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Abstract— Soft grippers have yet to receive the attention that
has been devoted to traditional hard grippers, and an area that
has remained almost completely unexplored is the interface
between human users and robots using soft robotic hands.
Grasp-quality metrics for soft hands are underresearched,
making the quality of a soft grasp difficult to understand at a
glance. Comprehensible and accurate explanations are required
in use cases where it is important to establish a secure grasp
before manipulation. Using a soft hand, we verify the predictive
accuracy of three grasp quality metrics obtained using only
visual data. We then introduce a framework based on these
metrics to generate effective explanations of the quality of a
soft robotic grasp, providing the feedback necessary for users to
safely and effectively manipulate environments with soft robots.
In results we show we can correctly predict 85% of grasps and
show examples of the generated explanations.

[. INTRODUCTION AND PREVIOUS WORK

Soft robotic grippers have a number of unique features
of interest. Their inherent compliance not only makes them
well-suited for grasping tasks requiring delicacy (such as the
handling of fruits or marine lifeforms), but also provides
leniency in the complex and precise pre-grasp planning de-
manded by hard grippers [1]. This tendency for soft grippers
to adjust after initial contact also affirms the need to perform
post-grasp quality analysis and ensure a stable grasp before
manipulating the object.

Explainability is a crucial element of both user-controlled
and autonomous robotic systems, yet the overlap between
explainability and soft grasping is not well investigated.
Comprehensible explanations encourage appropriate levels
of trust in the robot, and allow human users to quickly
intervene in a robot’s decision making process if needed [2].
Grasp quality metrics are an efficient way of quantitatively
determining the quality of a grasp. Accurate visual grasp
metrics, therefore, are an excellent way to build robust,
trustworthy explanations, especially for systems such as soft
grippers that may have limited sensing ability with which to
otherwise determine the quality of a grasp.

While a multitude of grasp quality metrics have been
developed [3], and some have been evaluated for under-
actuated and compliant hands [4], less research has been
devoted to the application of quality metrics to completely
soft hands. In [5], the accuracy of various combinations of
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Fig. 1: The soft hand and experimental setup used for data collection. The
camera was placed under the gripper in order to image the grasps from the
bottom up, through the clear table.

quality metrics is analyzed using two hard, three-fingered
grippers. Particular combinations of three metrics are shown
to be just as accurate as up to seven metrics used in
conjunction, but no tests were performed using soft grippers.
Thus, it is vital that grasp metrics be tested using soft hands
in order to verify their generalizability.

Previous work in grasp explainability has used machine
learning methods with a dataset of simulated grasps to
predict the likelihood of grasp failure, but this is data-
heavy and relies on complex information about joint position,
velocity, and torque of each finger, information which is not
readily available from soft hands [6]. Other research has
used explainability in conjunction with grasp planning [7],
but to our knowledge post-grasp explainability of the type
compatible to soft grippers has yet to be explored.

The ability for the robot to explain concisely whether
it has a quality grasp on an object of interest could cut
down dramatically on failed grasp attempts, allowing a
human user to intervene and establish a new grasp. Enhanced
explainability would allow operators to make more informed
decisions, making operation safer and more time-effective.
For example, in a marine organism manipulation task, users
need to trust that an established grip is likely to be stable,
and that the animal is unlikely to fall from the grasp and
be damaged. Users are likely to find a comprehensive ex-
planation of the qualities of the grasp, likelihood of success,
and alternative example grasps far more understandable and
trustworthy compared to a string of numbers [8].

In order to generate quality explanations, there must be
sufficient evidence to distinguish a good grasp from a bad
one. Building on the conclusions of [5], we test the predictive
accuracy of three visual metrics: the shape of the grasp
polygon, the distance between the centroid of the grasp



polygon and the center of mass of the object, and the area
of the grasp polygon (see [9]). We then use these metrics,
in conjunction with data collected through real grasp trials
using a soft hand, to generate example explanations of soft
grasp quality.

II. METHODS
A. Device

The gripper used for data collection utilizes a soft actuator
design from [10] and is partially inspired by [11]. As shown
in Fig. 1, the gripper is composed of three interchangeable
fingers attached to a hard palm with custom 3D-printed
brackets that connect the actuators to a pressurization system.
Ease of fabrication was a key considerations in design,
as was modularity. The softness of the fingers and their
width allows the gripper to grasp a variety of objects. The
molds used to cast the fingers were 3D printed from PLA
plastic directly from the files from the Soft Robotics Toolkit
[10]. The completed hand was raised and lowered using a
controlled stepper motor, providing precise and repeatable
hand placement.

B. Metrics

The metrics used to predict the quality of a given grasp
were selected based on analysis from Rupert, et al. [5], which
identifies several high-quality grasp metric combinations
using real three-fingered robotic grippers. However, these
combinations were yet to be tested using a soft hand, and
thus a portion of this project was devoted to verifying the
predictive accuracy of these metrics for a soft grasp.

Due to a lack of inbuilt tactile sensors, we selected three
metrics based on easily-obtained visual data about the “grasp
polygon,” or the polygon created by the contact points
between the object and the gripper. The first metric was the
regularity of the grasp polygon, which can be defined as
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where n; is the number of fingers of the gripper, 6; is the
it" vertex of the polygon, 6, ¢ is the average of all internal
angles of the polygon, and 6, is the sum of the differences
between the internal angles when the polygon degenerates
into a line and those of the regular polygon, such that
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Q1 is normalized such that @y € [0, 1], with 1 being the
ideal case where the grasp polygon is regular.

The second metric was the distance between the centroid
of the grasp polygon and the center of mass of the object,
which can be defined as

Q2 = 1 — distance(p, p.)/distancemqz, 3)

where distance(p,p.) is the distance between the center of
mass of the object p and the centroid of the grasp polygon
Pe, and distance,,q, is the maximum distance between p
and any point on the object’s contour. This metric has also
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Fig. 2: A block diagram of the explanation selection. The method first
determines the best feature in the semantic feature to demonstrate, then
selects the best alternative grasp to demonstrate the selected feature.

been normalized such that Q3 € [0, 1], 1 being the ideal case
where p and p, are the same point.

The third metric we selected was the area of the grasp
polygon, or simply

Q3 = area(Polygon). 4

Theoretically, a grasp polygon with a larger area produces
a more robust grasp. In practice, we found the area of the
grasp was not predictive of the grasp quality of our soft
gripper. We thus discarded grasp area as a valid metric,
leaving us with two predictive quality metrics @)1 and Q2
(which we will refer to as the “regularity” and “distance”
metrics, respectively).

C. Explainability

In this paper we use a theory-based explanation system
to provide transparency into the grasp classification [12].
Studies from the Social Sciences have shown that humans
prefer selected contrastive explanations to understand an
event [8]. Our system is designed to follow these recommen-
dations by providing selected alternative grasps that attempt
to demonstrate the most salient reasons a grasp is classified
as successful or unsuccessful. We formulate this problem
as determining the most salient features from a semantic
feature vector, then selecting the best alternative grasp to
demonstrate the selected feature, see Figure 2.

To select the best alternative grasp, we iterate through each
example grasp to find the closest grasp that is either better
or worse than the query grasp, depending on whether we are
explaining why we think the grasp will succeed or fail for
the given feature. Samples with the same grasp prediction
were rejected. Formally this is solving the equation
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where j is the index of the feature being explained, z, is
the query metric, and x4 _; is the query vector except for
index j. This returns the best alternative that describes the
given feature being explained. Once the alternative is selected
images of both grasps are shown with a templated description
of the selection.

ITII. RESULTS

Data was collected using four 3D printed shapes: a right
triangle, a large star, and two arbitrary shapes designed to
vary the contact polygon as much as possible. A total of
90 different grasps were executed. During experimentation,
a grasp was labelled “successful” if the gripper was able to
lift the object off of the table while maintaining three contact
points, and “unsuccessful” otherwise. Each trial was imaged
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Fig. 3: ROC curve comparing the performance of a random forest, linear
SVC, and decision tree classifiers against adding @1 and Q2 together
and determining a linear threshold value. The threshold was found by
calculating the maximum geometric mean of the recall and the specificity
[13]. Classifier algorithms and plotting tools from [14].

from the bottom, producing a 2D representation of the grasp.
The contact points of each grasp and the center of mass of
the object were labelled by hand; the grasp quality metrics
were then calculated from these points. Of the 90 trials, 82
produced usable grasp images; 8 were rejected due to trial
failures, such as when the gripper lost a point of contact
during the imaging process.

Our final data set contains 82 example grasps executed
on 4 objects. 54 of these were successful grasps, and 28
were unsuccessful. We experimented with several different
classifiers to determine cutoff values that would be most
predictive of a successful grasp. As shown in Fig. 3, the
linear SVC (Support Vector Classifier) method classified the
test grasps most accurately with an area under the curve
(AUC) of 0.96, followed by simply adding the regularity
and distance metrics together and determining a combined
threshold by finding the threshold that maximizes the geo-
metric mean of the true positive rate and the true negative rate
[13], producing an AUC of 0.88. The latter method delivered
results averaging around 85% predictive accuracy.

Actual Class

Unsuccessful | Successful
. Unsuccessful 7 1
Predicted Class Successtul 3 2

TABLE I: Confusion matrix generated from the test data, classified using
the metric addition method. As shown, this classification method performs
well using the calculated threshold value, with balanced numbers of false
positives and false negatives and an overall accuracy of 84%.

IV. DISCUSSION AND CONCLUSION

Our experimental results indicate that the regularity and
distance metrics are suitable to soft grippers, but that the area
of the grasp polygon is not a good predictor of soft grasp
quality. We successfully demonstrate that accurate post-grasp
quality metrics can be used to generate helpful explanations
for human operators, see Figures 4 and 5.
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The query grasp has a higher regularity of the grasp polygon metric than the alternative;
which is predicted to successfully grasp the object compared to the alternative.

Fig. 4: An example explanation for a predicted successful grasp.
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The query gras‘p has a smaller reéulérity of the grasp polygon metric than the alternative;
this implies the query grasp is likely to be unsuccessful compared to the alternative.

Fig. 5: An example explanation for a predicted unsuccessful grasp.

There are limitations to the work done in this study. First,
the object positions used to generate the grasp data were
not truly random. Although efforts were taken to cover the
space of possible grasps, unconscious operator preference
towards certain object positions may have excluded unlikely
successful grasps. Additional study with truly randomized
orientation would ensure the space of possible grasps is fully
covered. Second, the elimination of the area metric as a
viable predictor of grasp quality means the explainability
framework is limited to two sets of features. More robust
explanations could be generated from additional metrics,
such as those presented in Rupert, et al. [5]. Third, met-
ric accuracy and the resulting explanations were generated
from a binary “successful/unsuccessful” grasp classification.
Although additional data about each grasp was collected,
it was not applied to either the metric calculation or the
explanations. More complex analysis of each grasp may lead
to more satisfactory explanations.

In this work we presented an explainability framework for
post grasp analysis of soft grippers. This can help robot op-
erators manage the a system with soft grippers. Additionally,
we verified two grasp quality metrics for soft grippers. The
ideas presented in this work could be applicable to a number
of use cases requiring the delicacy of soft grippers along
with the assurance of grasp quality, such as agricultural or
exploratory marine robots.
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