dexterous, robust, and flexible robotic manipulation in under-
water environments, improving the efficiency and reliability
of underwater manipulation. In this paper, we provide the
current status of our work in addressing problems in motion
planning involving active perception with a UVMS.

Fundamental challenges in underwater manipulation arise
in object retrieval tasks, in which an object is secured and
removed from the seafloor. Our work targets these tasks
because they are similar in a wide variety of underwater
tasks. We integrate adaptive and informative motion plan-
ning into vehicle navigation and robotic arm manipulation.
By analyzing the motion of the UVMS coupled with the
environment, we design UVMS motions that can adapt to
underwater disturbances such as ocean currents. For effective
operation of the UVMS with limited information in the
underwater environment, we investigate design of UVMS
motion to maximize information to be collected from visual
and tactile sensors. Furthermore, to increase the success
rate of manipulation tasks, we conduct grasp planning using
information from visual and tactile sensors.

The rest of the paper is organized as follows. Section II
provides a discussion of related work in motion planning and
grasping. In Section III, we provide an overview of informa-
tive kinodynamic motion planning and adaptive replanning
that we plan to explore in our project. Section IV discusses
the tactile exploration and grasp planning problems for
gathering data and executing successful graphs, and Section
V introduces software tools used to analyze the motion of our
hardware systems in the underwater environment. Finally,
we end in Section VI with concluding remarks about the
integration of motion and grasp planning pipelines.



II. RELATED WORK

In this section, we provide a brief overview of related work
in motion planning and grasping relevant to the underwater
manipulation domain.

A. Motion Planning

1) Adaptive Planning with Uncertainty: Motion plan-
ning without environmental uncertainty is often approached
using sampling-based methods such as Rapidly-exploring
Random Trees (RRTs) [3]. Motion planning in uncertain
environments applies sampling-based methods to two related
problem domains. First, there is planning with uncertainty, in
which the structure of environment is known beforehand, but
there is either state uncertainty or uncertainty in dynamics
that makes some paths riskier than others. Prior work that
has addressed planning with uncertainty include Rapidly-
Exploring Random Belief Trees [4], which incorporates state
uncertainty into sampling-based planning by representing
states as Gaussian and planning over the belief space to
minimize uncertainty.

Second, there is adaptive replanning, which seeks to
address the issue where the location of the obstacles and/or
traversal costs is unknown or partially known during plan-
ning, and only during execution does the agent observe the
actual state of the world, thus requiring replanning during
execution. RRTX [5] is one approach that has examined ex-
tending the traditional RRT algorithm to allow for replanning
by quickly updating the tree based on new information to
leverage previous samples. Risk-Aware Graph Search [6]
examines the problem from a search-based planning per-
spective by encoding edge costs as probability distributions
whose true value is uncertain until exploration and finding
the lowest risk path in the graph. In our work, while we
may have an estimate of the world based on prior knowledge
from ocean modeling, these estimates may be inaccurate or
outdated, therefore there is a level of uncertainty involved.
Thus we aim to incorporate these two areas of research to
adaptively replan with uncertain estimates of the world state.

2) Informative Kinodynamic Motion Planning: Despite
increasing attention to UVMS motion planning, existing
work has not incorporated either underwater manipulator
dynamics or underwater vehicle-manipulator dynamics yet.
Conventional RRT algorithms are developed for holonomic
robots. For underwater vehicle motion planning with differ-
ential constraints, [7] has incorporated vehicle dynamics into
a closed-loop rapidly-exploring random tree (CL-RRT) for
an autonomous underwater vehicle. Given a sampled node
in the configuration space, this work first computes vehicle
heading and depth control commands to reach the sampled
node by using fuzzy controllers and then computes a feasible
node by running a vehicle dynamics model for the heading
and depth control commands. However, their work does not
address the problem of information gathering and their rule-
based fuzzy controller may limit navigation performance.

For informative vehicle motion planning, [8] has incor-
porated the Fisher information into a CL-RRT without con-
sidering underwater domains. For informative manipulator

motion planning, much of the related work focuses on
tactile exploration in indoor lab settings. To the best of our
knowledge, our work is the first to apply this line of work
to the underwater domain considering vehicle-manipulator
dynamics.

3) Planning for Underwater Vehicle-Manipulator Sys-
tems: In [9], the Girona 500 vehicle was used to execute a
valve turning task underwater. They used the multirepresen-
tation, multiheuristic A* algorithm to plan paths for a UVMS
using motion primitives designed separately for vehicle and
robotic arm. To identify the valve, they used a purely vision-
based system with a series of filtering and edge detection
image processing techniques to locate the orientation of the
valve. Finally, visual servoing with an arm-mounted camera
was used to align the manipulator with the valve and turn it.

In our work, we consider a turbulent environment with
a lower weight class vehicle, which will cause the UVMS
to deviate from plans generated without considering system
dynamics and environmental uncertainty. We plan to use
a more sophisticated perception system integrating tactile
sensors and laser scans to perform grasps on a variety
objects.

B. Grasping
Advances in robotic grasping in structured environments

have been achieved with the advent of data-driven algorithms
to identify secure, feasible grasps and the increasing avail-
ability of large grasping datasets [10]. Given a model of the
target object, these grasp synthesis algorithms output end-
effector configurations likely to seize the object without slip-
ping during manipulation. While early algorithms to identify
secure grasps focused on optimizing geometric properties
of the grasp such as force closure [11], more recent work
has formulated the problem of maximizing grasp success as
a learning task in which vast quantities of data inform a
grasp selection policy that maximizes empirical or simulated
success rates [12]–[14].

Collecting underwater grasping datasets is expensive and
slow, and to our knowledge no such large datasets have been
collected. Consequently, state-of-the-art autonomous under-
water manipulation systems rely on simple analytical rather
than data-driven measures of grasp quality. For example, the
Girona 500 vehicle executed grasps after just performing
simple alignment of a gripper to a valve [9]. Similarly, the
University of Hawaii’s semi-autonomous underwater vehicle
for intervention missions (SAUVIM), an early UVMS, used
only visual localization and servoing controls to verify
geometric alignment of the end-effector and target to in
underwater manipulation tasks [1]. Existing implementations
such as these use simple geometric heuristics to enable
underwater manipulation. Adapting terrestrial grasp synthesis
techniques to the underwater domain is a key effort of this
project to enable higher levels of UVMS autonomy.

III. ADAPTIVE AND INFORMATIVE UNDERWATER
MOTION PLANNING

We consider a UVMS navigating from the initial position
at rstart to an object of interest locating at rgoal and exploring



the object using a robotic arm for manipulation tasks under
uncertain environmental disturbances D. Let rv and ra

denote the state of the vehicle and manipulator, respectively.
Also, let uk and rk = [rvk, r

a
k] denote the control input and

state of the UVMS at time step k, respectively. Action uk

includes vehicle thruster and robotic arm joint inputs that
influence how the UVMS is actuated. These actions can
cause information to be accumulated about the target object
according to observations from sensors.

A key to increasing the success rate of manipulation
tasks by the UVMS is to maximize information about the
target object, such as its pose and shape, gathered during
navigation and exploration prior to manipulation tasks. This
kinodynamic motion planning problem can be formulated as
the following optimization problem:

U? = argmax
U∈U

I(U |D), (1)

subject to rk+1 = f(rk,uk), (2)
rv0 = rstart, raf = rgoal (3)

where U = {u0, · · · ,uk} ∈ U is a sequence of actions,
f represents underwater vehicle-manipulator dynamics, and
I(U |D) is a function representing the information quality
gathered by performing the action sequence U given the
environmental disturbances D. In this problem, we consider
any quantifiable metric for information of interest, such as
Fisher information or entropy, along the trajectory.

Since the UVMS motion is subject to environmental
disturbances such as ocean currents in dynamic environments
[15], it is critical to incorporate these disturbances in (1). For
example, the quality of information obtained by the sensors
of the vehicle may be significantly degraded when the vehicle
is moving against the current. Additionally, moving against
the current is more costly in terms of energy expenditure,
which is an important consideration in underwater domains.

However, it is possible for the actual currents experienced
by the vehicle during plan execution to differ from the
estimated currents used during planning, especially if the
underlying model for the ocean currents is inaccurate or the
ocean conditions have changed significantly. Thus, we plan
to address the uncertain disturbance planning problem, where
an estimate of ocean current disturbances based on prior
knowledge is maintained. This estimate is used in the initial
planning phase. As the robot executes the plan and collects
information on the actual state of the world this estimate is
updated and used to actively replan.

A. Reduced Dimensionality Problem Formulation

To facilitate algorithm development to solve (1), initial
progress has been made on vehicle motion planning in a
simplified two-dimensional (2D) problem domain as a proof
of concept. While the actual problem is formulated in a three-
dimensional (3D) environment with 12 degrees-of-freedom
vehicle dynamics and an unknown spatiotemporally-varying
current field, we are limiting our preliminary analysis to a 2D
environment without environmental disturbances. However,
to expedite extension of our results obtained through this

study to 3D later, we do not limit vehicle dynamics. First,
we investigate incorporating vehicle dynamics under no
environmental disturbances into CL-RRT. To be specific, in
expanding a tree in CL-RRT, we investigate using model pre-
dictive control (MPC) with vehicle dynamics as constraints
to connect a new sampled node to an existing one. Let us
denote an existing node by qstart and a sampled node by
qtarget. To generate a dynamically feasible trajectory for a
UVMS, we generate a series of vehicle control inputs by
solving the following optimization problem formulated as in
an MPC framework:

u?
0:N−1 = argmin

u0:N−1

N∑
k=1

‖rvk − qtarget‖2 (4)

subject to rk+1 = f(rk,uk), rv0 = qstart, (5)

where N is the prediction horizon. Then, to track the planned
trajectory between the two nodes, a UVMS executes the
control inputs.

Additionally, we aim to incorporate information gather-
ing into CL-RRT, referred to as informative CL-RRT, and
investigate the case on the horizontal plane for simplicity.
Suppose a UVMS obtains the distance and angle information
of an object relative to the UVMS from its perception system
while navigating towards the object. To plan UVMS motion
that maximizes the information, we can employ the Fisher
information which implies the amount of information about
the estimation variable contained in the observation. Let
us denote the position of a target object by s = [sx, sy]T

and the horizontal position of a UVMS by r̄v = [rvx, r
v
y ]T .

The observation vector, denoted by z, for the distance and
angle information of an object relative to the UVMS can
be constructed as z = [dist(s, r̄v), angle(s, r̄v)]T . Assuming
observation noise is represented by zero-mean Gaussian with
covariance σ2, the Fisher information matrix regarding s
contained in z can be computed by

Is(z) =
1

σ2

(∂z
∂s

)T(∂z
∂s

)
. (6)

Compared to [8], our work specifically aims to investigate
dynamic feasibility of planned trajectories for a UVMS in
the underwater domain by incorporating the MPC framework
shown in (4) into informative CL-RRT.

Initial results, shown in Fig. 1, have indicated the po-
tential applicability of these techniques to the underwater
domain. The figure contains the output of our preliminary
implementation of informative CL-RRT for a UVMS using
sequential quadratic programming as a numerical solver for
(4) with N = 5 and step size 0.1 s. Suppose a vehicle
navigates from an initial position (rvx,0, r

v
y,0) = (0, 0) (ma-

genta cross in the figure) at time k = 0 to a target object
at (sx, sy) = (0.9, 0.9) (magenta pentagram in the figure)
in a domain D ∈ [0, 1.5] m × [0, 1.5] m. Starting from
the initial position of the vehicle, the proposed CL-RRT
grows a tree by sampling a new node and connecting it
to an existing node. Compared to conventional RRT, CL-
RRT connects two nodes using closed-loop predictions of
a system which in our problem is computed by (4). In



Fig. 1. Vehicle trajectories (green lines) with sampled nodes (black
circles) generated by CL-RRT under development from the starting position
(magenta cross) at (0,0) to the goal position (magenta pentagram) at
(0.9,0.9). The red line represents the selected vehicle trajectory. Overlaid
in the figure is an information map constructed by the log-determinant of
the Fisher information matrix evaluated for the true object position.

the figure, nodes of the tree are shown as black circles
and its branches between nodes as green lines. Once one
or more branches of the tree reach the goal position, CL-
RRT searches the most favorable trajectory connecting the
initial position to the target position among others. In this
example shown in the figure, only one trajectory shown as a
red line is found. We can observe that the lines connecting
nodes are sufficiently smooth to be dynamically feasible for
a UVMS and a successful trajectory is generated from the
initial position to the goal position. Overlaid in the figure
is an information map constructed by the log-determinant of
the Fisher information matrix evaluated for the true object
position. Integration of this information map into CL-RRT
is a work in progress. However, our current results show
promise in the application of the CL-RRT and the Fisher
Information matrix to this problem domain. In further work
on this simplified problem, we will focus our future efforts
to resolve identified challenges, including computational
complexity in our MPC implementation associated with CL-
RRT.

IV. GRASP PLANNING

In general, motion and grasp planning may operate in
tandem to secure the object by planning not only vehicle
motion, but also robotic arm motion. To facilitate our anal-
ysis, our preliminary work considers vehicle motion and
robotic arm motion separately. In this section, we present
potential frameworks for grasp planning we have identified.
Once the UVMS has navigated near the object, the goal
for retrieval tasks is to secure the object. However, object
shape information may be incomplete due to limited visual
coverage of the object along the approach trajectory caused
by adverse visual conditions. Thus, it is necessary to not only
identify end effector configurations that can securely grasp

Fig. 2. Grasp primitives for underactuated hand. In the exploratory
primitive (left), the fingers splay back to expose the membrane of an optical
tactile sensor in the gripper palm for tactile exploration. In an exploitative
primitive (right), the fingers close inward to secure the object.

the object, but also to identify configurations that explore
the object with tactile sensors to gather information about
object shape: so-called “exploratory” or “exploitative” grasp
configurations, respectively [16].

Grasp configurations are commonly expressed as sets of
contact points on the object surface [14]. However, because
the gripper used in this project is underactuated, we express
grasp configurations as tuples g = {v, p} consisting of
an approach vector, v, in the object frame and a grasp
primitive, p ∈ P , where P is a set of primitive grasp
configurations compatible with the underactuated gripper.
A grasp primitive encodes the finger configuration, such as
spherically or cylindrically wrapping, before grasping [17].
One of the grasp primitives available on the gripper is tactile
probing, in which the fingers are splayed backward to expose
an optical tactile sensor [18]. By pressing the sensor into the
object, the UVMS can explore to learn the object’s shape as
shown in Fig. 2. We have defined grasp planning broadly to
include exploratory grasping actions.

Exploratory grasp planning is enabled by previous algo-
rithms to plan probing or grasping actions that reduce the
uncertainty of object shape or pose [16], [19], [20]. Let us
consider object shape only here and denote the belief in the
shape of an object by B. Let G be the set of all kinematically
reachable grasps g = {v, p}. An exploratory grasp planner
seeks to find g? ∈ G such that

g? = argmax
g∈G

Igrasp(g|B), (7)

where Igrasp(g|B) is a function representing the information
quality gathered by performing the grasp g given the belief
B. Igrasp(g|B) may be approximated with the Fisher metric
from (6), or other metrics such as the reduction in Gaussian
process variance resulting from achieving grasp g, given the
most-likely observation outcome of achieving grasp g.

Exploitative grasps, which seek to secure the object for
manipulation, are commonly generated with analytic grasp
synthesis tools such as GraspIt! [21] or data-driven tools
such as Dex-Net [22]. Exploitative grasp planners seek to
find g? ∈ G such that

g? = argmax
g∈G

L(g|B), (8)

where L(g|B) is the likelihood that a grasp g will suc-
cessfully secure an object given the current belief B in the



object’s shape. The likelihood may be estimated with ana-
lytical metrics, by examining the proportion of grasps near g
resulting in force closure, or by using a data-driven technique
without explicitly modeling grasp metrics, as in Dex-Net.
State-of-the-art methods have achieved high performance at
identifying g? for pick-and-place tasks on industrial robot
arms.

Despite the strong performance of exploitative and ex-
ploratory grasp planners in terrestrial robot domains, the
underwater environment introduces challenges to sensing
and actuation that require algorithms that can gracefully
accommodate adverse conditions. The underwater visual en-
vironment, which is characterized by turbidity, unpredictable
shadows and reflections, and inconsistent lighting [23], de-
grades the performance of visual object recognition systems
that are vital for grasp planning. The unconstrained motion
of the freefloating UVMS base introduces uncertainty in
the position of tactile sensors that impairs the performance
of exploratory grasp planners. Additionally, uncertainty in
underwater vehicle dynamics causes grasping actions to be
less repeatable than in structured environments where grasp
plans can be executed open loop.

The unique adverse conditions of the underwater en-
vironment motivate the decision to use an underactuated
gripper with an optical tactile sensor. Underactuated grippers,
which can securely grasp objects without precisely aligning
individual fingers, provide robustness to actuation noise and
localization uncertainty. An optical tactile sensor providing
high-resolution depth images of the object’s surface, as well
as estimates of normal and shear force distributions, should
enable robust operation-by-feel in turbid environments.

To address the sensing and actuation uncertainties caused
by the underwater environment, state-of-the-art grasp plan-
ning algorithms must be adapted to suit the underactuated
gripper and optical tactile sensor. First, a holistic object
reconstruction scheme must be developed to fuse information
from visual and tactile sensors to enable grasp synthesis.
Ideally, this scheme will jointly optimize over UVMS and
object configuration spaces to determine the most likely
system state despite uncertainty in the position of sensor
measurements. Second, an exploratory grasp planner must
be developed to enable information-seeking actions with the
optical tactile sensor. For this task, a Gaussian process im-
plicit surface is considered [16]. Third, an exploitative grasp
planner must be adapted to suit the compliant underactuated
gripper. The exploitative grasp planner may also address
additional constraints from the underwater environment, such
as restrictions on joint limits necessary to maintain stability.
Ongoing research enables progress in these promising direc-
tions.

V. SIMULATION AND PLANNING LIBRARIES

An accurate underwater simulator that can simulate accu-
rate hydrodynamics for the vehicle and arm is necessary for
testing the algorithms proposed in the previous sections be-
fore deployments. To this end, we use the open source Project
Dave simulation environment [24]. Built on UUV Simulator

Fig. 3. The Seabotix vLBV300 and Blueprint Labs Reach Alpha Arm
UVMS system in the Project Dave Simulator.

[25], Project Dave uses a ROS-based plugin system that
implements Fossen’s hydrodynamics model for underwater
vehicles [26] inside of the Gazebo simulator.

Our system is composed of a Seabotix vLBV300 vehicle
and a Blueprint Labs Reach Alpha 4 arm. The Seabotix
vLBV300 is a four degrees-of-freedom tethered underwater
vehicle with a range of 300 m with a mass of 22.2 kg that is
neutrally buoyant. The Blueprint Labs Reach Alpha 4 arm is
a four degrees-of-freedom arm made for underwater missions
with a mass of 1.36 kg. The project team has procured
both the vehicle and arm and is planning on performing
hardware experiments using this system. Before deploying
on hardware, it is prudent to test controls and planning
algorithms in simulation first. Therefore, we extended Project
Dave with models of both the vehicle and the manipulator
arm (Fig. 3). Sensor modules for our simulated vehicle are
still under development.

We have also incorporated the MoveIt! motion planning
library [27] into the simulation pipeline. Within MoveIt!,
we follow a similar approach as [28] where we represent
displacements in the x, y, and z directions using prismatic
joints and yaw using a revolute joint. Note that the Seabotix
vLBV300 vehicle is neutrally buoyant and has negligible
pitch and roll control in practice. Using MoveIt!, we can
generate plans for the vehicle and manipulator system using
standard kinematic motion planning algorithms included with
the Open Motion Planning Library [29] such as RRT-Connect
[30] and RRT∗ [31].

VI. DISCUSSION

In this work, we have discussed our current progress in
active motion planning for a UVMS. We have developed
a simulation framework, conducted preliminary algorithm
development for informative motion planning, and identified
potential frameworks for exploitative and exploratory grasp-
ing with an underactuated hand and a tactile sensor.



During the deployment of our system, there is a need for
the grasp planner to interact with the motion planner; as
information is collected about the object through informative
path planning, the grasp planner will update the target posi-
tion for grasping the object, thus requiring replanning. The
interplay between the motion planning and grasp planning
frameworks is an area that we aim to explore as the project
develops.

Another problem we will encounter during the deployment
of our system is the coupling between vehicle motion and
robotic arm motion due to hydrodynamics. For example, the
motion of a manipulator may affect the motion of a vehicle,
and vice versa. This coupling may cause some kinematically
reachable grasps to fail during execution if the grasp results
in an unstable UVMS configuration. Tightly integrating
the motion planning and grasp planning frameworks can
ensure that navigable trajectories ending in feasible grasp
configurations can be continually refined while information
is gathered throughout the approach. Additionally, a whole-
body controller currently being developed by Intelligent
Machines and Materials Lab at Oregon State University for
the RSA project will play a key role in reducing the effect
of arm-vehicle coupling on the UVMS.

The next steps of this project are to further develop and
test these algorithms. We plan on testing first in simulation
using the Project Dave simulator discussed in Section V.
We will then deploy these algorithms on a mechatronic ma-
nipulator platform that is currently under development at the
University of Washington’s Applied Physics Lab. Ultimately,
the techniques developed to address informative and adaptive
motion planning and grasp planning will be vetted with
a real-world deployment of our Seabotix Vehicle with the
Reach Alpha 4 arm in an energetic ocean environment.
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