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Abstract— In this work we develop a novel framework that
enables the real-time 3D reconstruction of underwater environ-
ments using features from 2D sonar images. Due to noisy and
low-resolution imagery as compared with standard cameras,
automatic feature extractors for sonar images are not reliable
in many scenarios. Thus, a human often needs to hand-select
features in sonar imagery for environment reconstructions.
Given the high data capture rates of standard imaging sonars
(on the order of 20Hz), hand-annotating the features in every
frame cannot be done in real-time. To address this we use a
Convolutional Neural Network (CNN) that analyzes incoming
imagery in real-time and proposes only a small subset of high-
quality frames to the user for feature annotation. We demon-
strate that our approach provides real-time reconstruction
capability without loss in classification performance on datasets
captured onboard our underwater vehicle while operating in a
variety of environments.

I. INTRODUCTION
The 3D reconstruction of underwater environments has

proven useful in a variety of applications, including ship
hull inspection and underwater surveying tasks [1], [2].
Oftentimes in these and similar applications, 2D imaging
sonars are the choice for exteroceptive sensing, as standard
cameras have extremely limited visibility in turbid waters.
While sonar has superior range, its imagery is often corrupted
by noise as well as the non-diffuse reflection of the acoustic
wave off of the object of interest [3]. Multipath returns
are a large producer of noise. Such returns occur when the
projected beam completes a sequence of reflections other
than simply to the object and back to the sonar (e.g., from
the sonar to the seafloor, to the object, and then back to the
sonar). Due to the increased length of time for the reflected
wave to arrive back at the sonar, these reflections are often
imaged at a range beyond the object. This can result in an
image similar to Fig. 1b, where the horizontal component of
the X appears thicker, due to delayed reflections from mul-
tipath reflections. Non-diffuse or specular reflection occurs
when an object is smooth and fails to reflect the beam back
in the direction it was emitted from. An example of this can
be seen in Fig. 8i, where only the corners of the triangle are
shown and the flat top surface does not return energy back
to the sonar.

The substantial amount of noise present in sonar images
is problematic for two reasons. First, noise will often corrupt
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(a) Frame with well-defined features (informative)

(b) Frame with object lacking well-defined features (non-
informative)

Fig. 1: Examples of informative (a human can confidently identify features)
and non-informative frames while inspecting a target in the shape of an X.
The sub-image in both figures is a camera image of the X shaped target that
is insonified. In (a) feature correspondences (red) can be made between the
camera image and sonar features (green). In our experiments we found on
average only about 39% of the captured frames to be informative.

an image so much that analyzing it further would waste
time and computational resources. Our method provides
a way to spend these resources more efficiently by only
providing quality imagery to perception algorithms. Second,
noise combined with the low-resolution of sonar imagery
hampers the development of an automatic feature extractor
for sonar images. For example, feature extractors that use
image gradients would incorrectly attempt to extract features
from the gradients present in Fig. 1b.

The lack of an automatic feature extractor for sonar images
necessitates human annotation of the features for 3D recon-
structions [4]. Due to the high data rate of imaging sonars,
humans cannot annotate the frames in real-time. We show
that naively sub-sampling the data (to allow for real-time
annotation) does not result in high-quality reconstructions
because noise corrupts many of the images sampled.

The need for human annotation creates a long delay
between data collection and environment reconstruction. To
eliminate this delay and enable real-time reconstruction, we
develop a method to recognize and propose only informative
frames to the human for annotation. We define an informative



(a) Dilation rate of 1 (b) Dilation rate of 4

Fig. 2: Example of traditional 3x3 filter (left) and a 3x3 dilated filter (right).
The dilated filter uses a larger neighborhood, which compensates for the lack
of strong local features in sonar imagery.

image as one that contains a set of clear and distinguishing
features for environment reconstruction (as seen in Fig. 1a).
This automatic identification, which is done in real-time,
allows for a small set of frames to be presented to the
operator. This set is small enough to be annotated in real-
time.

To identify informative images in noisy and low-resolution
sonar imagery we use dilated filters (e.g. Fig. 2b) in the
atrous convolution architecture, previously used in the com-
puter vision community for image segmentation tasks [5],
[6]. Such filters use a large neighborhood of context in
analyzing low-resolution and noise-filled sonar images.

In this work we also focus on an approach that is flexible.
Given the difficulty in obtaining and labeling sonar imagery,
we pay special attention to not overfitting to the objects we
train with. This is done by using the context afforded by
dilated filters. To demonstrate this, we conduct experiments
on imagery of objects not seen in the training set. We thus
show that our approach is useful in the mapping or inspecting
of objects not recorded in sonar previously.

In summary, we present a novel framework for underwater
3D reconstruction that:
• Automatically selects informative frames for an operator

to annotate features, enabling the real-time reconstruc-
tion of underwater environments where the features
must be manually selected.

• Utilizes the atrous convolution architecture to classify
sonar images where features are not well-defined or
well-localized.

• Identifies objects not seen in the training set with a
higher average precision than previous approaches.

We validate this framework on real sonar imagery con-
taining a variety of objects in different environments.

The remainder of this paper is organized as follows. We
first discuss background information and related work in the
areas of Structure From Motion and sonar image analysis in
Section II. We then discuss the reconstruction formulation in
Section III and our method in Section IV. We next present
our experiments and their results in Section V. We conclude
and propose areas for future work in Section VI.

II. BACKGROUND

A. Sonar Imaging

As seen in Fig. 3, multi-beam sonar creates images by
sending out a series of acoustic beams and measuring the

(a) Computation of range
and elevation angle

(b) The acquisition of
bearing by emitting

multiple beams

Fig. 3: Mapping from Euclidean to polar coordinates.

energy returned from a reflecting object. Typically the sonar
return of a point in Euclidean space (X, Y, Z) is mapped to
polar space (r, θ, φ). The range r to the object is obtained
by measuring the time to return for the reflecting energy, the
bearing angle θ to the reflector is characterized by the beam
number k, and the pixel value (0-255) is mapped from the
amount of energy received back. The elevation angle φ is
lost in the imaging process.

B. Analyzing Sonar Imagery

Previous work in the area of sonar image analysis have
used object shadows or strong image gradients to automati-
cally identify features [7], [8]. While they report impressive
results, we note that these features are not robust in our appli-
cation. In the data we collected, oftentimes an object shadow
was not present in the image (e.g., Fig. 1a). Additionally, in
imaging moored objects, an object’s shadow would not be
present (due to the lack of reflection back from the seafloor
around the object). During our deployments we also found
that strong image gradients can lead to the appearance of
features where there are none (as seen in Fig. 1b).

Recently, CNNs have been used to analyze sonar imagery.
Kim, et al. use CNNs to analyze sonar imagery and track
the trajectory of another underwater vehicle [9]. While they
are able to track this vehicle accurately, we compare to this
method and show that the atrous architecture achieves a
higher precision when classifying objects not in the training
set. Williams and Dugelay address the problem of noise in
sonar imagery by fusing together multiple views of the object
of interest and using a deep network to classify images as
either containing a man-made object or a naturally occurring
rock [10]. We are able to complete our classification without
the need for multiple views because our atrous network is
able to account for noise in a single image.

There has also been work analyzing camera imagery
captured onboard underwater vehicles. For example, Kaeli, et
al. identify a set of images that could be used to summarize
the mission [11]. To identify images in this set they use
Quantized Accumulated Histogram of Oriented Gradient
(QuHOG) features, which rely on the gradients in the image.
As shown in Fig. 1b, in sonar imagery the image gradients
in noisy images can be deceptive features.

To address the noise and low-resolution of sonar imagery,
we use the dilated filters in the atrous convolution architec-
ture. In previous work we showed that the atrous architecture



provides superior transfer learning capabilities when tested
on images of objects not in the training set [12]. Details on
this approach are discussed in Section IV-A.

C. Underwater Acoustic Structure From Motion

There has been much previous work in the area of using
an imaging sonar for underwater 3D environment reconstruc-
tion. One popular approach in solving the underwater SLAM
problem involves feature correspondence between pairs of
sonar images. Hover et al. extract features from sonar images
by clustering points in the image with large gradients [1].
A Normal Distribution Transform (NDT) is used for image
registration, and the vehicle trajectory is optimized using a
pose-graph. However, due to the unknown elevation angle
of sonar image features, a planar assumption is used and the
points are projected into the same plane as the vehicle. While
this may work well for environments with large objects
(e.g., sea floor, ship hull), this assumption is broken in more
complex and unstructured environments.

The Acoustic Structure From Motion (ASFM) method
proposed by Huang and Kaess provides two main advantages
over other approaches [4]. First, ASFM relaxes the planar
assumption for projecting sonar features into 3D. Second,
their approach is capable of utilizing more than single pairs
of sonar images to reconstruct 3D points. They formulate the
reconstruction as a factor graph optimization problem. With
the assumption of Gaussian noise, this can be formulated as
a nonlinear least-squares problem. The factor graph is initial-
ized by setting the sonar feature’s unknown elevation angle
to 0◦ and performing optimization via iterative linearization.

Huang and Kaess further extend their work to automat-
ically perform feature association between sonar images
[13]. Their proposed algorithm searches over a tree of
potential feature correspondences, similar to Joint Com-
patibility Branch and Bound [14]. We leverage this work
here to perform automatic feature correspondence and 3D
reconstructions from hand annotated images. We contribute
a complementary framework for analyzing incoming imagery
to allow for the human to select the features in real-time.

III. RECONSTRUCTION FORMULATION

We formulate the ASFM problem using a factor graph
as proposed by Huang and Kaess [4]. An overview of the
process is provided here, with a graphical representation
shown in Fig. 4. For full details, please refer to [4], [15].

In formulating the reconstruction objective, we seek to
find the maximal probability set of poses, Θ = {bi, lj}, and
observations, Z = {ui,mk}, where bi is a robot pose, lj is
a landmark, ui is a navigation measurement, and mk is a
landmark measurement. Assuming Gaussian noise, this can
be formulated as a nonlinear least-squares problem:

Θ∗ = argmin
Θ,Z

[ ‖b0‖2Λ +

M∑
k=1

‖h(bi, lj)−mk‖2Ξk

+

N∑
i=1

‖g(bi, bi−1)− ui‖2Λi
] ,

(1)

where ‖b‖2Σ = bT Σ−1b is the Mahalanobis distance squared
and M and N are the number of sensor and odometry
measurements respectively. The sensor model is defined as
h(bi, lj) + N (0,Ξk) and the odometry model is defined
as g(bi, bi−1) + N (0,Λi), where Ξk is the variance of
sensor measurement k and Λi is the variance in odometry
measurement i.

In this formulation, there are six unknowns
(x, y, z, α, β, γ) for every pose and three unknowns
(x, y, z) for every landmark where α, β, and γ are the roll,
pitch, and yaw respectively. With all landmarks visible from
every pose, fixing the first frame yields a fully constrained
system iff: 6(n − 1) + 3m ≤ 2mn, where n is the number
of robot poses and m is the number of landmarks in the
factor graph. Rearranging this, we derive n, the number of
frames necessary for reconstruction, to be

n ≥ 3m− 6

2m− 6
. (2)

While this formulation is well-suited to the reconstruction
process, it does not directly support performing these recon-
structions in real time. In developing such a solution, we
introduce an image proposal system which gives a human
operator a small set of frames containing information useful
for reconstruction.

IV. METHOD

A. Proposing Informative Frames

To select informative frames automatically we leverage
the atrous convolution architecture. We motivate and briefly
summarize our approach here, which first appeared in our
prior workshop paper [12].

Due to the lack of strong local features in sonar images,
the CNN method of analyzing sonar imagery can be greatly
improved by using dilated filters (shown in Fig. 2b). Dilated
filters use the same number of pixels as a standard filter;
however because they are distributed, they can alleviate the
effects of noise and low-resolution in sonar images.

The ability to ignore and not overfit to local features also
improves the transfer learning capabilities in identifying in-
formative sonar images. That is, given an image of an object
not seen in training data, the atrous CNN is able to classify
informative images with a higher average precision than a
standard CNN or frequency-component based method. This
ability is particularly attractive when using an underwater

Fig. 4: Factor graph representation. l, m, b, and u are the landmark po-
sitions, landmark measurements, robot pose, and navigation measurements
respectively. The landmarks are hand-labeled features in sonar images (green
dots in Fig. 1a).



sonar, where there is a lack of training data as compared with
terrestrial environments, and various sources of noise make
similar looking objects appear different in sonar imagery.

B. Architecture Choice

To determine the appropriate architecture for configuring
these dilated filters for use in analyzing sonar imagery,
we test multiple architecture configurations and parameter
choices. Full details of our selection process can be found
in our prior work; a summary is below [12].

For the general architecture choice we evaluated three
approaches. The first is similar to a normal CNN except
the convolutional layers beyond the first have dilated filters
instead of standard filters. This is inspired by Yu and Koltun,
who use this configuration of dilated filters for dense predic-
tion in image segmentation tasks [5]. The second pretrains
two networks: one a standard CNN, the other an atrous
network. The dense layers are then popped off of each and
combined into a single dense layer for training again. This
is meant to capture the expressibility of CNNs with the
generalization capabilities of atrous networks. Finally, we
test an architecture that uses filters of different dilation rates
in the same layer. This is inspired by Chen, et al. who use
this configuration for semantic image segmentation [6]. We
complete a full parameter sweep on each architecture, includ-
ing number of layers, number of filters, kernel size, dilation
rate, and dense layer size. Average precision was used as
the metric for comparing each architecture and parameter
configuration. To account for variability in initialization, the
results for each were averaged over 20 runs. We found the
architecture in Fig. 6 to achieve the highest average precision.
Due to the large dilation rate, this network starts to extract
non-local features as early as the second convolutional layer.
Therefore, it does not overfit to local patterns in the training
set and has better generalization capabilities.

C. Frame Proposal Process

We treat the real-time frame proposal problem as a single-
shot information-greedy selection. That is, every time a
frame is proposed to the human operator, the most infor-
mative frame is selected from the set of candidate frames,
max(ninfo) ∈ N . The informativeness, ninfo, of a frame
is determined directly from the sigmoid output of our atrous
convolution based deep network [12].

The set of candidate frames at any given time, N , is
determined by two factors: ninfo and the time since the last
frame proposal, tmotion. Frame ni is added to the set of
candidate frames, N ∪ {ni} if:

ninfo ≥ Tinfo
tmotion ≥ Tmotion.

(3)

The threshold Tinfo allows for the tradeoff between
frame information quality and frame quantity. The threshold
Tmotion is tuned to allow for view diversity while consider-
ing potential vehicle motion and sonar field-of-view.

Frames are proposed to the human operator sequentially
as soon as the labeling of the previous frame is complete.

Fig. 5: The precision recall curve generated from validation data used to
choose a threshold for informative vs. non-informative frames, denoted as
Tinfo.

When a frame is proposed, the set of candidate frames, N ,
is cleared. Frame proposal stops when either an appropriate
number of frames, Nthresh, have been labeled or the data
stream ends (e.g., the deployment concludes).

Once a frame is proposed, the human operator selects
the features to be reconstructed by simply clicking on the
image. We found this usually involved a small number
of features (3-6), which allowed for fast feature selection
and reconstruction. An example of selected features for the
“X” shaped object are shown as green dots in Fig. 1a. An
interesting avenue for future work is the investigation of the
effects of the experience or training of the human labeler. We
note that given the simplicity of the task, we do not expect
large variations across annotators.

D. Threshold Tuning

We set the threshold for proposal, Tinfo at 0.99. As
demonstrated in Eq. 2, with objects having on the order
of five features, often less than ten frames are needed to
complete reconstructions. In these cases it is more beneficial
to be selective in choosing frames (high threshold) rather
than finding many informative frames. Experimentally this
threshold provided more than enough frames to complete the
reconstruction. For completeness, the precision recall curve
from our model on validation data is shown in Fig. 5.

To determine Nthresh, we evaluated the reconstruction
error for annotated set sizes of n (the minimum number
of frames for reconstruction) to 2n + 1. To obtain the
average and variance on the sum squared reconstruction
error (SSE) we use a set of data containing 7 proposed
frames. From this set we test all of the combinations of
frames for each annotated set size. These combinations are
given by

(
2n+1

k

)
where 2n + 1 = 7 and k = {3, 4, 5, 6}.

The same validation data used in completing the parameter
sweep for the atrous network was used. As seen in Fig. 9,
we find Nthresh = 5 to provide enough frames for a low
reconstruction error/variance, with minor benefits increasing
the set size to 6.

For the experiments we set Tmotion = 2 sec. This
threshold provided view diversity while allowing the objects



Fig. 6: The atrous convolutional network used. The parameters and filter configuration were tuned by testing discrete options.

of interest to remain in the sonar field-of-view. It also allowed
the human operator to annotate each frame in real-time.

E. Reconstruction Process

Inspired by Huang and Kaess, initial landmark locations in
the factor graph are calculated by setting the elevation angle
φ to 0◦and projecting the sonar feature points (r, θ, φ) into
Euclidean coordinates (X , Y , Z) [4]. The nonlinear least-
squares problem is then optimized via iterative linearization
using the Levenberg-Marquardt (LM) algorithm.

V. EXPERIMENTS AND RESULTS

To demonstrate the capability of our framework to com-
plete accurate reconstructions in real-time, we ran three
experiments on real sonar data played back offline. The
first shows the transfer learning capabilities of our atrous
network when tested on imagery of objects not seen in
training. In the second experiment, we show that we select
an appropriate number of frames for our reconstruction. That
is, we choose enough to fully constrain the optimization but
do not propose many superfluous frames. Finally, the third
experiment shows that our proposal method chooses a subset
of frames that enable real-time reconstructions with errors
lower than baseline methods.

Throughout each test we maintain a real-time property
by ensuring that at the end of a given experiment, our
algorithm has output the reconstructed shape. Experiments
1 and 2 are used only for analyzing components of our
process and are thus not timed. Experiment 3 mimics a
deployment and thus in Section V-C.3 we provide runtime
from start to finish of our process. For completeness we
provide average numbers for each component of our system.
Our CNN processes images in 18.1 ± 0.8 ms (55.2 ± 2.41
Hz). We found that a human operator annotated images of
the X object in 2.63 ± 0.231 sec. Finally, the factor graph
bundle adjustment process took on average 77.1± 9.4 ms.

A. System Overview

For our experiments we use a Tritech Gemini 720i multi-
beam sonar onboard a tethered Seabotix vLBV300 Remotely
Operated Vehicle (shown in Fig. 7).

The Gemini 720i is a standard multi-beam imaging sonar
with similar parameters to the SoundMetrics DIDSON, Blue-
View M900-90, and the Aris Explorer 3000, all of which
have been used in previous work [4], [16], [7]. It operates at
720kHz, images a 120◦ swath horizontally, has a maximum

Fig. 7: The Seabotix vLBV300 and Gemini 720i imaging sonar (designated
by the white rectangle in the lower right).

range of 120m, and produces images at 20Hz. This data
rate, combined with large amounts of image noise, creates
a situation in which the human operator is presented with a
large number of frames, many of which will not be useful.

Our vehicle is also equipped with a Doppler Velocity
Log and Inertial Navigation System which we use for pose
estimates in the factor graph mapping scheme. The vehicle’s
tether provides continual power as well as data transmission
back to an offboard computer which can be used to analyze
sonar imagery in real-time. The use of standard underwater
sensors demonstrates our approach can be deployed on a
variety of platforms for real-time underwater reconstructions.
B. Dataset Overview

In this work we use four datasets captured onboard our
vehicle while it operated in a variety of environments. Each
dataset was collected in a passive manner, meaning each
dataset is a single contiguous video stream captured while
our vehicle moved through underwater environments. The
content and number of informative frames varied across
datasets and is summarized in Table I.

In dataset X1 we collect a set of 5000 frames of the
X shaped object (Fig. 8a) in the Oregon State University
pool. In dataset X2 we collect 1107 frames of the same X
object in the same environment on a different date. In dataset
Multi we collect a set of 5000 frames containing insonified
imagery of the X, Square, Triangle, and T-shaped objects
(Figs. 8a-8d) in the pool. This dataset contains images with
just a single object in addition to images containing multiple
objects. Finally, in dataset Cinder we capture 1470 frames
of a cinder block target (Fig. 8e) in Yaquina Bay, Newport,



TABLE I: Summary of the datasets

Dataset Total number of frames Percent informative frames
X1 5000 36%
X2 1107 56%

Multi 5000 39%
Cinder 1470 42%

Note: An informative frame is one in which a human operator can
clearly identify an object and its features in the sonar image.

OR. While in this work we use representative shapes for the
underwater domain (resembling objects such as underwater
moorings) an interesting avenue for future work involves the
use of our architecture on more complex shapes.

The binary ground truth label (informative or non-
informative) is obtained by having an expert evaluate if
each image contains enough well-defined features to clearly
identify the object. For example, simply seeing two lines
intersect does not identify one of the five targets; however
observing three well defined lines that each meet in an acute
fashion clearly defines the triangle object seen in Fig. 8d.

Throughout the three experiments we train primarily using
datasets X1 and X2 (both only containing data of the X target
in Fig. 8a). 1000 frames of the Multi dataset are used as
validation data for the tuning of parameters.

C. Experiments
We conduct three experiments to demonstrate that our

framework selects informative subsets of images thus en-
abling real-time reconstructions. In the first experiment we
test using 4000 frames of the Multi dataset (the remaining
1000 frames were used as validation data). In Experiment 2
we use these same frames as well as the Cinder dataset. In
Experiment 3, we only use data from the Cinder dataset. Un-
less stated otherwise, test data for each experiment contains
imagery of objects not trained on, thus demonstrating the
flexibility or lack thereof of each approach examined. This
also serves to demonstrate the performance of our approach
when trained prior to deployments.

1) Validating the transfer learning capabilities of our
atrous network: In the first experiment we show that our
model is able to identify objects not in the training set with
a higher average precision than baseline methods. We are
able to do this while also classifying objects seen in the
training set with precision comparable to baseline methods.
This ability is a result of our atrous network, which balances
the power of standard convolutional architectures with the
more global context afforded by dilated filters.

We compare against three baselines. The first is the
Discrete Cosine Transform (DCT) method of global analysis.
Defined for pixels m,n of an image A of size M ×N as:

Bpq = αpαq

M−1∑
m=0

N−1∑
n=0

Amncos
π(2m+ 1)p

2M
cos

π(2n+ 1)q

2N
,

(4)

where

αp =

{ 1√
M
, p = 0√

2
M , 1 ≤ p ≤M − 1

(5)

TABLE II: Average precision for baselines and our method

Avg. Precision
Method Seeding Seeding No Seeding

X present No X No X
DCT [17] 0.57±0.01 0.55±0.02 0.48±0.02

Two-layer CNN [9] 0.69±0.04 0.58±0.05 0.42±0.04
Three-layer CNN 0.70±0.05 0.64±0.04 0.42±0.03

Atrous Convolution (ours) 0.72±0.02 0.68±0.03 0.54±0.04

αq =

{ 1√
N
, q = 0√

2
N , 1 ≤ q ≤ N − 1 ,

(6)

and Bpq is the coefficient on the basis cosine function defined
by the constant p and q [17]. The resulting coefficients
represent the frequency components contained in the image,
which can be used to separate noisy images from those with
more complex geometries. We complete this classification
with the use of a Support Vector Machine using the frequency
components as the input data. This method is natural for
sonar imagery because it takes a global image analysis ap-
proach to imagery with poorly-defined features. The second
baseline is the approach taken by Kim, et al. (called “two-
layer CNN”) [9]. The third and final baseline is a network we
developed inspired by Kim, et. al that contains an additional
convolutional layer (called “three-layer CNN”).

We compare the four approaches in three scenarios, the
results of which are shown in Table II. The first scenario
allows each classifier to train with 600 frames of multi-object
data (called “seeding”). The test data contains imagery of
each of the four objects in Figs. 8a-8d (including the X).
These results show that the DCT method of global analysis is
not expressive enough to capture the features present in both
the training and test data. The two and three-layer CNNs, as
well as our method, all perform similarly.

The second scenario still seeds the training of the models,
but the test data no longer contains imagery of the X object.
We find that our model outperforms the others, which is
expected because dilated filters capture a larger neighborhood
of influence than localized filters.

Finally, in the third scenario, true transfer learning is
evaluated. The models are not given imagery of any object
but the X to train on and the test set only contains imagery
of the Triangle, Square, and T shaped objects. In this
scenario we find that our model significantly outperforms
other methods, which is intuitive as dilated filters give a nice
balance between the power of deep learning based methods
and the larger context of global evaluation methods. As
demonstrated in the first scenario, this does not come at the
cost of performing worse than baselines in the case where
the test data is similar to the training data.

2) Choosing the appropriate number of frames to propose:
In the second experiment, we show that our method proposes
an appropriate number of frames. That is, our method
achieves lower reconstruction error than using the minimum
number of frames to fully constrain the reconstruction (n) as
well as achieving comparable performance to reconstructions
that use a large number of frames (2n). Given the lack of



(a) X target (b) Square target (c) T target (d) Triangle target (e) Cinder block target

(f) X in sonar (g) Square in sonar (h) T in sonar (i) Triangle in sonar (j) Cinder block in sonar

Fig. 8: Each target and its representation in sonar image space. (a)-(d) are images taken from the vehicle underwater. As a note, in Fig. 8j the second long
side of the cinder block has been occluded.

Fig. 9: Selection of the appropriate number of frames to use for reconstruc-
tions. For both validation data (blue line) as well as test data (red line) five
frames is at a “knee” point as increasing to six frames gives only a marginal
benefit.

global ground truth coordinates, known object dimensions
are used to compute the reconstruction error.

The results of this experiment can be seen in Fig. 9.
As expected, increasing the number of frames used in the
reconstruction decreases the reconstruction error. When only
using the minimum number of frames required, n, we can
see that on average the reconstruction has both the highest
sum squared error (SSE) as well as the highest variance. At
five frames in both plots we observe a “knee” point, where
increasing the size to six gives only marginal benefit.

3) Demonstrating the ability of our network to select
informative subsets: In the third experiment, we demonstrate
the ability for our method to select informative frames and
operate more efficiently than standard baselines. For this
experiment we use a subset of 400 contiguous frames. The
results of this experiment can be seen in Table III. Statistical
bounds have been provided for the comparison to [13] due to
the random nature of frame proposals in this baseline. These
bounds were found averaging over 5 runs.

The first baseline we compare against is naively presenting
the user with every frame for annotation. We note that this
method requires the human operator to annotate every frame
and thus cannot be completed in real-time. The large amount
of error is due to the fact that many poor quality frames are

annotated by the user. Such large error demonstrates the low-
quality of many of the images, which do not contain enough
clear features to be annotated by the human.

The second baseline we test is proposing every informative
frame to the user for annotation. The informativeness of a
frame is determined by the sigmoid output of our atrous
CNN. This baseline achieves a reconstruction error similar
to that of our method; however we note that it cannot be
run in real-time. The low reconstruction error is expected
because the labeled images are all informative frames.

In the third baseline, we naively subsample all frames at
an even interval to only present the human operator with the
same number of frames as our method. This is equivalent to
naively reducing the data rate to allow for real-time labeling.
While this allows for real-time performance, we can see that
the reconstruction error achieved is poor. This is due to the
fact that without first assessing a frame’s informativeness,
poor quality frames are still presented to the user.

The fourth baseline allows us to compare against a method
inspired by the state-of-the-art in underwater reconstruction
[13]. In this previous work, Huang and Kaess perform
automatic data association between annotated frames to
determine whether or not all annotated feature points can be
associated. If they cannot, the frame is rejected and not used
for reconstruction purposes. To extend this approach and
enable real-time reconstructions, we randomly select frames
to propose to the human operator. If an association exists
between the annotated feature points, the frame is used in the
reconstruction. If not, it is discarded and another is proposed.
The proposal process runs until the minimum number of
frames required, n, have been successfully annotated. While
this method is able to achieve high quality reconstructions,
the reconstruction error is both higher and more variable than
our method. This is due to the fact that only the minimum
number of frames required are used in the reconstruction
process. We also note that since frames are not evaluated
before proposal, this baseline typically proposes a larger
number of frames than our method.

The last row of the table presents the results of our method.
We note that we achieve the lowest average reconstruction



TABLE III: Evaluation of our reconstruction framework

Method Number of
frames proposed

Reconstruction
SSE (cm2)

Every frame 400 8761.9
Every informative frame 167 16.37

Naive subsampling 5 71.239
Huang and Kaess [13] 6.93±1.91 18.42±6.47

Atrous proposal system (ours) 5 13.12±3.72

Fig. 10: The vehicle and reconstruction of the cinder block in the RViz
simulation environment. Our method outputs the red dots (chosen as features
by the operator) and the gray section was extrapolated.

error and variability, while simultaneously proposing the
lowest number of sonar frames to the user. This low recon-
struction error is achieved while using Nthresh = 5 frames.
We also maintain real-time performance during the 20 second
experiment. Our method, from start to finish, took on average
14.88± 0.49 seconds to complete.

VI. CONCLUSION

In this work we present a novel framework that enables
the capability to complete accurate underwater 3D recon-
structions in real-time and overcoming the large amounts of
noise present in sonar imagery. We enable this functionality
by identifying a small subset of informative frames for
the human to annotate. Through experiments on real sonar
images we show our atrous network outperformed other
classifiers in identifying informative frames for proposal. We
also experimentally validate the ability of our network to
leverage non-local features to complete transfer learning.

One particularly interesting extension to this work is the
formal treatment of incorporating image diversity into our
framework. While in this work we enforce diversity with
Tmotion, the effects of using diverse images into the recon-
struction process remains an interesting avenue to explore.
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