

Model Predictive Control for Robots in Ocean Waves

As presented by:

Daniel C. Fernández

M.S. Candidate

Robotics

About Me

- 1st year in Coastal/Ocean Engineering
- Summer 2014: Hinsdale Wave Research Lab
- Supported CEOAS and OOI glider groups
- 2nd year with Robotic Decision Making Lab

Motivation

- Ocean waves will displace a robot
- Wave disturbances lend to increased sensor drift

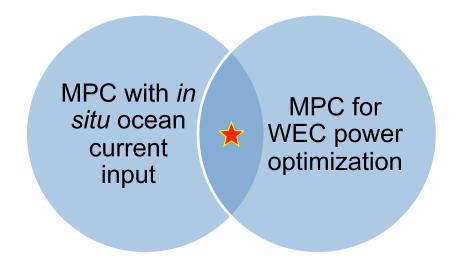
Source: National Geographic, 2012, R. D. Ballard

- Sensor drift reduces robotic observation quality
- Impending wave forces can be estimated
- Objective: keep a station-keeping robot stationary under the influence of a wave field

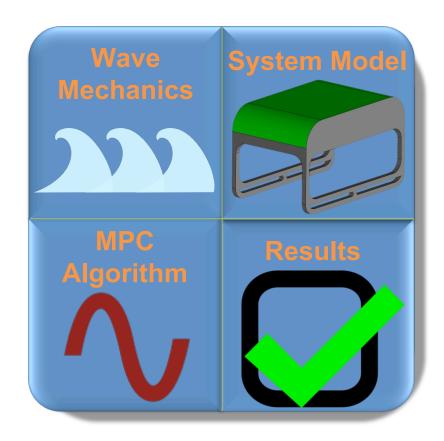
Motivation

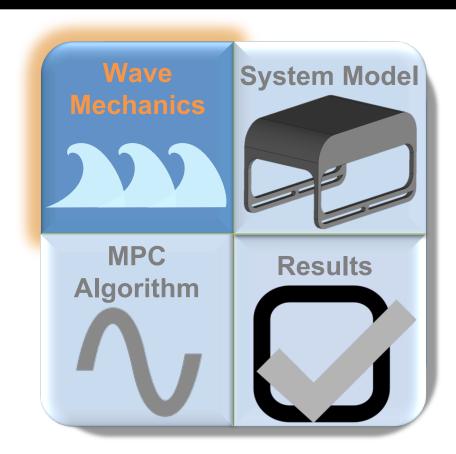
Related Work

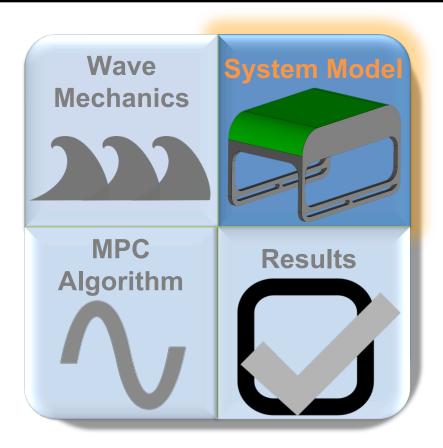
- Model Predictive Control (MPC)
 - Path planning with in situ ocean currents (Medagoda, 2012)
 - Wave Energy Converter (WEC) optimization (Brekken, 2011)

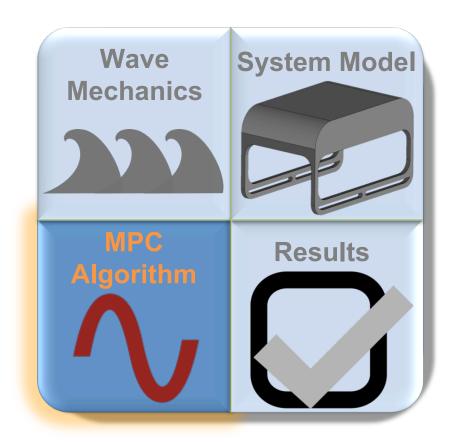


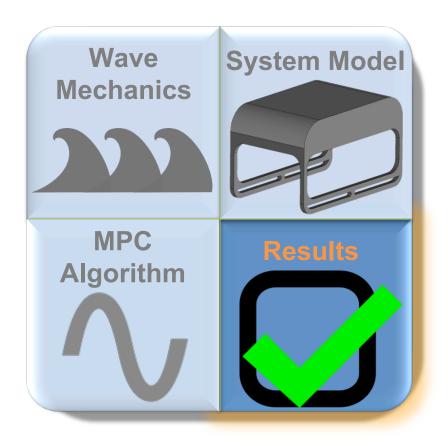
Station-keeping under water waves (Heidel, 1998)

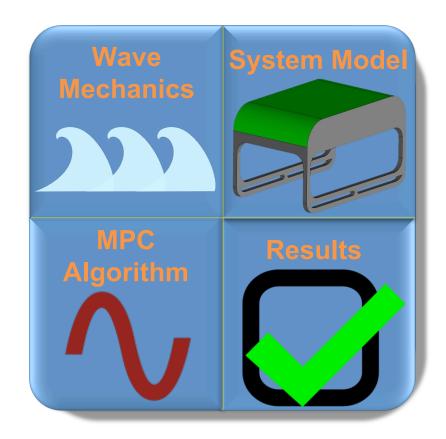


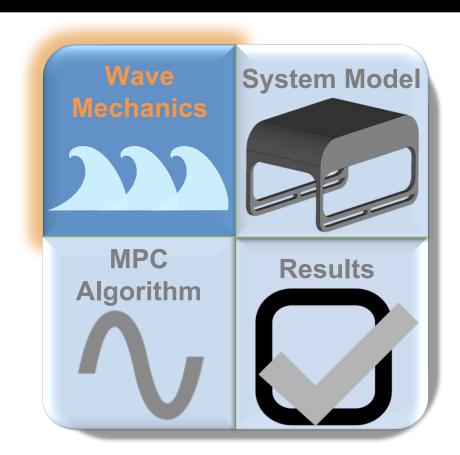


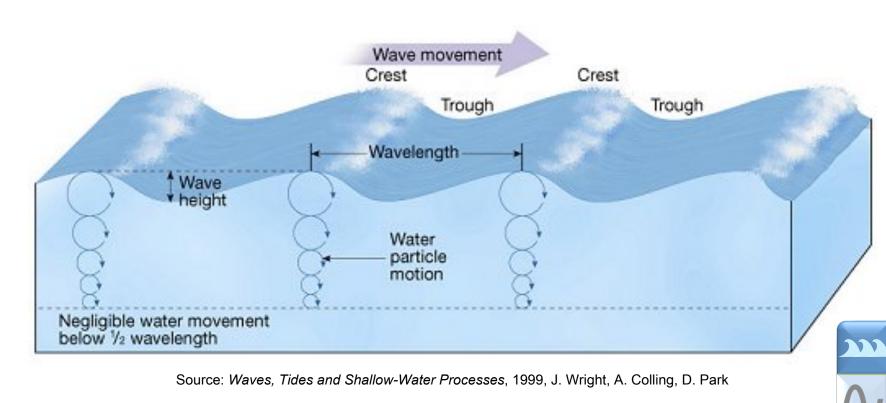




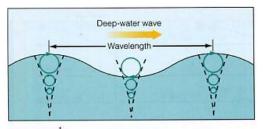


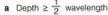


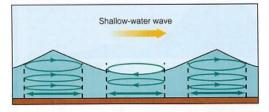




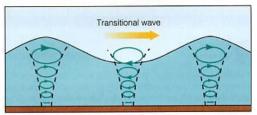
Water Motion under Waves







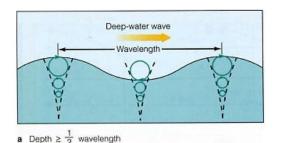
b Depth ≤ 1/20 wavelength

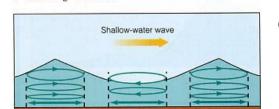


c $\frac{1}{20}$ wavelength \leq depth \leq $\frac{1}{2}$ wavelength

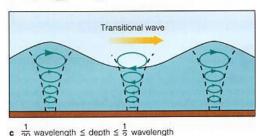
- Deep water wave
 - circular paths, exponential decrease with depth
 - vlp=1/2 at z=-L/9, close to 0 at z=-L/2
- Shallow water wave
 - More lateral motion than vertical
 - More elliptical with depth, virtually lateral at depth
- Transitional water depths
 - Intermediate elliptical patterns
 - Majority of waves in this work

Water Motion under Waves





b Depth ≤ ½ wavelength

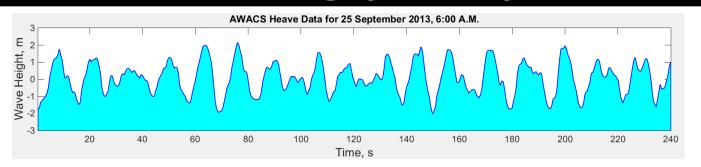


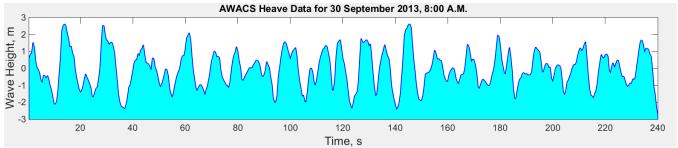
- Deep water wave
 - circular paths, exponential decrease with depth
 - v l p = 1/2 at z = -L/9, close to 0 at z = -L/2
- Shallow water wave
 - More lateral motion than vertical
 - More elliptical with depth, virtually lateral at depth
- Transitional water depths
 - Intermediate elliptical patterns
 - Majority of waves in this work

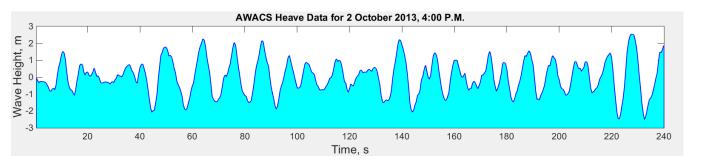
Simulation Setting (NETS)

- North Energy Test Site
- Operational depth: 50 m
- Validation of wave field
 - AWAC acoustic measurements
 - Deployed at NETS
 - August October 2013
 - (600) 40 minute profiles (2 Hz)

Simulation Setting (NETS)

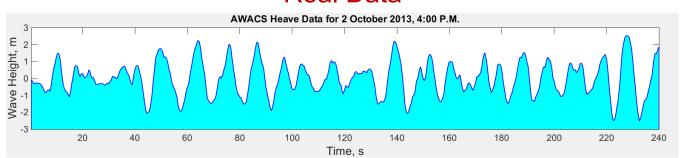




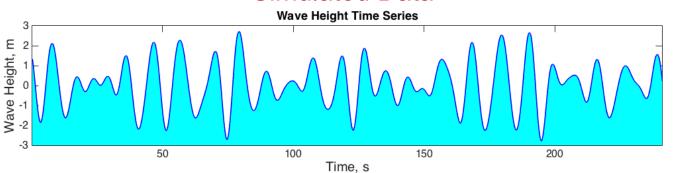


Simulation Setting (NETS)

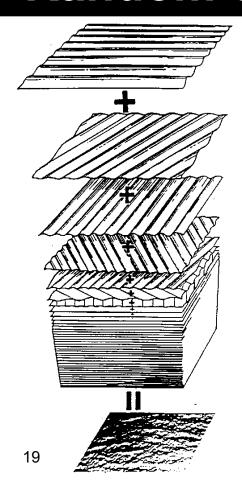
Real Data



Simulated Data

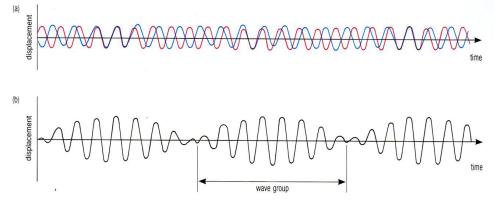


Random Seas



Superposition

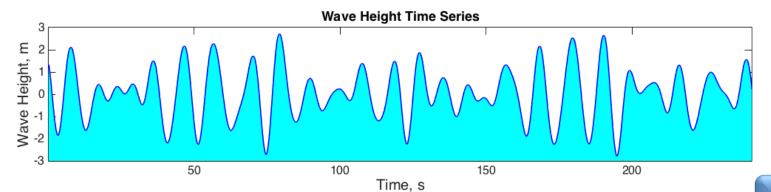
 Sea surface can be represented by the sum of sinusoids with component periods (T), amplitudes (a), and phase offsets (φ)



Oregon State

Input Wave Field

Component Wave	1	2	3	4	5	6	7	8
Wave Period, T , s	10	8	12	11	6	7	9	25
Wave Height, H , m	1.8	0.9	1.6	1.3	0.4	0.5	1.1	0.7
Phase, ϕ , rad	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	$-\frac{5\pi}{8}$	$\frac{4\pi}{13}$	$-\frac{\pi}{15}$	$\frac{\pi}{3}$	$-\frac{\pi}{18}$	$-\frac{7\pi}{4}$



$$\eta(\mathbf{t}) = \sum_{k=0}^{\infty} \frac{H}{2} \cos(k\mathbf{x} - \omega \mathbf{t} + \phi)$$

Linear Wave Theory

Assumes potential flow: u=νφ

- Dispersion Relation: ω12 = gktan h(kd)
- Wavelength: $L=gT12/2\pi \left[\tanh\left((\omega 12\ d/g)13/4\ \right)\right]12/3$
- Wavenumber: $k=2\pi/L$

Water Motion under Waves

Lateral motion in transitional water

$$\mathbf{v}_{p,\mathbf{x}} = \frac{HgT}{2L} \frac{\cosh \frac{2\pi(\mathbf{z}+d)}{L}}{\cosh \frac{2\pi d}{L}} \cos(k\mathbf{x} - \omega \mathbf{t} + \phi),$$

$$\dot{\mathbf{v}}_{p,\mathbf{x}} = \frac{g\pi H}{L} \frac{\cosh\frac{2\pi(\mathbf{z}+d)}{L}}{\cosh\frac{2\pi d}{L}} \sin(k\mathbf{x} - \omega\mathbf{t} + \phi).$$

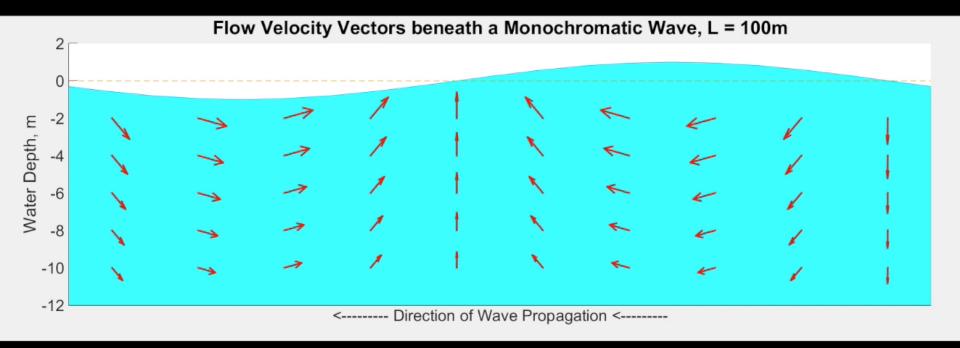
Water Motion under Waves

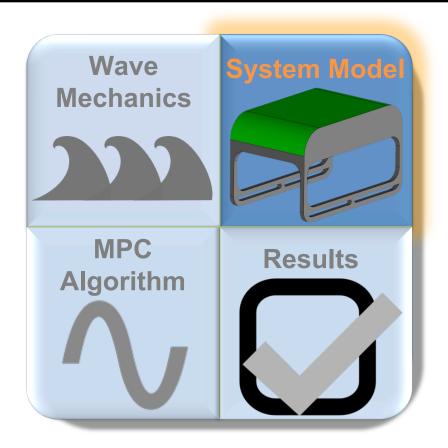
Vertical motion in transitional water

$$\mathbf{v}_{p,\mathbf{z}} = \frac{HgT}{2L} \frac{\sinh \frac{2\pi(\mathbf{z}+d)}{L}}{\cosh \frac{2\pi d}{L}} \sin(k\mathbf{x} - \omega \mathbf{t} + \phi),$$

$$\dot{\mathbf{v}}_{p,\mathbf{z}} = -\frac{g\pi H}{L} \frac{\sinh\frac{2\pi(\mathbf{z}+d)}{L}}{\cosh\frac{2\pi d}{L}} \cos(k\mathbf{x} - \omega\mathbf{t} + \phi).$$

Simulator (Fluid Motion)





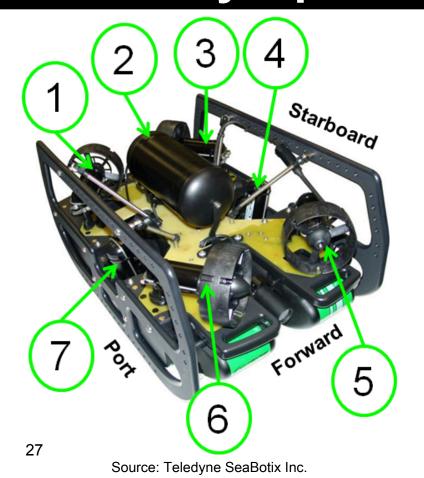
Remotely Operated Vehicle

SeaBotix vLBV300

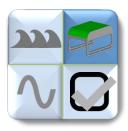
- Payload: 10kg
- Depth Rating: 300m
- Doppler Velocity Log (DVL)
- Inertial Measurement Unit (IMU)
- (6) 100mm brushless DC thrusters
- Low light color camera with 180° vertical tilt

Source: Teledyne SeaBotix Inc.

Remotely Operated Vehicle

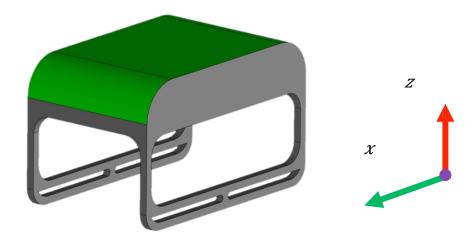


- 1. Port aft thruster
- 2. Electronics tube
- 3. Starboard aft thruster
- 4. Starboard vertical thruster
- 5. Starboard forward thruster
- 6. Port forward thruster
- 7. Port vertical thruster



Remotely Operated Vehicle

- Dassault SolidWorks
- Ansys AQWA



Parameter	Symbol	Value		
Density of Seawater	ρ_{sea}	$1030 \ kg/m^3$		
Incident Area, x	$A_{i,\mathbf{x}}$	$0.156 \ m^2$		
Incident Area, z	$A_{i,\mathbf{z}}$	$0.273 \ m^2$		
Moment of Inertia, x	I_{xx}	$0.62~kg~m^2$		
Moment of Inertia, z	I_{zz}	$1.60~kg~m^2$		
Dry Mass	m_{dry}	22.2~kg		
Added Mass, x	$m_{add,x}$	8.1~kg		
Added Mass, z	$m_{add,z}$	$36.7 \ kg$		
Drag Coefficient, x	$c_{d,x}$	0.84		
Drag Coefficient, z	$c_{d,z}$	1.06		
Max Thruster Force	T_{max}	29.7 N		
Thruster Angle, Forward	θ_f	35°		
Thruster Angle, Aft	θ_a	45°		
Thruster Angle, Vertical	θ_v	20°		

System differential equation of motion:

$$\mathbf{M}\dot{\mathbf{v}}_a = \mathbf{F}_{thrust} + \mathbf{F}_d + \mathbf{F}_g + \mathbf{F}_c$$

Simplify, sub inertia and drag relations:

$$m_{dry}\dot{\mathbf{v}}_a + m_{add}\dot{\mathbf{v}}_r = \mathbf{F}_{thrust} + \frac{1}{2}\rho_{sea}A_ic_d|\mathbf{v}_r|\mathbf{v}_r$$

System differential equation of motion:

$$\mathbf{M}\dot{\mathbf{v}}_a = \mathbf{F}_{thrust} + \mathbf{F}_d + \mathbf{F}_g + \mathbf{F}_c$$

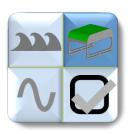
• Simplify, sub inertia and drag relations:

$$m_{dry}\dot{\mathbf{v}}_a + m_{add}\dot{\mathbf{v}}_r = \mathbf{F}_{thrust} + \frac{1}{2}\rho_{sea}A_ic_d|\mathbf{v}_r|\mathbf{v}_r$$

• Substitute p_{lp} such that $p_{la} = p_{lr} + p_{lp}$:

$$\begin{bmatrix} m_{dry} + m_{add,\mathbf{x}} \\ m_{dry} + m_{add,\mathbf{z}} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{x}} \\ \ddot{\mathbf{z}} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{thrust,\mathbf{x}} \\ \mathbf{F}_{thrust,\mathbf{z}} \end{bmatrix} + \begin{bmatrix} m_{add,\mathbf{x}} \\ m_{add,\mathbf{z}} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{v}}_{p,\mathbf{x}} \\ \dot{\mathbf{v}}_{p,\mathbf{z}} \end{bmatrix} + \frac{\rho_{sea}}{2} \begin{bmatrix} A_{i,\mathbf{x}}C_{d,\mathbf{x}} \\ A_{i,\mathbf{z}}C_{d,\mathbf{z}} \end{bmatrix} \begin{bmatrix} |\dot{\mathbf{x}} - \mathbf{v}_{p,\mathbf{x}}|(\dot{\mathbf{x}} - \mathbf{v}_{p,\mathbf{x}}) \\ |\dot{\mathbf{z}} - \mathbf{v}_{p,\mathbf{z}}|(\dot{\mathbf{z}} - \mathbf{v}_{p,\mathbf{z}}) \end{bmatrix}$$

• where: $v \downarrow a, x=x$ and $v \downarrow a, z=z$



In state space form:

$$\dot{\mathbf{\Upsilon}} = \begin{bmatrix} \dot{\mathbf{x}} & \ddot{\mathbf{x}} & \dot{\mathbf{z}} & \ddot{\mathbf{z}} \end{bmatrix}^T = \mathbf{A}\mathbf{\Upsilon} + \mathbf{B}\mathbf{u} + \mathbf{D}$$

• where: $x = v \downarrow a$, x and $z = v \downarrow a$, z



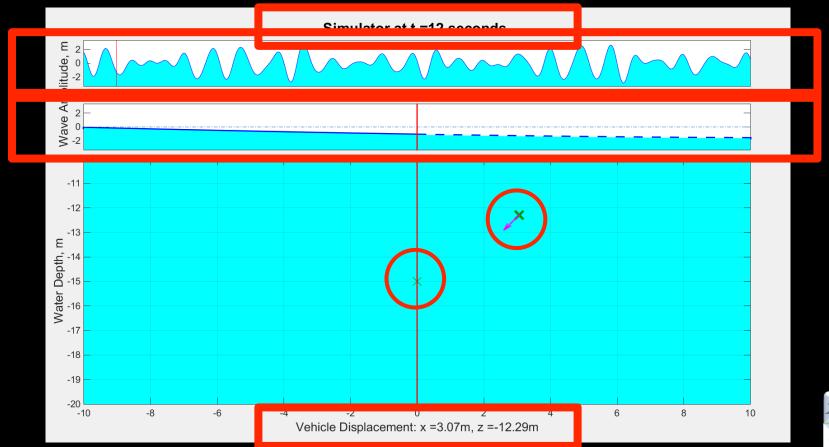
$$\mathbf{A}\mathbf{\Upsilon} = \begin{bmatrix} 0 & 1 & 0 & 0 & | & \mathbf{x} \\ 0 & 0 & 0 & 0 & | & \dot{\mathbf{x}} \\ 0 & 0 & 0 & 1 & | & \mathbf{z} \\ 0 & 0 & 0 & 0 & | & \dot{\mathbf{z}} \end{bmatrix}$$

		0	0	0	0	0	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ -cos\theta_v \end{bmatrix}$
Bu =	T_{max}	$cos\theta_f$	$cos\theta_f$	$-cos\theta_a$	$-cos\theta_a$	0	0
Da	m_{dry}	0	0	0	0	0	0
		0	0	0	0	$-cos\theta_v$	$-cos\theta_v$

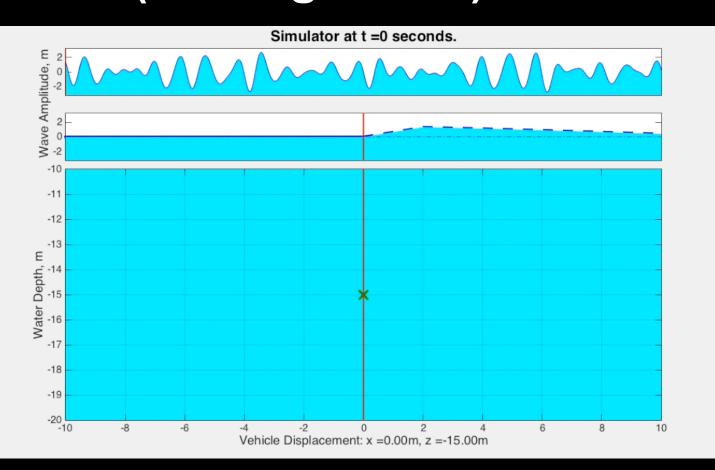
 u_1 u_2 u_3 u_4 u_5 u_6

$$\mathbf{D} = \begin{bmatrix} \frac{\dot{\mathbf{v}}_{p,\mathbf{x}}}{m_{dry}} + \frac{\rho_{sea}A_{i,\mathbf{x}}C_{d,\mathbf{x}}}{2(m_{dry} + m_{add,\mathbf{x}})} | \dot{\mathbf{x}} - \mathbf{v}_{p,\mathbf{x}} | (\dot{\mathbf{x}} - \mathbf{v}_{p,\mathbf{x}}) \\ 0 \\ \frac{\dot{\mathbf{v}}_{p,\mathbf{z}}}{m_{dry}} + \frac{\rho_{sea}A_{i,\mathbf{x}}C_{d,\mathbf{z}}}{2(m_{dry} + m_{add,\mathbf{z}})} | \dot{\mathbf{z}} - \mathbf{v}_{p,\mathbf{z}} | (\dot{\mathbf{z}} - \mathbf{v}_{p,\mathbf{z}}) \end{bmatrix}$$

Simulator



Simulator (Drifting Robot)

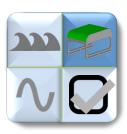


Feedback Control

Purely Reactive

Use as base of comparison

Position Derivative (PD) control

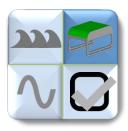


PD Controller

• Positional Error: ε↓P=r↓target-r↓n

• Derivative Error: $\epsilon \downarrow D = \epsilon \downarrow P, n - \epsilon \downarrow P, (n-1)$

- $[u\downarrow 1 \ u\downarrow 2 \ u\downarrow 3 \ u\downarrow 4 \]\uparrow T = K\downarrow P, x \in \downarrow P, x + K\downarrow D, x \in \downarrow D, x$
- $[u \downarrow 5 \ u \downarrow 6] \uparrow T = K \downarrow P, \mathbf{z} \in \downarrow P, \mathbf{z} + K \downarrow D, \mathbf{z} \in \downarrow D, \mathbf{z}$



PD Controller

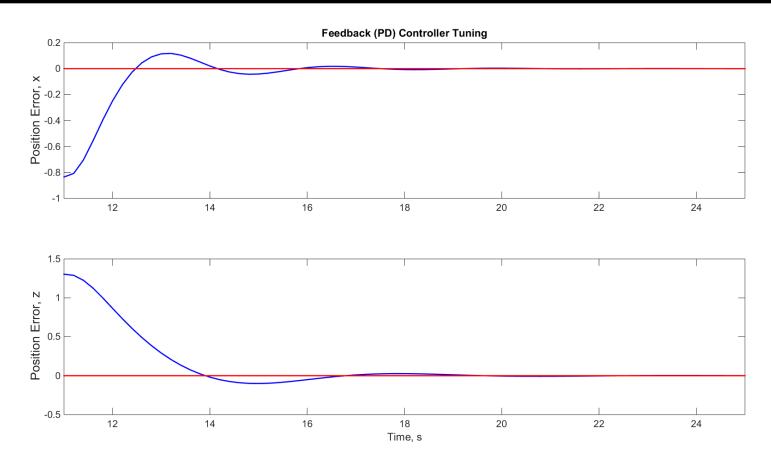
• Positional Error: ε↓P=r↓target-r↓n

• Derivative Error: $\epsilon \downarrow D = \epsilon \downarrow P, n - \epsilon \downarrow P, (n-1)$

- $[u \downarrow 1 \ u \downarrow 2 \ u \downarrow 3 \ u \downarrow 4 \] \uparrow T = K \downarrow P, \boldsymbol{x} \in \downarrow P, \boldsymbol{x} + K \downarrow D, \boldsymbol{x} \in \downarrow D, \boldsymbol{x}$
- $[u\downarrow 5 \ u\downarrow 6]\uparrow T=K\downarrow P, \mathbf{z}\in \downarrow P, \mathbf{z}+K\downarrow D, \mathbf{z}\in \downarrow Q, \mathbf{z}$

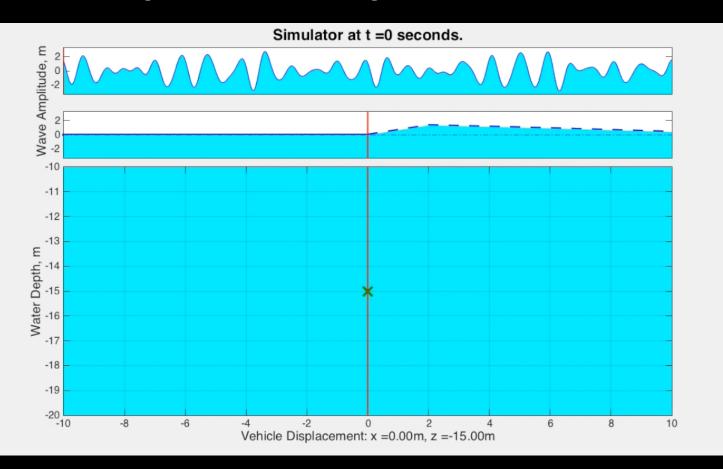
PD Tuning

PD Tuning

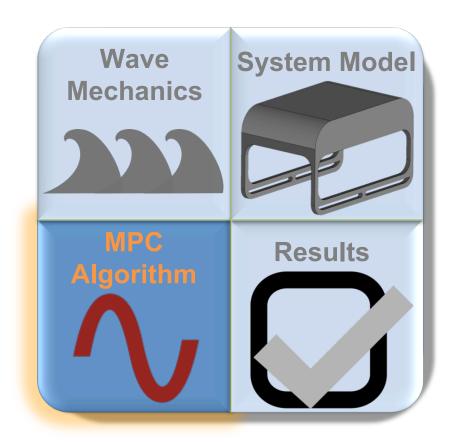


Oregon State

Simulator (PD Robot)

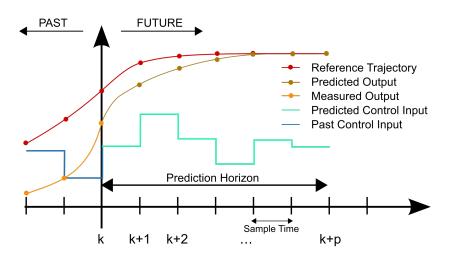


Outline



Model Predictive Control

- State estimator
- Cost function
- Receding horizon



 Objective: Find the control actions that minimize the distance between the desired and predicted states.

Cost Function

$$J = \sum k = 1 \uparrow N = [Y \downarrow target - Y \downarrow k (u \downarrow k)] \uparrow 2 + \beta u \downarrow k \uparrow 2$$

$$u \downarrow 1: N \uparrow * = arg \min_{-u \downarrow 1: N} J(u \downarrow 1: N)$$

Gradient Descent Optimization

- Perturb new control input by Jacobian
 - Minimized as optimal control action is approached

```
\partial J/\partial u = J \ln - J \ln - 1 / u \ln - u \ln - 1
```


- 1: **procedure** $MPC(t, \lambda, \text{robot}, \Upsilon_{target})$
- $2: n \leftarrow 1$
- 3: $\eta \leftarrow \text{LOADSEASTATE}(t, \lambda, \Upsilon_{initial})$
- 4: **while** n < simulatorOff do
- 5: input \leftarrow GETFORECAST(t, robot, λ , Υ_{target} , n)
- 6: robot \leftarrow MOVEROBOT(t, robot, λ , input, n)
- 7: $n \leftarrow n+1$



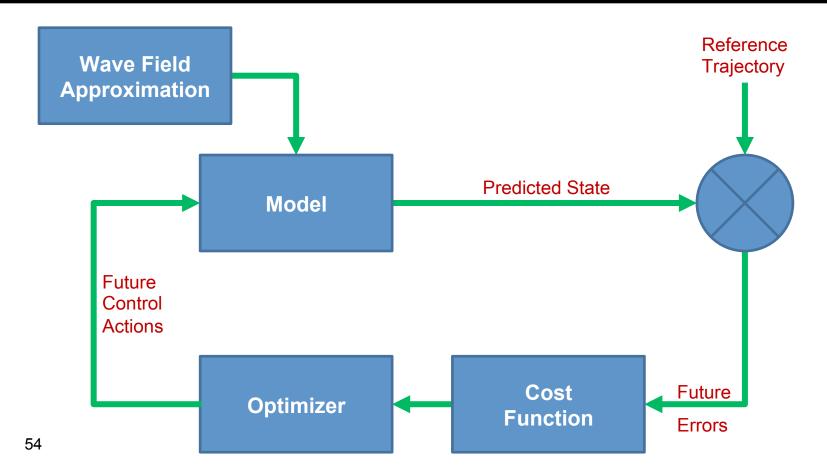
- 1: **procedure** $MPC(t, \lambda, \text{ robot}, \Upsilon_{target})$
- $2: n \leftarrow 1$
- 3: $\eta \leftarrow \text{LOADSEASTATE}(t, \lambda, \Upsilon_{initial})$
- 4: **while** n < simulatorOff do
- 5: input \leftarrow GETFORECAST(t, robot, λ , Υ_{target} , n)
- 6: robot \leftarrow MOVEROBOT(t, robot, λ , input, n)
- 7: $n \leftarrow n+1$

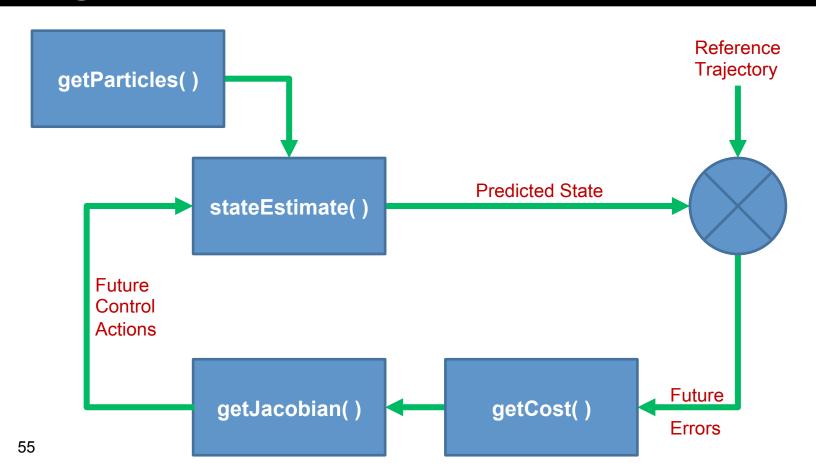
- 1: **procedure** $MPC(t(\lambda, robot, \Upsilon_{target})$
- $2: n \leftarrow 1$
- 3: $\eta \leftarrow \text{LOADSEASTATE}(t, \lambda, \Upsilon_{initial})$
- 4: **while** n < simulatorOff do
- 5: input \leftarrow GETFORECAST(t, robot, λ , Υ_{target} , n)
- 6: robot \leftarrow MOVEROBOT(t, robot, λ , input, n)
- 7: $n \leftarrow n+1$

- 1: **procedure** $MPC(t, \lambda(\text{robot}, \Upsilon_{target}))$
- $2: n \leftarrow 1$
- 3: $\eta \leftarrow \text{LOADSEASTATE}(t, \lambda, \Upsilon_{initial})$
- 4: **while** n < simulatorOff do
- 5: input \leftarrow GETFORECAST(t, robot, λ , Υ_{target} , n)
- 6: robot \leftarrow MOVEROBOT(t, robot, λ , input, n)
- 7: $n \leftarrow n+1$

- 1: **procedure** $MPC(t, \lambda, robot \Upsilon_{target})$
- $2: n \leftarrow 1$
- 3: $\eta \leftarrow \text{LOADSEASTATE}(t, \lambda, \Upsilon_{initial})$
- 4: **while** n < simulatorOff do
- 5: input \leftarrow GETFORECAST(t, robot, λ , Υ_{target} , n)
- 6: robot \leftarrow MOVEROBOT(t, robot, λ , input, n)
- 7: $n \leftarrow n+1$


```
1: procedure MPC(t, \lambda, \text{robot}, \Upsilon_{target})
2: n \leftarrow 1
3: \eta \leftarrow \text{LOADSEASTATE}(t, \lambda, \Upsilon_{initial})
4: while n < \text{simulatorOff do}
5: input \leftarrow \text{GETFORECAST}(t, \text{robot}, \lambda, \Upsilon_{target}, n)
6: robot \leftarrow \text{MOVEROBOT}(t, \text{robot}, \lambda, \text{input}, n)
7: n \leftarrow n + 1
```



14:

15:

16:

17:

18:

19:

20:

21:

22:

2 56

10	1-21- / /	T4 4:	- 2 L	:40-:4:1-
13:	while $i <$	maxIterations	and $0 >$	exitCriteria do

$$u_{i+1} \leftarrow u_i - \delta$$

for
$$k \in [1, 2, ..., N]$$
 do

or
$$\kappa \in [1, 2, ..., N]$$
 do

$$\mathbf{v}_p, \dot{\mathbf{v}}_p \leftarrow \text{GETPARTICLES}(t, \Upsilon_i(k), \lambda)$$

$$\mathbf{v}_p, \mathbf{v}_p \leftarrow \text{GETPARTICL}$$

$$\Lambda \leftarrow \mathbf{v}_p, \dot{\mathbf{v}}_p$$

$$\Lambda \leftarrow \mathbf{v}_p, \mathbf{v}_p$$

 $\Upsilon_{i+1}(k) \leftarrow \text{STATEESTIMATE}(t, \text{ robot}, \Lambda, u_{n+1}(k))$

$$J_{i+1}(k) \leftarrow \text{GETCOST}(\Upsilon_{target}, \Upsilon_{i+1}(k))$$

$$\delta \leftarrow \text{GETJACOBIAN}(J_i, J_{i+1}, u_i, u_{i+1})$$

$$u_i \leftarrow u_{i+1}$$

$$J_i \leftarrow J_{i+1}$$

$$\Upsilon_i \leftarrow \Upsilon_{i+1}$$

24:
$$i \leftarrow i + 1$$

23:
$$\Upsilon_i \leftarrow \Upsilon_{i+}$$

24: $i \leftarrow i+1$

return u_{i+1}

14:

15:

16:

17:

18:

19:

20:

21:

22:

2 57

13: while $i < \text{maxIterations and } \delta > \text{exitCrit}$	eria do

$$u_{i+1} \leftarrow u_i - \delta$$

$$u_{i+1} \leftarrow u_i - \delta$$

107 $\kappa \in [1, 2, ..., N]$ **do**

$$\dot{\mathbf{v}} \leftarrow \mathbf{CETPAPTICI}$$

$$\mathbf{v}_p, \dot{\mathbf{v}}_p \leftarrow \text{GETPARTICLES}(t, \Upsilon_i(k), \lambda)$$

$$\Lambda \leftarrow \mathbf{v}_p, \dot{\mathbf{v}}_p$$

$$\Lambda \leftarrow \mathbf{v}_p, \mathbf{v}_p$$

$$\Upsilon_{i+1}(k) \leftarrow \text{STATEESTIMATE}(t, \text{ robot}, \Lambda, u_{n+1}(k))$$

 $J_{i+1}(k) \leftarrow \text{GETCOST}(\Upsilon_{target}, \Upsilon_{i+1}(k))$

$$\delta \leftarrow \text{GETJACOBIAN}(J_i, J_{i+1}, u_i, u_{i+1})$$

$$u_i \leftarrow u_{i+1}$$

$$J_{i+1}$$

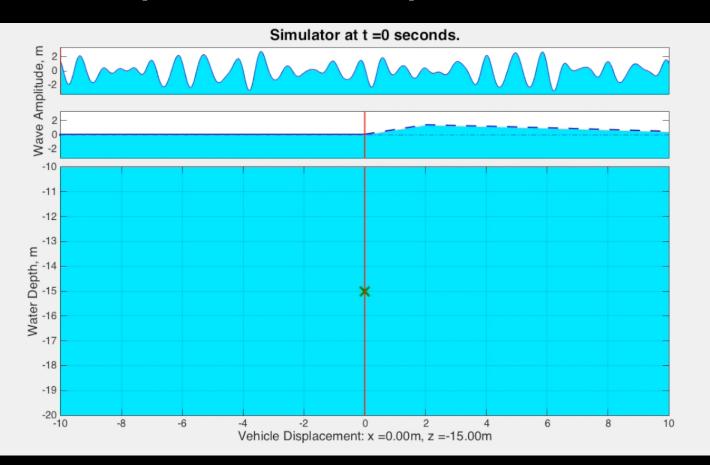
$$J_i \leftarrow J_{i+1}$$

23:
$$\Upsilon_i \leftarrow \Upsilon_{i+1}$$

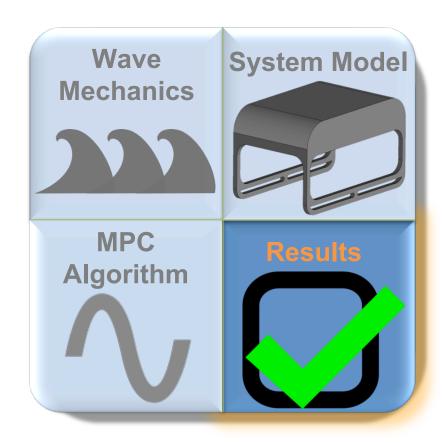
24:
$$i \leftarrow i+1$$
2 57 **return** u_{i+1}

Oregon State

Simulator (MPC Robot)



Outline



Results

Determine best performing horizon

MPC performance versus PD control

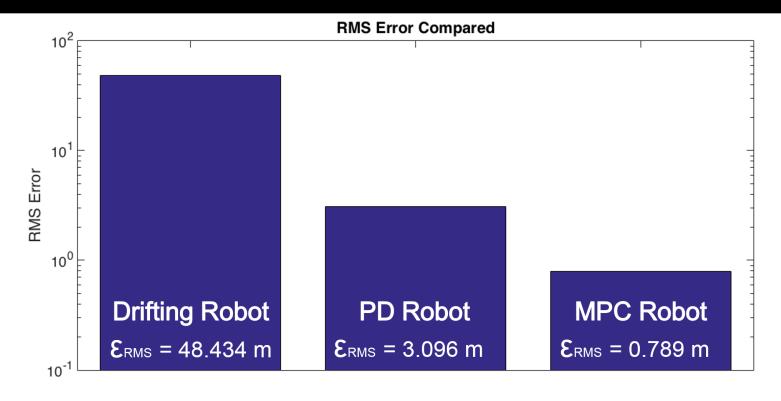
Resistance to noisy sensor observations

Ideal Horizon

Horizon, s	0.2	0.4	0.8	1.0	1.6	2.0	3.0
ϵ_{RMS} , m	5.02	2.11	0.79	0.65	0.29	0.05	9.0E-6
$\sum t_{Calc}$, s	1658	507.1	93.8	233.2	7808	21886	101252
\bar{t}_{Calc} , s	6.90	2.11	0.39	0.97	32.53	91.19	421.88

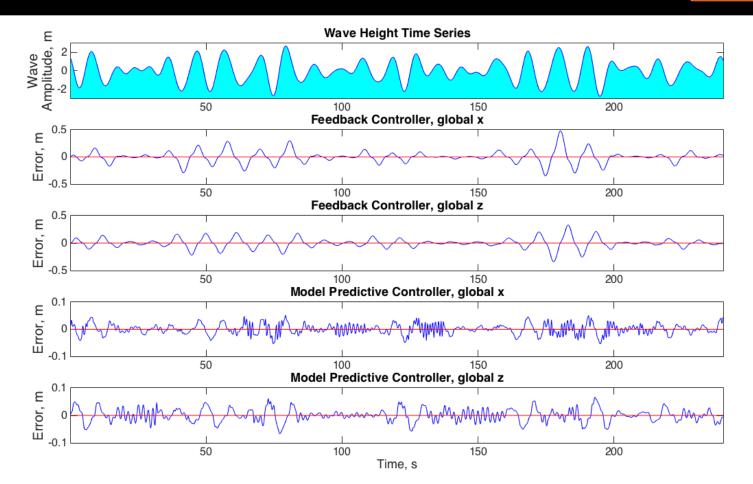
- 0.8s best balance of low error and time
- Poor performers on low & high end
- Total time: 240s discretized by 0.2s

MPC Performance

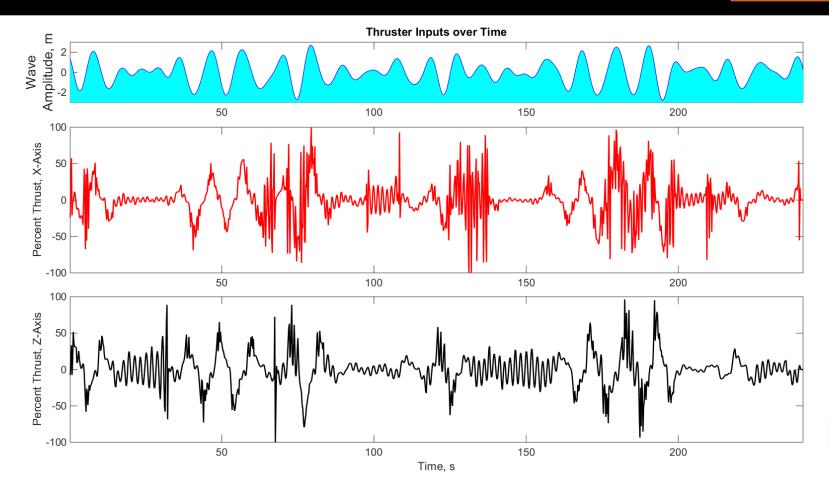


74% reduction in position error over PD

MPC Performance



MPC Performance

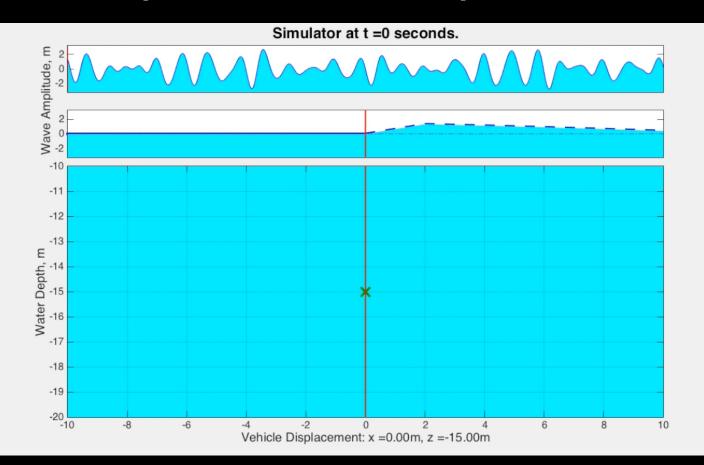


Impact of Gaussian Noise

- Observations of perceived wave state
- H term assigned maximum variance
- Minimal localization noise assumed
 - Deterministic PD case

Oregon State

Simulator (MPC w/ noise)



Impact of Gaussian Noise

- 50 simulations
 - getForecast() gets new noisy wave field at nth step
- 44% reduction over PD
 - $\epsilon \downarrow RMS = 1.737 m$
 - $\sigma = 0.059$
- Notable run time increase

Oregon State

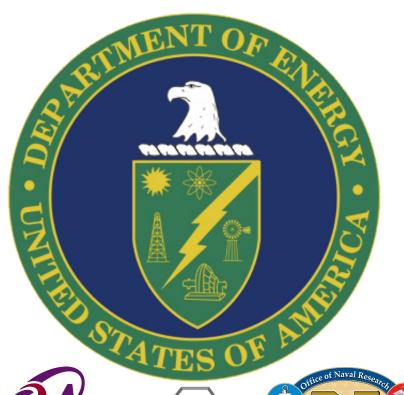
Summary of Contributions

- A feedforward control (MPC) method that can forecast and compensate for impending wave forces
- Application of the MPC algorithm to a simulated stationkeeping robot
- Comparison of the MPC algorithm against traditional feedback (PD) control
- Algorithm resistance to noisy sensor observations of wave field parameters.
- Recommendations for choosing a prediction horizon

Future Work

- Real-time wave prediction methods
- Neuro-Evolutionary control methods
 - Hydrodynamic simulation software packages
- System dynamics expanded
- More efficient optimization

Sponsors and Affiliations



Precision Castparts Corp.

