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Abstract— This paper presents a new coordination algo-
rithm for decentralised multi-robot information gathering. We
consider planning for an online variant of the multi-agent
orienteering problem with neighbourhoods. This formulation
closely aligns with a number of important tasks in robotics,
including inspection, surveillance, and reconnaissance. We pro-
pose a decentralised variant of the self-organising map (SOM)
learning procedure, named Dec-SOM, which efficiently plans
sequences of waypoints for a team of robots. Decentralisation
is achieved by performing a distributed allocation scheme
jointly with a series of SOM adaptations. We also offer an
efficient heuristic to select when to perform negotiations, which
reduces communication resource usage. Simulation results in
two settings, including an infrastructure inspection scenario
with a real-world dataset of oil rigs, demonstrate that Dec-SOM
outperforms baseline methods and other SOM variants, is
competitive with centralised SOM, and is a viable solution for
decentralised information gathering.

I. INTRODUCTION

Mobile robots are increasingly being used to gather infor-
mation about their environment. Robotic information gather-
ing is important in a diverse range of applications, including
infrastructure inspection [2], mine countermeasures [3], pre-
cision agriculture [4], and data collection from sensor net-
works [5]. Many information gathering scenarios, especially
those that can be formulated as mapping, coverage, or search
problems, involve observing a set of points of interest (POIs)
from associated observation regions [2]–[12]. The problem is
to plan action sequences for robots that maximise the number
of observed POIs while satisfying time or energy budgets.

Performing information gathering with multiple robots
simultaneously enables scaling up the number of obser-
vations in time and space. However, to achieve desirable
performance, the robots are required to effectively coordinate
their actions. Preferably, this coordination is decentralised,
such that each robot plans primarily for itself while com-
municating their intent to other robots, if communication
is available. This ensures that the team is more robust
to unreliable communication and inconsistent beliefs, and
avoids having a single point of failure. These properties are
especially beneficial in domains where communication is
challenging, such as marine environments [13] and under-
ground tunnels [14]. Decentralised coordination is difficult,
particularly when communication is unreliable, because the
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Fig. 1: Infrastructure inspection task: A team of 5 robots coordinate their
plans (black paths) to efficiently inspect the set of oil rigs off the coast of
Louisiana, USA. The robots discover which subset of the 813 oil rigs (dots)
should be inspected at close range (disks) as they explore the environment.
Environment size: 200×100 km2. Budget: 175 km paths.

robots must plan action sequences while only having partial,
and possibly incorrect, knowledge of the plans of other
robots [12].

Self-organising maps (SOMs) are a special class of learn-
ing procedures that aim to find a low-dimensional represen-
tation of an input space while preserving a given topology
of the representation. SOMs have been widely applied to
inference problems [15], but have also been adapted for
path planning problems, such as variants of the travelling
salesman problem (TSP) [16]. Although SOM algorithms are
not competitive with state-of-the-art TSP solvers, they are
particularly powerful at solving problems that require jointly
optimising the selection of viewpoints and the path through
these viewpoints. This includes the TSP with neighbourhoods
and related variants, which require selecting viewpoints from
continuous sets that represent observation regions [5], [7],
[17], [18]. Multi-robot SOM variants have been proposed [5],
[7], [19]; however, all of these methods are centralised. This
paper proposes the first decentralised SOM algorithm for
multi-robot path planning.

We present the decentralised self-organising map algo-
rithm (Dec-SOM) for multi-robot information gathering. The
task is formulated as a generalisation of the orienteering
problem with neighbourhoods, where a set of continuous
regions are to be maximally visited, and these regions
are discovered online. The Dec-SOM algorithm consists of
each robot optimising their path, defined as a sequence of



waypoints in continuous space, using a series of SOM adap-
tations, and negotiating with other robots for the allocation
of goal regions. During the negotiations, the value of goal
region allocations are estimated by evaluating the effect of
SOM adaptations. An efficient heuristic is also proposed to
selectively decide when to perform the negotiations to reduce
bandwidth usage. The algorithm is online in that it efficiently
adapts to changes in the world estimates and plans of other
robots by replanning while using the previous plan as a prior.

We demonstrate the performance of the algorithm in two
simulated scenarios: a random partially-known world setting,
and an infrastructure inspection task illustrated in Fig. 1
with a real-world dataset of oil rigs [20]. Dec-SOM is
shown to (1) outperform a number of baseline comparison
methods and alternative SOM approaches, (2) be competitive
with centralised SOM [7], (3) plan effectively in partially-
known worlds, (4) efficiently adapt to changing information,
and (5) experience a gradual degradation of performance as
communication becomes less reliable.

II. RELATED WORK

Informative path planning is the problem of finding paths
that maximise an information gain metric, subject to budget
constraints [21]. Commonly, the considered information met-
ric is an uncertainty measure for the belief of a quantity of
interest. However, such metrics are often computationally de-
manding or not applicable for many tasks. Another approach
is to formulate objectives as a set of POIs to be observed, as
we do in this paper. These objectives naturally align with
tasks such as area coverage [2], [6], classifying physical
objects [4], [7]–[9], or observing scientifically valuable re-
gions of oceans [10]. These objectives are typically faster
to compute, which enables the efficient use of sophisticated
non-myopic planners.

Despite the benefits of multi-robot systems, relatively little
attention has been given to developing decentralised planners
for information gathering. Dec-MDP formulations [22] are
closely related to the considered problem, but are typically
solved in an offline and centralised manner, in contrast
to the decentralised setting we consider here. Additionally,
Dec-MDPs are typically formulated with discrete action
spaces, unlike our proposed approach, which plans directly
over continuous goal regions without requiring discretisation.
Dec-MCTS [12] is a generally-applicable algorithm that is
suitable for decentralised settings similar to what we consider
here, although it has been shown to be outperformed by
task-specific SOM approaches [7]. Decentralised algorithms
have been proposed for exploration and mapping, such as
the sequential greedy assignment algorithm [23]. While [23]
formulates an information-theoretic objective, most prior
work involves extracting and reasoning over ‘frontiers’ [24].
These frontier formulations, and task planning more gener-
ally, are often solved with market-based approaches [25]–
[27]. Dec-SOM has similarities to these methods, but the
allocations are optimised jointly with path planning. Few
approaches have explicitly optimised for communication

requirements [28]–[30]; we propose an efficient heuristic
within Dec-SOM to reduce bandwidth usage.

SOMs have recently emerged as a powerful method
for path planning that involves range sensing. SOMs have
been adapted for TSP generalisations that require selecting
favourable viewpoints within continuous goal regions, such
as the watchman route problem [17] and the orienteering
problem with neighbourhoods [18]. These have been applied
to problems such as data collection from sensor networks [5],
perception of 3D objects [7], and area surveillance [11]. All
of these SOM variants are for single-robot or centralised
multi-robot systems. Outside of path planning, SOMs are
popular for pattern analysis [15]; however, even in these
other contexts, little attention has been given to distributed
computation, despite being parallelisable [31], [32].

The formulation in this paper can be interpreted as a
variant of the TSP or orienteering problem [33]. With the
exception of SOMs, no existing TSP solvers adequately
address continuous goal regions. Multi-robot TSP generalisa-
tions have been considered, but most solvers are centralised,
with the exception of the Dec-MCTS and market-based
approaches referenced above. Similarly, TSP variants are
typically considered in offline settings, with [34] being a
notable exception.

III. ONLINE MULTI-AGENT ORIENTEERING
PROBLEM WITH NEIGHBOURHOODS

We consider the problem of planning the actions for a team
of robots in a decentralised manner. We address a complex
coordination task that requires the robots to collectively visit
a maximal number of continuous goal regions. An online
variant is formulated where an estimate of the goal regions is
refined as the robots explore the world. An example problem
instance is illustrated in Fig. 2.

A. Multi-robot team

The team consists of a set of R robots R = {1, 2, ..., R}.
The path of each robot r ∈ R is described as a sequence of
waypoint locations xr = (xr0, x

r
1, x

r
2, ...) with xri ∈ R2,∀i

and xr0 is a fixed start location. Each robot r has a budget
Br which may enforce an energy constraint or time horizon.
A path is feasible if the path length satisfies the budget, i.e.,∑

(xri ,x
r
i+1)∈xr

∥∥xri+1 − xri
∥∥ ≤ Br, (1)

where ‖ · ‖ is the Euclidean norm. We use the following
superscript convention: x := {x1,x2, ...,xR} is the set of
paths of all robots, and x(r) := x \ {xr} is the set of paths
of all robots except robot r.

B. Goal regions and estimate

The world consists of a set of goal regions Z to be
visited. Each goal region zj ∈ Z is a disk with centre
cj ∈ R2 and radius ρj ∈ R. A waypoint xri is said
to visit goal zj iff ‖xri − cj‖ ≤ ρj . Each goal region
can be interpreted as a ‘neighbourhood’ around a POI cj .
We assume the neighbourhoods are circular, although the



Fig. 2: Representative scenario and partial solution for the random worlds
experiments. Red stars are start locations. Robots have executed paths (solid
lines) up to the blue stars. Dotted lines are the planned plans. Green circles
represent goal regions. Yellow shade represents explored regions assuming a
circular observation model. Unshaded areas are a prediction of the unknown
environment.

proposed algorithm can readily be adapted for polygonal
goals, as in [7].

The set of goal regions Z is not necessarily known to
the robots in advance. Instead, the robots have an estimate
Z̃ ≈ Z , such that the estimate is refined as the robots
move around the environment. Although we make no explicit
assumptions regarding the quality of the estimate Z̃ , the
proposed algorithm is designed to work best when the
estimated existence or non-existence of a potential goal zj is
correct once any robot visits a location within a distance d of
zj , with d ≥ ρj . The example problem illustrated in Fig. 2
has this property, where the yellow shaded region near the
robots is known while the unshaded region is a prediction.
We provide two concrete definitions of prediction models Z̃
for the experimental scenarios in Sec. V. We note that we
assume that the robots do not have an explicit model for how
the estimate Z̃ will be refined, thus the information collected
regarding Z̃ will be opportunistic rather than directly consid-
ered by the planner. We also focus on the case where robots
are assumed to agree on Z̃ , which may be achieved using
decentralised data fusion, although the proposed algorithm
is valid if these beliefs are inconsistent.

C. Decentralised planning problem

The problem we aim to address is stated as follows.
Problem 1 (Multi-agent Orienteering Problem with Neigh-

bourhoods): Find the set of feasible paths x for the team of
robots that collectively maximises the number of goal regions
zj ∈ Z that are visited from at least one waypoint in x.
We emphasise that, in Problem 1, there is no additional
reward for visiting a continuous goal region more than once
or by multiple robots, thus requiring careful planning and

coordination.
Decentralised setting: Problem 1 is to be solved in a

decentralised setting. To enable decentralisation, we assume
that each robot r can only modify its own planned path
xr. The robots are assumed to be able to communicate
to aid effective coordination. However, communication may
be unreliable—such as having significant packet loss, low
bandwidth, or high latency—and thus the robots should still
plan reasonable joint paths even when communication is
imperfect.

Online planning: As discussed above, the robots maintain
an estimate Z̃ for the environment Z , such that the estimate
is refined as the robots move around the environment.
Therefore, the robots should adapt their plans in an online
manner as this estimate Z̃ changes, as well as when the plans
x(r) for the other robots change.

IV. DEC-SOM ALGORITHM

We propose Dec-SOM as a solution to Problem 1 in the
decentralised and online setting defined above. The algorithm
generalises the SOM learning procedure to be suitable for
this decentralised setting by employing a novel distributed
allocation scheme within the series of SOM adaptations. This
section begins by summarising the algorithm, detailing the
key algorithmic components, then providing a brief analysis.

A. Algorithm overview

A self-organising map provides a lower-dimensional rep-
resentation of an input space, where the representation pre-
serves a given topological structure. In our case, the input
space is the goal regions that can be visited by robot r.
The SOM aims to find a path for robot r that ‘best fits’
this input space. The path xr directly defines the topological
structure used by the SOM, where vertices are the waypoints
of the path, and edges connect consecutive waypoints. The
algorithm jointly learns both: (1) the allocation of the input
space (goal regions) to individual robots and (2) the path that
maximally visits the allocated goal regions. This learning is
performed simultaneously and asynchronously by all robots.

We present the algorithm from the perspective of robot r
at a given time instant. Pseudocode is provided in Alg. 1. The
main loop (line 2) cycles between: (1) select a goal region
at random (lines 4-5), (2) adapt the plan for robot r towards
this goal region using an SOM adaptation procedure (line 7),
(3) determine the value of this adaptation and, if appropriate,
request the allocation of this goal from other robots (lines 8-
13), (4) retain or discard this adaptation (lines 15-16), and (5)
periodically regenerate the plan (line 18). In parallel, robots
process and reply to incoming allocation requests.

The primary purpose of the allocation step is to coordinate
the plans between multiple robots, whereas the other steps
aim to plan efficient paths with respect to these allocations.
All steps are further described and justified as follows.

B. Initialisation

The path xr is initialised as a single waypoint at xr0. As
the algorithm progresses, waypoints of xr will be added,



Algorithm 1 Dec-SOM algorithm from the perspective of
robot r at a given time instant.

Input: prior plan xr, budget Br

a set of goal regions Z̃ , prior allocations Zr

adaptation parameters σ, δ
Output: updated plan xr, updated allocations Zr

1: . Repeat for a fixed number of epochs
2: for i = 1 to num epochs do
3: . Consider each goal region in a random order
4: perm← random permutation of Z̃
5: for each zj ∈ Z̃ , in order perm do
6: . Perform SOM adaptation towards zj
7: xr

+ ← ADAPT(xr, zj , σ) . See Sec. IV-C.1
8: if L(xr

+) ≤ Br then . Path length ≤ budget
9: if zj /∈ Z̃r then . If not allocated

10: . Request allocation (see Sec. IV-C.2)
11: s← Eqn. (2)
12: if REQUESTALLOCATION(zj , s) then
13: Z̃r ← Z̃r ∪ {zj}

14: . If allocated, retain the adaptation
15: if zj ∈ Z̃r then
16: xr ← xr

+

17: . Remove undesirable waypoints
18: xr ← REGENERATE(xr, Z̃r) . See Sec. IV-C.4
19: σ ← (1− iδ)σ . Update adaptation parameter

removed or adapted. The path could also be initialised as a
prior solution, and we take advantage of this during online
replanning (see Sec. IV-D). SOMs are generally not overly
sensitive to the initial conditions, provided that the initial
value of the learning parameter σ (defined below in Sec. IV-
C.1) is sufficiently high.

Robot r also maintains an allocated set of goal regions Z̃r

that robot r should visit, where Z̃r ⊆ Z̃ . Initially Z̃r = ∅,
i.e., no goal regions are allocated to robot r, but this set will
expand and shrink as the robots negotiate with each other.

C. Learning procedure

We now detail the key components of Dec-SOM. The
algorithm consists of a sequence of epochs. During each
epoch, each goal region is considered one at a time, in a
random order. When a goal region zj is presented, the path
xr is adapted towards zj by moving and potentially adding
waypoints. If goal region zj is deemed to be desirable, then,
if necessary, robot r requests the allocation of zj . In parallel,
robots respond to incoming allocation requests. This learning
continues for a fixed number of epochs. At each epoch,
a learning parameter is adjusted to modify the adaptation
behaviour. Undesirable waypoints are removed from xr at
the end of every epoch. The start waypoint xr0 is never moved
or removed, but may be duplicated.

1) SOM adaptation: The SOM adaptation step is essential
for generating desirable paths that efficiently visit a large

goal region

adapted path

winnercurrent path

Fig. 3: Illustration of a SOM adaptation towards a goal region. The ‘winner’
moves to the closest point in the goal region. Topological neighbours move
by a decreasing fraction towards the winner. In this example, σ = 2.

number of goal regions. An illustration of SOM adaptation
is presented in Fig. 3. This is performed at line 7 of Alg. 1.

Formally, when goal region zj is presented during an
epoch, the closest waypoint xri or edge (xri , x

r
i+1) in xr

to any point z?j on the disk zj is selected as the winner.
If the winner is an edge, then a new waypoint is inserted
between xri and xri+1. In either case, the winner waypoint is
moved to z?j . All other waypoints in xri are moved towards

z?j by a fraction f(σ, l) = e−
l2

σ2 , where l is the number
of waypoints between this waypoint and the winner, and
σ is a learning parameter. Intuitively, waypoints that are
topologically closer to the winner move a larger fraction
towards z?j ; thus, a relatively small Euclidean distance is
retained between consecutive waypoints of xr. We note that
an adaptation may cause waypoints to be moved outside
their associated goal region; this is desirable since it forces
regenerating parts of the solution that have a high cost with
low reward (see Sec. IV-C.4).

The learning parameter σ slowly decreases at the end of
each epoch (line 19) as σ ← (1 − iδ)σ, where δ is a fixed
learning rate, and i is the epoch number. This results in global
adaptations initially, then eventually only local adaptations.

If an adaptation results in the budget (1) being unsatisfied
(line 8 is false), then the adaptation is discarded and the
previous solution retained. If zj is already allocated to robot
r (line 15), then the new solution is immediately retained.

2) Distributed allocations: During the adaptation phase,
if robot r desires to retain an adaptation towards a goal
region zj , but robot r has not been allocated zj , then robot r
requests this allocation by negotiating with other robots. This
occurs at lines 11-13. Robot r broadcasts the goal region zj
and an associated score. Then robot r processes responses
from other robots to determine the new allocation for zj .

The score s associated with an allocation request for goal
region zj is designed to favour allocations that fit in well
with the existing plan xr. Define L(ADAPT(xr, zj , σ = 0))
as the path length of xr after performing the SOM adaptation
procedure towards zj . Define L(REMOVE(xr, zj)) as the
path length of xr after removing any waypoints (possibly
none) that are within zj and not within any other goal
region. A favourable allocation is likely to have a small
difference between these two path lengths, thus the score s is
a normalised difference between these lengths. Specifically,

s =
L(ADAPT(xr, zj , 0))− L(REMOVE(xr, zj))

B̂r − L(REMOVE(xr, zj))
, (2)



where B̂r is the remaining budget after subtracting the
executed path length from Br. The denominator in (2) is
designed to favour allocating goal regions to robots that
currently use a smaller fraction of their budget. Smaller s
values are favourable. For the adaptation in (2) we set σ = 0
so that the comparisons are fair between robots.

Robot r waits for a response from other robots. Another
robot r′ will reply to this request if r′ believes zj has been
allocated to r′. Robot r′ also computes (2) as the utility of
the zj allocation. If a replying robot has a score higher than
the initiating robot, then locally the replying robot removes
the allocation, i.e., Z̃r′ ← Z̃r′ \ {zj}. Multiple, one, or no
robots may reply, since partitioning is not strictly enforced
by Z̃r, particularly if communication is unreliable. After a
fixed time, robot r processes the replies. If robot r has the
lowest s then it receives the allocation of zj , adds it to Z̃r

and xr retains the adaptation.
3) Selective communication: The distributed allocation

step above can result in unnecessary communication for re-
questing allocations that are quickly reversed in later epochs.
If communication is particularly restricted, we offer a simple
and efficient heuristic to reduce the number of requests.

In this case, an allocation request is initiated if it meets
the above criteria, and additionally meets the following more
restrictive criteria. Define L(xr) as the path length of xr, and
L(ADAPT(xr, zj , σ)) as the path length after the intended
adaptation. The adaptation uses the current σ value. An
allocation request is only initiated if the increase in path
length as a result of the adaptation is not more than κ times
the average edge length in xr, where κ is a constant, i.e.,

L(ADAPT(xr, zj , σ))− L(xr) ≤ κ average
(xri ,x

r
i+1)∈xr

‖xri+1 − xri ‖.

The intuition behind this heuristic is to avoid requesting
allocations that cause relatively large changes to the path.
Although this selection approach may not be appropriate in
all situations, we show empirically that it works well in the
two problem domains considered in Sec. V.

4) Regeneration: At the end of each epoch (line 18),
xr is regenerated to ensure the paths are efficient. This is
performed by removing all waypoints xri from xr that are
not visiting a goal region allocated to robot r. A removal may
occur for several reasons: xri may not have been selected as
a winner in this epoch, xri may have moved out of a goal
region due to other adaptations, or the allocations may have
changed during this epoch.

D. Online replanning

In an online setting, defined in Sec. III, the informa-
tion available to the robots changes as they execute their
paths. This changing information could be in regards to
the environment estimate Z̃ or the allocations and plans
x(r). We suggest the use of replanning to efficiently adapt
to changing information as the robots move around the
environment. This is in contrast to offline policy planning
that would require planning for all possible changes to
the environment estimate. SOMs are well suited for online

replanning as previous plans can be used as a prior to
initialise the optimisation. Furthermore, if the changes to
the information are small, then it is not necessary to do
global SOM adaptation, and therefore σ can be initialised
to be relatively small [7, Sec. 7.2.4]. If Z̃ changes within
replanning rounds, then each robot removes all allocations
zj : zj /∈ Z̃ from Z̃r.

E. Analysis

Here, we remark on several practically significant analyt-
ical properties of Dec-SOM. The computational complexity
is O(|Z̃|2N + |Z̃|A), where N is the number of epochs,
and A is the number of allocation requests that require a
reply. In [7, Thm. 1] and elsewhere, it is noted that N is
constant for a given σ cooling schedule, as eventually no
further adaptations occur. The number of allocation requests
that require replying is A = O(|Z̃|NR) in the worst case;
however, A will be significantly fewer in practice as it is
highly unlikely that all goal regions would be allocated to
robot r and that all robots request all possible allocations
in every epoch. Nevertheless, the selection approach in
Sec. IV-C.3 is proposed to reduce A in practice. The number
of communication messages sent is O(A), with messages
of size O(1). We note that an allocation request involves
waiting for a response from other robots; however, this could
be implemented as a non-blocking wait, and thus have only
a small effect on computation time. No strong theoretical
claims are made for the optimality of SOMs, but below we
show empirically that Dec-SOM works well in practice.

V. EXPERIMENTS

We present a set of experiments to demonstrate the
behaviour and performance of the proposed Dec-SOM al-
gorithm. We consider two scenarios: randomised worlds
where goal regions are discovered as the robots explore
the environment, and an infrastructure inspection scenario
where a partially-known subset of assets need to be observed
at close range. The results aim to show that Dec-SOM
outperforms several baseline methods and SOM variants,
and is an effective decentralised planner for scenarios with
partially-known goals and unreliable communication.

A. Random worlds

In this set of experiments, we demonstrate the performance
of the algorithm in comparison to various baseline compar-
ison methods. Results are shown for the case where com-
munication is perfect and the case where communication is
lossy. We formalise these methods and scenarios as follows.

1) Experimental setup: These experiments involve plan-
ning for a team of 5 robots in random worlds, as illustrated
earlier in Fig. 2. The world is 100×100 m2 and consists of
200 goal regions, that have uniform-random centre locations,
and uniform-random radii between 1 and 4 m. The start
locations are random near the bottom left, the budgets are
Br = 80 m and replanning occurs every 20 m of distance
travelled. Goals within 25 m of the executed path are known
precisely to the robots. The example world estimate Z̃ model
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Fig. 4: Performance of Dec-SOM and various comparison methods in 100
random environments. The unreliable comms scenarios simulated random
packet loss following the model described in Sec. V-A.1. Scores are
normalised by dividing by the performance of a Dec-SOM planner that
has access to an oracle in each environment. Box plot shows the bounds
and quartiles.

used for these experiments generates random goal regions
in the unobserved areas using the same model as for the
ground-truth worlds.

We compare Dec-SOM to several alternative methods.
We refer to the proposed algorithm as ‘Dec-SOM’, and
the proposed algorithm with the communication selection
described in Sec. IV-C.3 (with κ = 1) as selective. The
greedy method is the same as Dec-SOM but with a planning
horizon of 20 m. The sequential method plans for one robot
at a time using a single-robot SOM while keeping the other
robots’ plans x(r) fixed. The no replanning method is the
same as Dec-SOM but executes the initial plans without
any replanning to take into account changing information.
The closest method iteratively selects the closest unvisited
goal region. The centralised method is a centralised imple-
mentation of our method, similar to [7] except instead uses
our proposed scoring function (2) to determine the winning
robot at each iteration. Results are normalised with respect
to Dec-SOM with an oracle where Z is known fully in
advance. For the SOM methods, learning parameters were
set as σ = 2, δ = 0.001; prior work with related algorithms
indicate that SOMs are not particularly sensitive to the choice
of these parameters [7]. Computation times for all methods
were on the order of several seconds or less for the initial
planning round, then 1 s or less for subsequent replanning
rounds.

We consider two communication scenarios. The first as-
sumes perfect communication. The second models unreliable
communication such that robots may not receive or reply to
allocation requests, and may not receive intended plans for
sequential. The probability of a message being successful is
modelled as e

−d2

2l2 where d is the distance between robots
and l is a length scale. In the Fig. 4(right) experiments, l =
33 m; in the Fig. 5, l is varied from 0 to 100 m.

2) Results: The partial solution presented earlier in Fig. 2
illustrates an example plan output from Dec-SOM. The 5
robots have naturally split up to explore different parts

communication model length scale in meters

(comms success rate %)

g
o

a
l 
re

g
io

n
s

v
is

it
e

d
 (

n
o

rm
a

lis
e

d
)

Fig. 5: Performance of Dec-SOM as the communication reliability degrades.
Scores are normalised by dividing by the performance of oracle.

of the world, while focussing particularly on regions with
higher goal densities. The individual plans are efficient paths
through the allocated goal regions. The executed and planned
paths balance between visiting known goal regions and the
predicted goals.

The results are shown in Fig. 4, with the reliable com-
munication case shown on the left. We see that Dec-SOM
is competitive with oracle, meaning it is able to effectively
address the challenge of having only an estimate of Z . In
21% of trials, Dec-SOM outperformed oracle due to the
probabilistic nature of SOM learning and oracle not neces-
sarily being optimal. Selective performed similarly to Dec-
SOM while sending 50% less communication, indicating
this is an effective heuristic for reducing communication.
Sequential performed relatively poorly, which demonstrates
the benefits of the iterative negotiations of Dec-SOM. Greedy
and closest performed remarkably poorly since they lack the
foresight that Dec-SOM has to move towards high-reward
regions. The no replanning case performed the worst, which
demonstrates the need to adapt to changing information.
Dec-SOM was competitive with centralised, showing no
significant difference in performance, despite the challenges
of planning in a decentralised setting.

When the communication was unreliable (Fig. 4 right),
similar trends were observed. All methods exhibited a small
reduction in performance; however, they were still able to
perform reasonably well despite this difficulty. When no
communication was allowed, the results were very poor,
which demonstrates the need for the robots to communicate
and coordinate their plans to successfully complete the task.

Fig. 5 shows a gradual degradation of performance of
Dec-SOM as the communication becomes more unreliable.
The length scale affects the communication packet loss
rate, which is quantified in the Fig. 5 axis labels. With a
length scale of 100 m, the communication is near perfect
and Dec-SOM is competitive with oracle. Even as the
communication begins to degrade, the performance remains
reasonably high. When the length scale is 6.25 m, there is a
clear degradation of performance as the 90% communication
loss impairs the robots’ ability to negotiate. However, even
with only 10% communication, Dec-SOM is able to use this
restricted resource to outperform the no communication case.
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Fig. 6: Results for the infrastructure inspection scenario. 100 trials with
different subsets of Gulf of Mexico oil rigs to be inspected (Fig. 1 scenario).
The unreliable comms scenarios simulated random packet loss following the
model described in Sec. V-A.1. Same format as Fig. 4.

B. Infrastructure inspection scenario

We now test our proposed Dec-SOM algorithm in an
infrastructure inspection scenario using a real dataset of oil
rig locations in the Gulf of Mexico. An illustration of this
scenario is provided earlier in Fig. 1. This scenario involves
observing a partially-known subset of assets at close range.
We define these assets as a set of oil rigs located off the coast
of Louisiana, USA [20]. Each oil rig is to be inspected if it
meets a criteria that is only discovered online, such as the
presence of biofouling or storm damage. Our results here
make similar findings to the previous experiments, but in
this case we demonstrate the performance of Dec-SOM for a
realistic non-uniform distribution of goal regions, a different
world estimation model, and a larger team of robots.

1) Experimental setup: As illustrated in Fig. 1, this sce-
nario involves a set of oil rigs to be inspected. The ground-
truth location of oil rigs were obtained from [20], for a
200×100 km2 region off the coast of Louisiana, USA. This
region contains 813 oil rigs, and their locations are known
to the robots. A subset of these oil rigs are to be visited
by the robots at a range of 5 km. This subset is not initially
known to the robots, but rather the need to inspect an oil
rig is discovered once a robot is within 25 km of an oil rig.
Approximately 25% of the oil rigs are to be inspected, with a
different random subset chosen during each trial. A team of
8 robots is simulated, each with a budget of 100 km. During
online planning, each world estimate Z̃ samples oil rigs in
unexplored regions with a 0.25 inclusion rate.

2) Results: The results for these experiments are shown
in Fig. 6. Similar trends were observed in this scenario as
for the random scenario (Fig. 4). As previously, Dec-SOM
and selective were competitive with oracle and centralised,
and the comparison methods performed significantly worse.
Greedy performed relatively poorly in this scenario, due to
robots getting stuck in areas with sparse unvisited goals,
which were avoided by the long-horizon planning of Dec-
SOM. Overall, these results demonstrate that Dec-SOM
achieves strong performance in a realistic inspection task.

VI. FUTURE WORK

We have presented Dec-SOM as an efficient planning al-
gorithm for decentralised multi-robot information gathering.
The results demonstrate the usefulness of the algorithm for
practical tasks, and motivate several avenues of future work.
Straightforward extensions would be to incorporate polygo-
nal goals, non-uniform rewards, heterogeneous sensing, ob-
stacles, and 3D environments, as in other SOM variants [7],
[17]. It would be interesting to investigate alternative ap-
proaches for reducing the communication requirements, such
as by incorporating planning-aware communication [29].
It would also be interesting to exploit probabilistic online
estimates for Z̃ [35] that may explicitly account for future
updates to Z̃ , and address cases where the robots have
inconsistent beliefs.
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