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•  1st year in Coastal/Ocean Engineering 

•  Summer 2014: Hinsdale Wave Research Lab 

•  Supported CEOAS and OOI glider groups 

•  2nd year with Robotic Decision Making Lab 

 About Me 
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 Motivation 

•  Ocean waves will displace a robot  

•  Wave disturbances lend to increased  
sensor drift  

•  Sensor drift reduces robotic observation quality 

•  Impending wave forces can be estimated 

•  Objective: keep a station-keeping robot stationary 
under the influence of a wave field 
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Source: National Geographic, 2012, R. D. Ballard 



  

 Motivation 
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 Related Work 

•  Model Predictive Control (MPC) 

•  Path planning with 
in situ ocean currents 
(Medagoda, 2012) 

•  Wave Energy Converter  
(WEC) optimization  
(Brekken, 2011) 

•  Station-keeping under water waves (Heidel, 1998) 
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 Parts of a Wave 

Source: Waves, Tides and Shallow-Water Processes, 1999, J. Wright, A. Colling, D. Park 
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 Water Motion under Waves 
●  Deep water wave 

●  circular paths, exponential decrease with depth 
●  ​𝒗↓𝑝 = ​1⁄2   at 𝒛= ​−𝐿⁄9 , close to 0 at 𝒛= ​−𝐿⁄2  

●  Shallow water wave 
●  More lateral motion than vertical  

●  More elliptical with depth, virtually lateral at depth 
●  Transitional water depths 

●  Intermediate elliptical patterns 

●  Majority of waves in this work 
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Source: Waves, Tides and Shallow-Water Processes, 1999, J. Wright, A. Colling, D. Park 
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 Simulation Setting (NETS) 

●  North Energy Test Site 

●  Operational depth: 50 m 

●  Validation of wave field 
●  AWAC acoustic measurements 
●  Deployed at NETS  
●  August – October 2013 
●  (600) 40 minute profiles (2 Hz) 16 
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 Simulation Setting (NETS) 
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 Random Seas 

Source: Waves, Tides and Shallow-Water Processes, 1999, J. Wright, A. Colling, D. Park 

●  Superposition 
○  Sea surface can be represented by the 

sum of sinusoids with component periods 
(T), amplitudes (a), and phase offsets (φ) 
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 Input Wave Field 
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 Linear Wave Theory 

●  Assumes potential flow:  ​𝑢 =𝛻ϕ 

●  Dispersion Relation:  ​𝜔↑2 =𝑔𝑘​tanℎ⁠(𝑘𝑑)  
●  Wavelength:   𝐿= ​𝑔​𝑇↑2 /2𝜋 ​[​tanh⁠(​(​​𝜔↑2 𝑑/𝑔 )↑​3⁄4  ) ]↑​2⁄3   
●  Wavenumber:  𝑘= ​2𝜋/𝐿  
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 Water Motion under Waves 

●  Lateral motion in transitional water 
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 Water Motion under Waves 

●  Vertical motion in transitional water 
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 Simulator (Fluid Motion) 
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●  SeaBotix vLBV300 
●  Payload: 10kg 
●  Depth Rating: 300m 
●  Doppler Velocity Log (DVL) 
●  Inertial Measurement Unit (IMU) 
●  (6) 100mm brushless DC thrusters 
●  Low light color camera with 180° vertical tilt 

 Remotely Operated Vehicle  

Source: Teledyne SeaBotix Inc. 
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1.  Port aft thruster 
2.  Electronics tube 
3.  Starboard aft thruster 
4.  Starboard vertical thruster 
5.  Starboard forward thruster 
6.  Port forward thruster 
7.  Port vertical thruster 

 Remotely Operated Vehicle  

Source: Teledyne SeaBotix Inc. 
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●  Dassault SolidWorks 

●  Ansys AQWA 

 Remotely Operated Vehicle  

​𝑥  

​𝑧  
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●  System differential equation of motion: 

●  Simplify, sub inertia and drag relations: 

 Dynamics 
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●  Substitute ​𝒗↓𝑝  such that  ​𝒗↓𝑎 = ​𝒗↓𝑟 + ​𝒗↓𝑝 : 

●  where:  ​​𝒗 ↓𝑎,    𝒙 = ​𝒙    and   ​​𝒗 ↓𝑎,    𝒛 = ​𝒛   

 Dynamics 
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●  In state space form:  

●  where:  ​𝒙 = ​​𝒗 ↓𝑎,    𝒙    and   ​𝒛 = ​​𝒗 ↓𝑎,    𝒛  

 Dynamics 
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 Dynamics 
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 Simulator 
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 Simulator (Drifting Robot) 
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●  Purely Reactive 

●  Use as base of comparison 

●  Position Derivative (PD) control 

 Feedback Control 
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●  Positional Error:   ​𝜖↓𝑃 = ​𝜰↓𝑡𝑎𝑟𝑔𝑒𝑡 − ​𝜰↓𝑛  

●  Derivative Error:  ​𝜖↓𝐷 = ​𝜖↓𝑃,    𝑛 − ​𝜖↓𝑃,    (𝑛−1)  
●  ​[   ​𝑢↓1    ​𝑢↓2    ​𝑢↓3    ​𝑢↓4   ]↑𝑇 = ​𝐾↓𝑃,  𝒙 ​𝜖↓𝑃,  𝒙 + ​𝐾↓𝐷,    𝒙 ​𝜖↓𝐷,𝒙  
●  ​[   ​𝑢↓5    ​𝑢↓6   ]↑𝑇 = ​𝐾↓𝑃,  𝒛 ​𝜖↓𝑃,  𝒛 + ​𝐾↓𝐷,    𝒛 ​𝜖↓𝐷,𝒛  

 PD Controller 
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 PD Tuning 
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 PD Tuning 
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 Simulator (PD Robot) 
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 Model Predictive Control 

●  State estimator  

●  Cost function 

●  Receding horizon 

●  Objective: Find the control actions that 
minimize the distance between the desired  
and predicted states. 
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 Cost Function 
𝐽=∑𝑘=1↑𝑁▒​[​𝜰↓𝑡𝑎𝑟𝑔𝑒𝑡 − ​𝜰↓𝑘 ( ​𝒖↓𝑘 )]↑2  + ​𝛽𝒖↓𝑘↑2 	
  

	
  
​𝒖↓1:𝑁↑∗ =𝑎𝑟𝑔​​min┬​𝒖↓1:𝑁  ⁠𝐽( ​𝒖↓1:𝑁 ) 	
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 Gradient Descent Optimization 

●  Perturb new control input by Jacobian 
●  Minimized as optimal control action is approached 

​𝜕𝑱⁄𝜕𝒖 = ​​𝑱↓𝑛 − ​𝑱↓𝑛−1 /​𝒖↓𝑛 − ​𝒖↓𝑛−1   
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 Algorithm 
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 Simulator (MPC Robot) 
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 Results 

●  Determine best performing horizon 

●  MPC performance versus PD control 

●  Resistance to noisy sensor observations 
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 Ideal Horizon 

●  0.8 s best balance of low error and time 

●  Poor performers on low & high end 

●  Total time: 240 s discretized by 0.2 s 
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 MPC Performance 

●  74% reduction in position error over PD 
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 MPC Performance 
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 Impact of Gaussian Noise 

●  Observations of perceived wave state 

●  H term assigned maximum variance 

●  Minimal localization noise assumed 
●  Deterministic PD case 
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 Simulator (MPC w/ noise) 
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 Impact of Gaussian Noise 

●  50 simulations 
●  getForecast( ) gets new noisy wave field at nth step 

●  44% reduction over PD 
●  ​​𝜖 ↓𝑅𝑀𝑆 =1.737𝑚 
●  𝜎=0.059 

●  Notable run time increase 
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 Summary of Contributions 
•  A feedforward control (MPC) method that can forecast 

and compensate for impending wave forces 

•  Application of the MPC algorithm to a simulated station-
keeping robot 

•  Comparison of the MPC algorithm against traditional 
feedback (PD) control 

•  Algorithm resistance to noisy sensor observations of wave 
field parameters. 

•  Recommendations for choosing a prediction horizon 
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 Future Work 
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●  Real-time wave prediction methods  

●  Neuro-Evolutionary control methods  
●  Hydrodynamic simulation software packages  

●  System dynamics expanded 

●  More efficient optimization 
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