
1

Motion-Aware Underwater Robotic Grasping
Robin Kr. Singh and Geoffrey A. Hollinger

Abstract— Grasping moving objects underwater introduces
an entirely new set of challenges in contrast with structured
terrestrial or industrial environments. Underwater environments
are highly unstructured with waves causing the water particles
to move in circular orbits that diminishes with depth which
results the object to oscillate in a unique way. This causes
a typically high confident and stable grasp to become an
unstable and off-target grasp when the object pose changes,
rendering the existing grasping methods useless. Dynamic grasp
generation needs to be adaptive, real time, robust to noise,
and have low computing needs. We present a novel dynamic
grasping framework that processes a streaming point cloud
generated from depth video in real time to generate 6-DOF
4D grasps. By tracking the successive position of point cloud,
we predict the current motion of objects. Using the relative
position and motion predictor, we decide on the most confident
grasp. We recorded the motion of multiple objects under three
different wave conditions at the O.H. Hinsdale Wave Research
Laboratory at Oregon State University, USA, and tested them in
a simulation environment using pyBullet. Our method achieved
an average success rate of 70% across four different object
configurations under three different wave conditions.

I. INTRODUCTION

There has been significant progress in developing grasping
algorithms [1]; however, most of this work focuses on either
static objects [2] or objects with uniform motion like an object
on conveyor belt [3] which can be used in industries but
fails in real life scenarios. This necessitates the development
of grasping algorithms that are able to generate grasps and
perform robustly in unstructured environments.

Many state-of-the-art grasping algorithms focus on de-
tecting objects and generating as many grasps as possible
using a trained network and then filter out grasps using
multiple criteria to get the most confident grasp [2]. While
this might work for static objects, it is not feasible for objects
in motion as the object position is ever changing and the grasp
generation is not fast enough to keep up with the change,
even more so in dynamic environments where the motion
might not be uniform. Currently dynamic grasping requires
introduction of a number of assumptions such as grasping
only when the object has come to rest or only attempting
top-down grasps [4] or providing the object motion as input
[5] or during training [3]. Other work focuses on grasping
a static object in between moving obstacles [6], or dynamic
grasping with static objects in slightly moving scene [7]. But
these methods fail in dynamic environment even more so in
unstructured environments like underwater scenarios.

The authors are with the Collaborative Robotics and Intelligent Sys-
tems Institute, Oregon State University, Corvallis, OR 97331, USA.
{singhrob,geoff.hollinger}@oregonstate.edu

This work was supported in part by Office of Naval Research (ONR)
awards N0014-21-1-2052 and N00014-22-1-2114.

(a) Front view of underwater setup inside
testbed

(b) Bravo arm next to an oscillating buoy
under wave conditions

Fig. 1: Camera and Bravo arm [8] setup at O.H. Hinsdale Wave Research
Laboratory. We recorded the streaming point cloud from the Trisect camera

[9] in ROS bags under three different wave conditions with multiple
objects attached to the seabed

In our work we focus on generating feasible grasps while
the object is still in motion by utilizing motion predictor that
generates future positions of the object by tracking the ob-
ject’s centroid. To relax some of the assumptions mentioned
in other work we do not provide prior knowledge of object
motion or wave conditions to our model. In addition to this
unlike other works [3] we do not have prior information
about the set of objects. Since the objects underwater can
be deformed or have different shapes (like buoy) we only
focus on generating feasible grasp at the object’s centroid
with as less interference to the object motion as possible.
The main contributions of our work is our centroid trackng
method which allows us to generalize motion of objects under
different wave conditions. This allows us to predict the grasp
in future pose based on current motion of the object. To
the best of our knowledge, our work is the first attempt to
generate 6-DOF grasps of a moving object underwater by
predicting it’s future position.

II. RELATED WORK

Grasping static objects can be achieved through various
methods such as tactile sensing [10] [11], visual servoing
[11] [12], and object classification [13]. However, grasping
in unstructured environments presents unique challenges even
for static objects [14]. While database-based methods [13]
[15] boast high success rates, this is largely due to the
availability of extensive labeled datasets [1]. Some labeled
3D model datasets, such as PartNet [16], ShapeNet [17], and
YCB [18], contain detailed information including textures,
shapes, hierarchies, weight, and rigidity. These datasets have
proven invaluable for grasping static objects, as demonstrated
by numerous studies over the years [1]. However, these
datasets are less useful when the same objects are in motion,
especially when the motion is influenced by the environment.



2

Despite exciting advancements [3] [19] [20] in leveraging
large datasets to improve grasping of moving objects, these
methods often fail in unstructured environments like under-
water due to their inherent limitations of requiring object
motion to be uniform [21] or from a given subset [3].

III. PROBLEM FORMULATION

Grasping objects in dynamic and unstructured environ-
ments, such as underwater settings, presents a significant
challenge due to the complex and unpredictable motion of
the objects. In an underwater environment, objects are often
subjected to oscillatory and irregular motions due to wave
forces and other hydrodynamic effects. These movements
are characterized by a combination of periodic oscillations
and low-frequency perturbations, leading to complex motion
patterns that are difficult to predict. The object’s motion is
further complicated by factors such as buoyancy, tethering,
and the influence of the surrounding fluid dynamics.

The central problem in this context is to develop a grasping
algorithm that can adapt to the dynamic nature of the
underwater environment by accurately predicting the future
pose of the moving object. This requires not only the ability
to model the object’s complex motion but also to generate and
execute grasps in real-time, considering the object’s future
position and the robot’s own motion constraints.

Formally, the problem can be stated as follows: Given
an object with a known current pose, subjected to dynamic
underwater conditions, the goal is to predict its future
pose after a specified time interval and determine a grasp
configuration that can be executed effectively within this time
frame. This involves the challenges of motion prediction,
grasp generation, and real-time trajectory planning, all of
which are critical for successful grasping in such a complex
environment.

IV. METHODS

A. Data Collection Setup

The physical setup as shown in Figure [1] comprises
an underwater stereo camera system, Trisect [9], and a
Bravo robotic arm. The bravo robotic arm [8] is a 7-
function manipulator arm designed for inspection-class ROVs
(Remotely Operated Vehicles) developed by Reach robotics
for subsea inspection. The Trisect camera, developed at the
University of Washington, is designed for embedded, ROS-
based computer vision applications. The Robot Operating
System (ROS) [22] is an open-source framework for robotics
software development. It provides essential services like
hardware abstraction, device control, message-passing, and
package management. ROS is designed to support code reuse
and modularity, making it easier to develop complex robotic
systems. The Trisect provides a continuous stream of point
cloud data, which is essential for tracking and predicting
the motion of objects in underwater environments. Our data
collection was conducted at the O.H. Hinsdale Wave Research
Laboratory, Oregon State University, where we recorded
ROS bags under three different wave conditions as shown in
Table [I] with multiple objects tethered to the seabed. The

three wave conditions used are inspired by marine energy
monitoring applications. [23] It should be noted that the wave
condition information is not fed to our framework and is only
used to measure performance.

Fig. 2: The three objects used for data collection: (a) inverted bottle (b)
beverage can (c) buoy

B. Point Cloud Processing

The first step in our method involves processing the
continuous point cloud stream from the Trisect camera. The
point cloud data is filtered to remove noise and irrelevant
points, ensuring a clean and accurate representation of the
object’s surface. Point cloud data captured in underwater
environments often contains noise and outliers due to various
factors such as light refraction, particulate matter, and water
movement. To address these challenges, we employ a series
of simple filtering techniques.

After filtering, the clean point cloud is converted into
a continuous mesh. A polygonal mesh is created that ap-
proximates the surface defined by the point cloud data. The
resulting mesh is a more structured representation of the
object, facilitating easier manipulation and analysis in the
pyBullet simulator. This mesh is further smoothened by using
point cloud data from multiple positions. The refined mesh
is used to validate generated grasps and detect collisions.

C. Centroid Tracking

Within the pyBullet environment, we identify the object’s
centroid and track its oscillatory motion. In our research,
we have focused on uniform objects, as depicted in figure
[2], to simplify the process of locating the centroid. This
assumption obviates the need for point cloud completion
- a separate and complex research problem necessary for
finding the centroid of non-uniform objects. The object, being
buoyant and tethered underwater by a string, moves in the
circumference of a sphere with the ocean bottom acting as the
center. This motion is influenced by both periodic oscillations
and a regular sway of the oscillation plane by a few degrees.
By accurately tracking the centroid’s movement, we make
predictions for the object’s future pose.



3

Let C(t)=(x(t),y(t),z(t)) represent the position of the object’s
centroid at time t in 3D space. The centroid’s motion
is tracked continuously, capturing its oscillatory behavior
influenced by underwater wave conditions. Given the object’s
buoyancy and tethering, its motion can be approximated as
periodic oscillations around the point where the string is
anchored to the seabed.

D. Motion Model

The motion of the centroid can be described by a com-
bination of harmonic functions to account for the periodic
motions of wave and additional terms for the sway of the
oscillation plane. The position of the centroid, C(t) can be
modeled as follows:

x(t) = Ax sin(ωt+ ϕx) + δx(t), (1)

y(t) = Ay sin(ωt+ ϕy) + δy(t), (2)

z(t) = Az cos(ωt+ ϕz) + δz(t). (3)

Here, Ax, Ay, and Az are the amplitudes of oscillation in
the x, y, and z directions, respectively. ϕx, ϕy, and ϕz are
the phase shifts. The terms δx(t), δy(t), and δz(t) represent
the sway of the oscillation plane, which can be modeled as
low-frequency perturbations.

E. Future Pose Prediction

To predict the future pose of the centroid after a time
interval ∆t, we utilize the tracked motion data up to the
current time t. The future position C(t+∆t) is given by:

x(t+∆t) = Ax sin(ω(t+∆t) + ϕx) + δx(t+∆t), (4)

y(t+∆t) = Ay sin(ω(t+∆t) + ϕy) + δy(t+∆t), (5)

z(t+∆t) = Az cos(ω(t+∆t) + ϕz) + δz(t+∆t). (6)

The time interval ∆t is typically chosen as the time it takes
for the object to oscillate from one end of its motion to the
other. This period, T , is given by:

T =
2π

ω
, (7)

By choosing ∆t = T , we ensure that the motion prediction
aligns with the most uniform phase of the object’s oscillation,
providing a reliable estimate of the future position.

F. Grasp Trajectory Planning

With the final grasp position determined using the motion
predictor, the next crucial step involves planning a grasp
trajectory that ensures the robotic arm does not interfere
with the object’s oscillating path and that the grasp can be
executed within the time interval t. This approach ensures the
object reaches its predicted position, allowing for a successful
grasp at the appropriate moment.

To generate a suitable grasp direction, the trajectory must
be designed to approach the object in a way that minimizes
interference with its motion. The grasp direction should not
be entirely parallel to the object’s motion but should converge
towards the predicted position towards the end of the motion
cycle. This strategy ensures the robotic arm can position itself
optimally without disrupting the object’s oscillation.

Let Pf represent the predicted final position of the object’s
centroid at time t + ∆t. The trajectory planning process
involves the following steps:

1) Initial Approach Path: Define an initial approach path
that positions the robotic arm near the object’s predicted
motion plane but outside the direct path of oscillation. The
initial approach position Pinit can be determined by offsetting
Pf along a direction orthogonal to the object’s motion.

Pinit = Pf + αn, (8)

where α is a scalar defining the distance from the object’s
path, and n is a unit vector orthogonal to the object’s motion
direction. This ensures the arm approaches from a safe
distance, avoiding interference.

2) Intermediate Waypoints: To smoothly transition from
Pinit to Pf , we define intermediate waypoints Pi that guide
the trajectory. These waypoints are strategically placed to
ensure the arm’s motion gradually aligns with the object’s
motion direction while not interfering with it’s motion. The
number of waypoints N and their positions can be defined
as follows:

Pi = Pinit +
i

N
(Pf − Pinit) + βin, (9)

where i = 1, 2, . . . , N − 1 and βi are small perturbations
ensuring a gradual alignment with the object’s motion di-
rection. The movement to final waypoint PN coincides with
the predicted final position Pf and is in the exact opposite
direction as the motion of the object giving higher chance of
success.

3) Time-Constrained Path Generation: The generated
trajectory must be executable within the time interval ∆t.
To ensure this, the velocity profile of the robotic arm is
constrained such that the entire path from Pinit to Pf can
be completed within ∆t.

The path length L is calculated as the sum of the distances
between successive waypoints:

L =

N−1∑
i=0

∥Pi+1 − Pi∥. (10)

To complete the trajectory in time ∆t, the average speed v
of the robotic arm must satisfy:



4

Fig. 3: Proposed motion-aware grasping framework. An underwater 3D camera camera provides continuous stream of point cloud which is filtered,
processed, and fed to the object motion predictor that generates the future pose of object. This predicted pose is used to generate possible grasps and the
most confident grasp is used for path planning and time calculation. The decision-making module makes sure that the motion hasn’t changes drastically

and only then grasp is executed.

v =
L

∆t
. (11)

The maximum allowable speed and acceleration of the
robotic arm are taken into account to generate a feasible
velocity profile. The trajectory is then planned using a time-
scaling algorithm that adjusts the arm’s speed to ensure the
grasp is executed within ∆t.

4) Smooth Path Execution: Using the initial approach
position and intermediate waypoints, a smooth trajectory
is generated. This trajectory can be represented as a cubic
spline that interpolates through Pinit, Pi, and Pf . The spline
ensures a smooth transition and minimizes abrupt changes in
direction.

Let T(t) represent the trajectory of the robotic arm from
time t to t+∆t. The cubic spline is defined such that:

T(t) =

3∑
j=0

ajt
j , (12)

where aj are the spline coefficients determined by the
boundary conditions and the positions of Pinit, Pi, and Pf .

G. Path Execution and Grasp

The planned trajectory T(t) is executed by the robotic
arm, ensuring it approaches the object without disrupting its
oscillation and within the specified time interval ∆t. The
arm moves through the intermediate waypoints, gradually
aligning with the object’s motion direction. At the end of
the trajectory, the arm reaches the predicted final position Pf

and executes the grasp.
By carefully designing the grasp trajectory to avoid in-

terference with the object’s oscillation and ensuring it can
be completed within ∆t, the robotic arm can successfully
perform grasps on moving objects in dynamic underwater
environments. This approach ensures robust and reliable
grasping, accommodating the complexities of underwater
motion.

H. Decision-Making Module

The final component of our framework is decision-making
module, which is integral to the dynamic grasping framework,
ensuring that the robotic arm only attempts a grasp if
the predicted motion closely matches the actual recorded
movement of the object. We continuously track the predicted
and actual movement, using a defined metric to evaluate the
accuracy of the predictions.

To quantify the accuracy of the motion predictions, we
define an error metric based on the Euclidean distance
between the predicted and actual positions of the object’s
centroid. Let e(t) represent the error at time t:

e(t) = ∥Ĉ(t)− C(t)∥. (13)

This error metric provides a measure of the deviation
between the predicted and actual positions. A smaller error
indicates a more accurate prediction, while a larger error
signifies a discrepancy between the predicted and actual
movements.

The decision-making module uses the error metric to
determine whether to proceed with the grasp or restart the
prediction and planning process. A threshold ϵ is defined
to evaluate the accuracy of the predictions. If the average
error over a time window ∆tw is below the threshold, the
prediction is considered accurate enough to proceed with the
grasp. Otherwise, the prediction is deemed unreliable, and
the process is restarted.

The average error ē over the time window ∆tw is calcu-
lated as:

ē =
1

∆tw

∫ t

t−∆tw

e(τ) dτ. (14)

The decision criteria can be expressed as:
• If ē ≤ ϵ, the prediction is accurate, and the grasp is

executed.
• If ē > ϵ, the prediction is inaccurate, and the steps are

restarted.



5

When the decision-making module determines that the
prediction is accurate (i.e., ē ≤ ϵ), it gives a green light
to proceed with the grasp. The robotic arm follows the
planned trajectory and executes the grasp at the predicted
final position Pf .

If the prediction is not accurate (i.e., ē > ϵ), the module
restarts the process by re-evaluating the motion data, updating
the motion predictor, and generating a new grasp trajectory.
This iterative process ensures that the robotic arm only
attempts a grasp when there is a high level of confidence in
the motion predictions.

V. RESULTS

To validate the effectiveness of our dynamic grasping al-
gorithm, we implemented our algorithm in PyBullet [24] [25]
simulator. PyBullet is a python module designed for physics
simulation, particularly in robotics, and machine learning.
It allows users to load articulated bodies from various file
formats like URDF, SDF, and MJCF and supports forward
and inverse dynamics, kinematics, collision detection, and
ray intersection queries. Using ROS we were able to record
a continuous stream of point cloud data as ROS bags. We
filtered the recorded point clouds to remove noise and outliers
to get only the object’s point cloud as best as possible. This
filtered point cloud data was converted to mesh such that
it can be directly loaded to PyBullet. The motion of these
meshes were the same as the object under wave conditions,
shown in Table I allowing us to replicate the object motion
in simulation.

Wave
Condi-

tion

Wave
Height
(m)

Peak
Period
(s)

Max
Horizontal
Velocity
(m/s)

Max Verti-
cal Velocity
(m/s)

1 0.25 1.25 0.2218 0.2157
2 0.135 1.08 0.1036 0.0894
3 0.15 1.2 0.0523 0.0012

TABLE I: Wave characteristics

The motion of three different objects tethered to the seabed
was recorded under each wave condition. The third object, a
beverage can, was recorded twice: once when it was entirely
empty (more buoyant) and once when it was half empty
(less buoyant). This approach allowed us to assess how our
algorithm performs with the same object and wave condition
but different motion characteristics. In total, we had four
different object configurations subjected to three different
wave conditions.

We conducted 20 grasping trials for each object configura-
tion using our method. If the first attempt failed, we restarted
and made two more attempts. We evaluated the performance
of our dynamic grasping algorithm, and the results are
presented in Figure 4. Our success rate ranged from 50%
to 80%, with higher rates observed for the buoy and the
empty beverage can. After reattempts we see improvements
in success rates for all objects ranging from 5% to 20%.

Fig. 4: Final success rate of object under different wave conditions. Blue,
Green, and Red represents wave conditions 1,2, and 3 respectively from

Table (I)

We documented all the reasons for unsuccessful grasps
for our method. These causes of errors are systematically
categorized and presented in Table II which provides a clear
and comprehensive overview of the factors contributing to
grasping failures.

Reason behind failures Quantity (%)
Motion prediction error 15

Collision 40
Timing (execution) 15

Abrupt change before grasp 30

TABLE II: Distribution of Errors in Dynamic Grasping Algorithm

Motion prediction errors encompass failures due to inaccu-
racies in predicting an object’s future position. Our algorithm
relies on motion prediction to anticipate the object’s location
at the time of grasp. Errors in this prediction can lead to
unsuccessful attempts, as the gripper may not align correctly
with the object’s actual position. It was observed that motion
prediction was the smallest cause of error. The highest
percentage of failures was due to collisions, which occur
when the gripper and the object collide. These collisions
mostly happened during grasp attempts, but sometimes the
gripper deviated from its trajectory, causing it to collide
with the object before reaching the predicted position. While
motion prediction errors might also lead to collisions, we did
not categorize them as such since the prediction itself was
flawed.

Timing-related failures occur when there is a delay or
mismatch between the predicted motion and the actual
execution of the grasp. This can be due to system latency or
delays in the gripper’s response, causing the grasp to miss
the object. Finally, abrupt changes before grasping are caused
by sudden, unpredictable changes in the object’s motion just
before the grasp attempt. There is always a probability of
such abrupt changes, and our algorithm is not yet able to
compensate for them quickly enough.

Since the motion predictors in prior work are designed
for terrestrial structured environments, we compared our
method to a general linear motion predictor. The linear
motion predictor assumes that the object’s motion can be



6

approximated by a uniform trajectory, which is a common
approach in terrestrial structured environments. This predictor
calculates the object’s future position based on its current
velocity and direction, without accounting for the complex
dynamics of underwater environments.

Similar to our approach, if the first grasp attempt using the
linear motion predictor failed, we restarted the process and
made two additional attempts for each wave condition. This
ensured a fair comparison between the two methods under
identical conditions.

We then compared the average success rate for each object
configuration between our method and the linear motion
predictor. By doing so, we aimed to highlight the advantages
of our algorithm. The results of our comparison are presented
in Figure 5.

Fig. 5: Average success rate over 3 different wave conditions linear vs ours

Our method demonstrates improved performance on the
first attempt, and the two reattempts further enhance the
overall success rate as shown in Figure5.

VI. FUTURE WORK AND DISCUSSION

We introduced a dynamic grasping algorithm designed for
6-DOF grasp synthesis in underwater environments, focusing
on real-time prediction and execution. Our method utilizes a
motion predictor to estimate the future pose of an object based
on its current oscillatory motion, enabling the generation
and planning of viable grasps at precise future positions.
Our simulations conducted under various wave conditions
demonstrated the ability to robustly track and predict object
movement, resulting in successful grasps approximately 70%
of the time for different object configuration in challenging
dynamic settings.

This approach is particularly relevant for underwater
mobile manipulation, where the unpredictability of the envi-
ronment necessitates rapid and adaptive grasping strategies.
By predicting future object positions and planning grasps
accordingly, our algorithm enables the robotic system to
execute grasps in synchronization with the object’s motion,
significantly improving the robustness and efficiency of the
grasping process.

The ability to perform dynamic grasping in unstructured
underwater environments represents a significant step forward
in the field of robotic manipulation. Future work will focus
on integrating this grasp in physical robot and verifying

if this method generalizes with other non-uniform shaped
objects. Additionally, exploring active perception strategies
to optimize object tracking and prediction under varying
environmental conditions presents an exciting avenue for
improving the overall grasping performance in complex
unstructured scenarios.

REFERENCES

[1] L. X. Xie Z and R. C, “Learning-based robotic grasping: A review,”
Front. Robot. AI, 2023.

[2] R. N. et al., “Deep learning approaches to grasp synthesis: A review,”
in IEEE Transactions on Robotics, vol. 39, no. 05, 10 2023.

[3] S. S. I. Akinola, J. Xu and P. K. Allen, “Dynamic grasping with reach-
ability and motion awareness,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2021.

[4] C.-C. Wong, M.-Y. Chien, R.-J. Chen, H. Aoyama, and K.-Y. Wong,
“Moving object prediction and grasping system of robot manipulator,”
IEEE Access, vol. 10, pp. 20 159–20 172, 2022.

[5] P. Allen, A. Timcenko, B. Yoshimi, and P. Michelman, “Automated
tracking and grasping of a moving object with a robotic hand-eye
system,” IEEE Transactions on Robotics and Automation, vol. 9, no. 2,
pp. 152–165, 1993.

[6] D. Kappler, F. Meier, J. Issac, J. Mainprice, C. G. Cifuentes,
M. Wüthrich, V. Berenz, S. Schaal, N. Ratliff, and J. Bohg, “Real-
time perception meets reactive motion generation,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1864–1871, 2018.

[7] P. C. D. Morrison and J. Leitne, “Closing the loop for robotic grasping:
A real-time, generative grasp synthesis approach,” 2018.

[8] “Reach bravo: Larger platform rov manipulator - reach robotics.”
[Online]. Available: https://reachrobotics.com/products/manipulators/
reach-bravo/

[9] “Trisect underwater stereo camera.” [Online]. Available: https:
//trisect-perception-sensor.gitlab.io/

[10] R. Howe, N. Popp, P. Akella, I. Kao, and M. Cutkosky, “Grasping,
manipulation, and control with tactile sensing,” in Proceedings., IEEE
International Conference on Robotics and Automation, 1990, pp. 1258–
1263 vol.2.

[11] D. Guo, F. Sun, B. Fang, C. Yang, and N. Xi, “Robotic grasping
using visual and tactile sensing,” Information Sciences, vol. 417, pp.
274–286, 2017.

[12] D. Kragic, H. I. Christensen et al., “Survey on visual servoing for ma-
nipulation,” Computational Vision and Active Perception Laboratory,
Fiskartorpsv, vol. 15, p. 2002, 2002.

[13] F. Sun, C. Liu, W. Huang, and J. Zhang, “Object classification and
grasp planning using visual and tactile sensing,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 46, no. 7, pp. 969–979,
2016.

[14] T. R. Player, D. Chang, L. Fuxin, and G. A. Hollinger, “Real-time
generative grasping with spatio-temporal sparse convolution,” in 2023
IEEE International Conference on Robotics and Automation (ICRA),
2023, pp. 7981–7987.

[15] Q. Bai, S. Li, J. Yang, Q. Song, Z. Li, and X. Zhang, “Object detection
recognition and robot grasping based on machine learning: A survey,”
IEEE Access, vol. 8, pp. 181 855–181 879, 2020.

[16] K. Mo, S. Zhu, A. X. Chang, L. Yi, S. Tripathi, L. J. Guibas, and H. Su,
“Partnet: A large-scale benchmark for fine-grained and hierarchical
part-level 3d object understanding,” in IEEE/CVF conference on
computer vision and pattern recognition, 2019, pp. 909–918.

[17] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su et al.,
“Shapenet: An information-rich 3d model repository,” arXiv preprint
arXiv:1512.03012, 2015.

[18] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “The ycb object and model set: Towards common benchmarks
for manipulation research,” in International conference on advanced
robotics (ICAR). IEEE, 2015, pp. 510–517.

[19] J. Liu, R. Zhang, H.-S. Fang, M. Gou, H. Fang, C. Wang, S. Xu,
H. Yan, and C. Lu, “Target-referenced reactive grasping for dynamic
objects,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2023, pp. 8824–8833.

[20] P. Chen and W. Lu, “Deep reinforcement learning based moving object
grasping,” Information Sciences, vol. 565, pp. 62–76, 2021.



7

[21] X. Ye and S. Liu, “Velocity decomposition based planning algorithm
for grasping moving object,” in 2018 IEEE 7th Data Driven Control
and Learning Systems Conference (DDCLS), 2018, pp. 644–649.

[22] “Ros (robot operating system),” https://wiki.ros.org/.
[23] R. Vivekanandan, D. Chang, and G. A. Hollinger, “Autonomous

underwater docking using flow state estimation and model predictive
control,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA), 2023, pp. 1062–1068.

[24] “Pybullet documentation.” [Online]. Available: https://usermanual.
wiki/Document/pybullet20quickstart20guide.479068914.pdf

[25] “Pybullet github repo.” [Online]. Available: https://github.com/
bulletphysics/bullet3/blob/master/docs/pybullet quickstart guide/
PyBulletQuickstartGuide.md.html


