Environment Prediction from Sparse Samples for Robotic Information
Gathering

Jeffrey A. Caley' and Geoffrey A. Hollinger?

Abstract— Robots often require a model of their environment
to make informed decisions. In unknown environments, the
ability to infer the value of a data field from a limited number
of samples is essential to many robotics applications. In this
work, we propose a neural network architecture to model these
spatially correlated data fields based on a limited number
of spatially continuous samples. Additionally, we provide a
method based on biased loss functions to suggest future areas of
exploration to minimize reconstruction error. We run simulated
robotic information gathering trials on both the MNIST hand
written digits dataset and a Regional Ocean Modeling System
(ROMS) ocean dataset for ocean monitoring. Our method
outperforms Gaussian process regression in both environments
for modeling the data field and action selection.

I. INTRODUCTION

Robots often require a model of their environment to make
informed decisions. In unknown environments, the ability
to infer the value of a data field from a limited number
of samples is essential to many robotics applications. A
robot in an unknown building capable of estimating the
building layout will be able to explore and search much
safer. A self-driving car can travel much faster and more
safely if it can anticipate future events by observing the
past. An ocean glider can more efficiently navigate through
current fields with estimates of ocean current magnitudes.
Efficient methods for modeling and determining what data
is sampled are essential to the quality of the inference and
the performance of the robot.

A number of previous estimation methods use Gaus-
sian Process (GP) regression to approximate environmental
conditions. While GPs provide model-free estimates with
confidence bounds that can be leveraged to select future
samples, these samples need to be geographically diverse for
the GP to provide an accurate estimate over the entire data
field. In applications where geographies are large and travel
times are long, collecting a diverse set of samples is often
not feasible. A robot traveling through such an environment
will collect a series of collocated samples which will result
in accurate estimations near the samples, but poor estimation
far away. To address this issue, we present a new modeling
technique for spatially correlated data fields.

This paper describes a collection of novel encoder-decoder
deep neural networks that exploit historical data to model

*This work was funded in part by Office of Naval Research grant
N00014-17-1-2581

1Computer Science Department, Pacific Lutheran University, Tacoma,
Washington 98444 - caleyjb@plu.edu

L Collaborative Robotics and Intelligent
stitute, Oregon State University, Corvallis,
off.hollinger @oregonstate.edu

Systems (CoRIS) In-
Oregon 97331 - ge-

data fields from a limited number of continuous observa-
tions. We leverage a network architecture used for image
inpainting, the task of filling in holes in an image, to infer
the data field from a limited number of samples. The network
is trained on historic data and example sampling paths. To
facilitate the selection of future samples, our method trains
two additional networks to serve as arbiters of information
value. One network is trained to err on the side of overes-
timation, while the other is trained to underestimate. These
two networks can then be used as a measure of variance to
investigate future samples for potential information gain.

We demonstrate the benefit of our approach by recon-
structing both static and time series environments taken
from both the MNIST dataset and ocean model data from
a Regional Ocean Modeling System (ROMS) dataset. In a
series of simulated robotic information gathering tasks, we
compare the estimation accuracy of a GP to the proposed ap-
proach using both random sampling of observation locations
and variance minimizing sampling. We show the proposed
technique outperforms the state-of-the-art.

II. RELATED WORK
A. Robotic Information Gathering

Robotic information gathering problems involve modeling
an unknown environment or phenomenon limited by a dis-
crete number of samples. Modeling entails inferring the value
of unmeasured data points while sampling refers to taking
the measurement of a data field at a specific point. Both
modeling and sampling strategies come with challenges.
Techniques based on probabilistic models, such as Gaus-
sian Processes, are common due to their ability to provide
uncertainties along side their estimate. These uncertainties
can then be leveraged to define sampling strategies, such as
sampling to minimize uncertainty [1] or entropy [2]. It has
been shown that the sequential greedy observations performs
well in submodular cases [3].

Particularly relevant to this work are information-theoretic
approaches. Bayesian optimization is used in [4] to predict
mutual information over a series of candidate actions, analo-
gous to our proposed method. However in this case, a single
action results in a wide range of samples used to train a
GP. Sampling techniques based on Upper Confidence Bound
(UCB) are performed in [5] to find the highest value sample.
This technique requires a variable of interest and does not
lend itself directly to exploration. Other work focused on
view planning has had a direct influence on our work [6].
These authors train a deep network to take an image of
an object from a single pose and use it to reconstruct a

series of images that represent the object in its totality. The
network also suggests the next viewing angle of the object to
minimize the reconstruction error in future estimates. While
producing promising results, their network architecture limits
the network’s ability to predict images that are different from
the inputs. We look to address these problems through our
proposed architecture.

B. Environment Modeling

While picking the correct place to sample is important, it
is meaningless without an effective model to utilize these
samples to infer the missing information. Models based
methods, such as the publicly available Regional Ocean
Modeling System (ROMS) [7], uses sophisticated models of
physical ocean processes combined with forward simulations
of measured data to estimate ocean information such as
currents, temperatures, salinity, etc.

By treating data fields as images, image processing ap-
proaches can be applied. Specifically, a subset of image
processing research called image inpainting focuses on filling
in holes missing from the image. Taken to the extreme, where
the large majority of the image is missing, it is analogous
to modeling a data field with limited samples. Non-learning
approaches to image inpainting rely on propagating pixel
information from nearby to the missing area [8]. This method
only works when the missing area is very small. Patch-based
methods look for areas in the non-hole image that may match
stylistically, but this also presents problems if the missing
data is unique to that image [9], [10].

Deep learning image inpainting methods often use a place-
holder to identify the missing region and pass it through a
convolutional network to learn the missing data [11]. Gener-
ative adversarial network (GAN) [12] have inspired solutions
formulated as a conditional image generation problem where
high and low-level information is synthesized to generate
missing information through an adversarial approach [13],
[14], [15]. The U-net architecture [16], often used in image
segmentation problems, is used in [17] in conjunction with
a partial convolution layer to fill irregularly shaped holes
in images. While these works are promising for image
reconstruction, their focus on photo realistic inpainting is
not necessary for environment modeling. These techniques
also do not provide any insight into where future informa-
tion should be gathered to further reduce errors. The work
proposed in this paper combines the advantages of deep
learning with the body of knowledge built up in the robotic
information gathering community around GPs. We harness
the power to learn from large datasets while developing a
method to guide future data collection.

III. PROBLEM FORMULATION

In this work we consider the problems of predicting the
value of a two- or three-dimensional environment given a
limited number of samples. Starting from a random location
within the field, a robot is tasked with moving within the
environment to collect data for the purpose of reconstructing
the most accurate estimate of the environment. The goal of

the robot is to minimize the error between its estimate and
the true value.

More formally, we assume a bounded planar workspace
Q) C R? or R? . This workspace is initially unknown to the
exploring robot. During exploration along a trajectory P,
selected from the space of all trajectories, ¥, the sensors on
the robot reveal the region Wiuewn (P). The optimal path P*
is the path that produces the most accurate reconstruction of
Q given a prediction model I(wyuown (P)) and some budget
B (e.g., time, fuel, or energy). Thus, we wish to solve the
following optimization problem:

P* = argmax I (winown (P))
Pew

st.c(P)<B. (1)

IV. METHOD

The proposed method can be divided into two portions:
an offline section for training networks and an online portion
where the networks are utilized to estimate data fields and
select future actions. The offline portion consists of training
three neural networks on a training set representative of the
domain being modeled. An optimistic network is trained to
estimate the data field, but to err on the side of overestimating
the data. A pessimistic network is trained to err on the side of
underestimating the data. The non-biased network is trained
to estimate the field with no bias.

The networks are trained by randomly generating sample
robot trajectories. These trajectories are provided as masks
to the neural network. The masks are binary matrices which
indicate which areas of the environment have been sampled
and which have not. The network is trained using supervised
learning to predict the full data field given an input which
has been masked off to only provide sampled data to the
neural network.

Once the networks are trained, we can leverage them to
model and explore the data field in question. During online
operations, the non-biased network provides a best estimate
of the data field given the current samples. To evaluate poten-
tial future actions, every potential next action is evaluated for
its information potential. Potential information is estimated
by ‘hallucinating’ the collected samples given an action
using the current best estimate of the data field as ground
truth. These samples constitute the inputs into the optimistic
and pessimistic networks. The difference between the two
network estimates provides a heuristic of uncertainty and act
as a metric for information gained. The action that produces
the smallest difference between the estimates provides the
most information and is chosen as the next action. This
process is repeated until the budget is exhausted and a final
estimate of the environment can be generated.

A. Network Architecture and Implementation

The network architecture and design has been split into
two categories: two-dimensional fields and three-dimensional
time varying fields. The two-dimensional case assumes the
underlying robotic environment is not changing with time,
such as a robot exploring a building. The three-dimensional

case investigates robotic environments where the environ-
ment changes as the robot explores, such as ocean environ-
ments.

1) Network Design - 2D: We propose using a neural
network motivated by the architecture presented in [17] for
modeling data fields given a limited number of samples. As
input, the network accepts a data field of sampled points
and a binary mask indicating the locations of the sampled
points. Through a process of convolving learned filters over
sampled data, the network iteratively fills in the missing
data. The architecture provides an avenue for local low level
features to be applied to local areas, while also learning
higher level global features that can be used across large
areas of the environment. The network outputs an estimate
of all values in the sampled data field. Figure 1 provides a
detailed illustration of the architecture.

2) Network Design - 3D: The proposed network archi-
tecture to handle time varying data builds upon our two-
dimensional design. The data in the three-dimensional case
is time series data. To handle this, we propose a recurrent
network utilizing convolutional LSTM layers with modified
partial convolution to handle sparse data. The network has a
similar architecture to the 2D case, with an encoder-decoder
network architecture that iteratively fills in the missing data
through partial convolution. The recurrent nature of the
network provides a memory of previously sampled data,
allowing the network to learn how the data field will change
through time and use previously sampled data in its current
estimate. Each encoder layer has a corresponding decoder
layer, which receives the encoded information along with
all high level encoder information. These two sources of
information are concatenated together in the filter dimension
and used as inputs into the current masked convolutional
LSTM layer. This allows the network to utilize high level
information from the encoder without losing lower level
information from the less encoded pieces of data. The same
process occurs for the LSTM memory as well. Figure 2
provides a detailed illustration of the network architecture.

The partial convolution LSTM (PCNN-LSTM) is a layer
that combines a convolutional LSTM layer with partial
convolution. This is done through a few steps. Using a
convolutional LSTM layer as the base, the convolution is
replaced with partial convolution from [17]. After each gate
in the LSTM has applied its activation function, the mask
is multiplied by the gate output. This zeros out any data
outside the new unmasked region. Because the forget gate
multiplies its output to the LSTM memory, and because
the forget gate has masked off values, we need to avoid
deleting sections of memory via the masked off values. To
prevent this from happening, the forget gate multiplication
only occurs in unmasked regions of the image. Following
the formal definition of an LSTM layer, PCNN-LSTM is
formally defined by equations 2 and 3:

fi = o(Ws - [hg_1,x¢] + be) * mask, 2)

Ct = (ft * Ct,1 + (1 — mask) * Ct,]_) + it * Ct, (3)

where f; is the output gate and Cy is the output memory at

time ¢. mask is a binary matrix indicating where samples
have been taken.

B. Biased Networks and Action Selection

To facilitate the action selection process, we train three
networks using the architecture described above. What dif-
ferentiates these networks from each other is their loss
functions. For the non-biased network, we use L1 loss. For
the two biased networks, instead of using the L1 loss, we
penalize any estimate that is either below (for the optimistic
network) or above (for the pessimistic network) the true
value. Dpejony and Dgpope represents a binary mask of points
where the estimate was either below or above the ground
truth. I,y — Ig¢ is the ground truth of a current frame while
I, is the estimated field calculated by the neural network:

HloptNN - |Iout - Igt‘ + |(Iout - Igt) * (Dbelow *05)‘7 (4)
HlpessNN = [Lout _Igt| + | (Lout — Igt) *(Dabove 0.5)]. (5)

These loss functions push their respective network to either
be conservative (producing images with lower values) or lib-
eral (producing images with higher values) in their estimates.
This provides a heuristic variance for our network estimates
that can be utilized to determine which unsampled areas have
high quantities of information.

Action selection is the process of selecting the next
action to execute, a, from the set of all possible actions,
A, that maximizes our image reconstruction accuracy after
new information has been sampled. This starts with our
unbiased network, UnbiasedNN, predicting the value of the
data field given its inputs. The estimated field, E'st, serves
as ‘ground truth’ as we hallucinate performing all available
future actions and collecting a set of new approximated
observations, Obs. Each hallucination, AppxObs(), results
in a larger set of sampled information that is used as inputs
into our two biased networks, Opt NN and PessN N. These
biased networks return two different estimates of the data
field, Estt and Est~. The L1 loss between these two fields
is calculated and used as an information gain metric, . If
the two fields have a large L1 loss, it means the networks are
unsure of their estimate, implying that the recently acquired
samples did not provide quality information. A small L1 loss
means the two networks have estimated a similar field despite
their differences. This implies the samples collected provided
quality information. Once each actions’ L1 loss score has
been calculated, the action with the smallest resulting L1
loss is estimated to have provided the most information to
the network, thus being selected as the next action to take.
This action is then executed, more observations are made
and the unbiased network can make another estimate. This
process repeats itself until the budget expires as shown in
Alg. 1.

V. EXPERIMENTS, RESULTS AND DISCUSSION - 2D

To show that our proposed method generates quality data
field estimates and produces informative actions, we compare
our method to Gaussian Process regression in two different
domains. The first domain uses the MNIST dataset [18].

Batch Normalization

1 layers
3x3 filter

stride: 2

padding: 2

%

6717‘6‘%18; 1 ReLU Activation
stride: 2
padding: 3 | 64 layers |
128 layers _ Partial 3x3 filter —
5x5 filter Convolution Layer
stride: 2
padding: 2 Partial Convolution
Batch Normalization |
256 layers Leaky ReLU: 0.2 128 layers o
5x5 filter Stride: 1 3x3 filter
Padding: 1
l 256 layers

Upsampling
Nearest2D: 2

512 layers
3x3 filter
stride: 2

padding: 1

Robot Path

3x3 filter -
-

512 layers —
3x3 filter
stride: 2

padding: 1

512 layers _
3x3 filter
stride: 2
padding: 1
512 layers s
3x3 filter —
stride: 2
padding: 1

Samples

Layer 5;23\??&5]
Connections " teﬁﬁ Estimate
512 layers
3x3 filter

PP

Ground Truth

Fig. 1: An illustration of our network structure. The network takes as input a data field of sampled data points and a binary
mask indicating which points in the data field are missing. The network performs a series of partial convolutions with
stride 2, shrinking the image size before upsampling back to the original size. The network learns to predict the value of
the missing points in the data field by learning over a training set of similar data fields and example binary masks.

Cr-

Input

A

input size: 64x64
output size: 64x64
stride: 1

Cr1i—
h —
input size: 64x64 \

output size: 32x32 \
stride: 2

input size: 32x32

output size: 64x64
stride: 1
Filters: 32

Filters: 32 \ L
input size: 32x32
output size: 16x16 \\
stride: 2

o
To».:

Input Filters: 64 \ L

input size: 16x16

input size: 16x16

output size: 32x32
stride: 1
Filters: 64

output size: 8x8
stride: 2

Filters: 64 L

A

input size: Bx8
output size: 16x16
stride: 1
Filters: 64

Partial Convolution LSTM Layer
Balch Normalization

N

Robot Path
(Mask) ~
input size: 8x8
output size: 4x4 \
stride: 2
Fiers: 128\ |,
Samples D

input size: x4

output size: 2x2
stride: 2
Filters: 128

—|

—|
input size: 2x2
output size: 1x1

stride: 2
Fiters: 128

ONN N

Conwolution
input size: dx4 Layer
output size: 8x8

stride: 1

—| Filters: 128

Upsampling
Neares(2D: 2

input size: 2x2

output size: 4x4
stride: 1
Filters: 128

Concatenate

Fig. 2: An illustration of the network structure for PCNN-LSTM. The network takes as input a data field of sampled data
points, a binary mask indicating which points in the data field are missing, a memory state and the output at ¢ — 1. The
network performs a series of partial convolutions with LSTM at stride 2, shrinking the image size before upsampling back
to the original size. The network learns to predict the ¢ + 1 value of the missing points in the data field by learning over a
training set of similar time series data fields and example binary masks.

MNIST is a dataset of 50,000 handwritten digits, one through
nine, prevalent in the image processing community. The
second domain is a ROMS ocean dataset from Monterey Bay,
CA [7]. The ROMS data provides a realistic data setting for
which this method could be utilized for underwater vehicle
monitoring tasks. In the two dimentional case, a single frame
from the time series ROMS data is used.

To evaluate action selection, we compare our proposed
bias network method to random actions, GP variance and
CNN variances generated through dropout.

A. MNIST

We simulate a robot as it explores an environment rep-
resented by the MNIST dataset that has been upsampled
to a 256x256 image using bilinear filtering. We train our
networks on the training set and test on the test set provided
by [19]. While MNIST seems like an unusual test domain
for robotic information gathering problems, it provides some
benefits over other datasets. With the MNIST data, it is
apparent to a human observer where informative and non-
informative samples are. Exploring areas on the digit are
much more valuable then exploring the black regions of the

Algorithm 1 Exploration

1: procedure EXPLORATION(Obs, Budget)
2 if Budget ! = 0 then

3 Est = UnbiasedNN(Obs)

4: for a € A do

5: Obs = AppxObs(Est, a) + Obs
6: Estt = OptNN(Obs)

7 Est™ = PessNN(Obs)

8 R=||Estt — Est™ |1

9: a* = argmin,c 4(R)

10: newObs = Execute(a™)

11 Obs = Obs 4+ newObs

12: Exploration(Obs, Budget — Cost(a))

image. With this in mind, we start a simulated robot with
spatially localized sensing, limited to one pixel, in a random
location somewhere on the digit. The robot starts by traveling
10 pixels up the image, sampling the value of all pixels
traversed. With these initial samples, the robot calculates
its next action and collects more samples during the chosen
action. We limit the robot’s actions to traveling in the four
cardinal directions and have it traverse 10 pixel during each
action. The robot is provided a budget of 25 to 100 actions,
travels 10 pixels per action and takes actions randomly. For
simplicity, if the robot tries to travel outside the image, we
simply wrap the path to the other side of the image. The
results of our CNN based approach compared to a GP can
be seen in table L.

TABLE I: The average pixel error between estimated data
field and ground truth over 100 MNIST images. The robot
collects 10 samples per action and actions are taken at
random. Budgets of 25, 50, 75, and 100 are shown. Error
bars show one SEM.

y 25 50 75 100 Actions |
GP 47.82+.71 47.21+.70° 46.33+.68 45.60 & .68
CNN 36.06+1.02 32.18+.96 29.23+.98 26.87+.98

Evaluation of action selection is displayed in Table II. All
values are expressed as a proportion to an optimal myopic
action select. This is calculated by looking at ground truth
and selecting the action that produces the best estimation at
the next time step.

A GP regression model minimizing variance to select
actions generated the most prediction error, an average 1.76x
larger than optimal action selection using our CNN for
modeling. The CNN based image inpainting network with
random actions performed better, generating an error 1.17x
worse then optimal. This demonstrates that regardless of
how the samples are taken, the proposed CNN method
can outperform a GP. Adding the proposed action selection
improved the MSE, achieving a score of 1.13x optimal. A
CNN trained and tested using Monte Carlo dropout as a

// Calculate CNN estimate

/I “hallucinate’ taking action a
/I estimate bias]1CNN output
/I estimate bias2CNN output

// take action a*
// collect new observations
/I continue exploration

representation of neural network uncertainty [20] was also
evaluated, with actions selected to sample the most uncertain
areas. This method’s results are comparable to executing
random actions.

TABLE II: The ratio of reconstruction error given a sampling
strategy vs. sampling the most informative location recon-
struction error on the MNIST data set. The robot collects 10
samples per action and is given a budget of 50 actions. Error
bars show one SEM.

] GP CNN-Random

| MSE

CNN-Biased |

1.721 £.026 1.173£.035 1.134+ .034 ‘

B. Ocean Information Gathering

To evaluate our method on data from a representative
robotic information gathering environment, we simulate an
underwater vehicle as it gathers information in an ocean en-
vironment (e.g., for scientific data collection). The Regional
Ocean Modeling System (ROMS) utilizes sophisticated mod-
els of ocean processes and forward simulations of prior data
to generate a realistic estimate of ocean properties such as
temperature, salinity and currents. The ROMS data we use
consists of a 128x128 grid of ocean surface temperatures
collected off Monterey Bay at a resolution of 300 m per
data point. Data from May 1, 2016 to Feb 22, 2018, at 3:00,
9:00, 15:00 and 21:00 hours was aggregated and partitioned
into a training set consisting of 1800 examples. Validation
and test sets consist of 100 examples.

The same tests performed on the MNIST data are per-
formed. The results can be viewed in Table III.

Table IV shows the results when actively choosing actions
is simulated. The GP model generated the most prediction
error, followed by our CNN approach of taking random
action and minimizing the dropout estimated variance. Our
proposed action selection technique generated the least pre-
diction error.

TABLE III: The average temperature error between estimated
data field and ground truth over 100 ocean data fields. The
robot collects 10 samples per action and actions are taken
at random. Budgets of 25, 50, 75, and 100 are shown. Error
bars show one SEM.

y 25 50 75 100 Actions |
GP .6344+.031 .596+.029 .564+.028 .522+.025
CNN .533+.026 .405+.015 .3474.018 .326 =+ .019

TABLE IV: The ratio of reconstruction error given a sam-
pling strategy vs. sampling the most informative location
reconstruction error on the ocean data set. The robot collects
10 samples per action and is given a budget of 50 actions.
Error bars show one SEM.

] GP CNN-Random CNN-Dropout ~ CNN-Biased |

| MSE 1.94+.09 1.324.05 1294.05 1.20+.04 |

VI. EXPERIMENTS, RESULTS AND DISCUSSION - 3D

To show our proposed PCNN-LSTM layer and recurrent
U-net architecture can generate quality time series estimates
and produce informative action choices, we compare our
method to Gaussian process regression in two different do-
mains. The first domain is moving MNIST [21], a collection
of videos of random MNIST digits bouncing around a frame.
The second is time series ROMS data, a time series version
of the data in the 2D case.

In addition to comparing the proposed method to the GP
described above, we also compare to a modified 2D CNN
approach. We use the same network described in Section I'V-
A.1, with an additional LSTM layer at the end, allowing it
to learn from the temporal information. Comparing to this
network should provide some insight into the importance
of learning the spatial and temporal relationships of the
data together, as opposed to learning spacial and temporal
relationships independently. This network is referred to as
the PCNN network.

A. Moving MNIST

We simulate a robot as it explores an environment rep-
resented by a moving MNIST dataset of 64x64 pixel. We
start a simulated robot with spacially localized sensing in a
random location at ¢ = 0 and have it sample data in a 20x20
lawn mower pattern. This is because each sample will be
taken at a unique time ¢, not allowing us to append samples
taken at different times like was done in the 2D case. The
samples taken at ¢ = 0 are used by the neural network to
estimate the data field for ¢ = 1. The goal is to minimize
the error between the estimated data field at ¢ 4+ 1 and the
ground truth at ¢ + 1.

The moving MNIST dataset requires quality sampling to
be effective. Because the digit makes up a small percentage
of the total video frame, and contains a majority of the
information about the environment, sampling on the digit is
extremely important to generating quality estimates. To eval-
uate reconstruction quality independent of sampling location,

we sample the digit using the same sample location for the
GP method, PCNN network and the proposed PCNN-LSTM
network. The results can be seen in Table V. The results
show that our proposed PCNN-LSTM network produces a
per grid square error that is 30% lower than that produced
by the GP method and 17% less than the PCNN method.

TABLE V: The average pixel error between estimated data
field and ground truth over 100 moving MNIST videos of 30
frames. The robot collects 96 samples per action in a lawn
mower pattern and actions are taken to maximize coverage
of MNIST digit. Error bars show one SEM.

y GP

PCNN PCNN-LSTM |

| Pixel Error 11.61+£2.86 9.75+1.54 812+ .82 |

B. Time Series Ocean Data

We next test the proposed PCNN-LSTM reconstruction
network on ROMS ocean data, predicting the ocean temper-
atures of the next frame given the 10 previous frames. The
experimental setup is the same as with the moving MNIST
dataset.

Table VI provides the results of 100 simulated trials of a
robot compared to a GP. We measure a reduction in error of
52% compared to GP reconstruction and 25% compared to
PCNN.

TABLE VI: The average temperature error between esti-
mated data field and ground truth over 100 time series ocean
videos of 30 frames. The robot collects 96 samples per action
in a lawn mower pattern and actions are taken at random.
Error bars show one SEM.

] GP PCNN PCNN-LSTM |

| Error (degrees) 1.06+.02 .67+.02 514+.02 |

VII. CONCLUSIONS

The results presented in this work demonstrate the power
of using masked convolution neural networks to model and
inform environments for robotic information gathering. This
work shows that a CNN trained on historical data with biased
loss functions can provide estimates that outperform with
state-of-the-art GP techniques. Furthermore, we introduce
a PCNN-LSTM layer and accompanying architecture for
predicting time series environments where spatio-temporal
information is linked. The method presented is generic and
can be applied to any spatially correlated field for modeling
or exploration.

REFERENCES

[1] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor place-
ments in gaussian processes: Theory, efficient algorithms and empirical
studies,” Journal of Machine Learning Research, vol. 9, no. Feb, pp.
235-284, 2008.

[2] P. Whaite and F. P. Ferrie, “Autonomous exploration: Driven by un-
certainty,” Transactions on Pattern Analysis and Machine Intelligence,
vol. 19, no. 3, pp. 193-205, 1997.

[3]

[4

=

[5

=

[6]

[7]

[8

—_

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

C. Guestrin, A. Krause, and A. P. Singh, “Near-optimal sensor place-
ments in gaussian processes,” in The 22nd international conference on
Machine learning. ACM, 2005, pp. 265-272.

S. Bai, J. Wang, F. Chen, and B. Englot, “Information-theoretic ex-
ploration with bayesian optimization,” in Proceedings of International
Conference on Intelligent Robots and Systems. 1EEE, 2016, pp. 1816—
1822.

R. Marchant and F. Ramos, “Bayesian optimisation for intelligent en-
vironmental monitoring,” in Proceedings of International Conference
on Intelligent Robots and Systems. 1EEE, 2012, pp. 2242-2249.

D. Jayaraman and K. Grauman, “Learning to look around: Intelligently
exploring unseen environments for unknown tasks,” in Proceedings of
the Conference on Computer Vision and Pattern Recognition. IEEE,
2018, pp. 1238-1247.

A. F. Shchepetkin and J. C. McWilliams, “The regional oceanic
modeling system (roms): a split-explicit, free-surface, topography-
following-coordinate oceanic model,” Ocean modelling, vol. 9, no. 4,
pp. 347-404, 2005.

M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image
inpainting,” in Proceedings of the 27th annual conference on Computer
graphics and interactive techniques. =~ ACM Press/Addison-Wesley
Publishing Co., 2000, pp. 417-424.

A. A. Efros and W. T. Freeman, “Image quilting for texture synthesis
and transfer,” in Proceedings of the 28th annual conference on
Computer graphics and interactive techniques. ACM, 2001, pp. 341—
346.

V. Kwatra, I. Essa, A. Bobick, and N. Kwatra, “Texture optimization
for example-based synthesis,” in Transactions on Graphics (ToG),
vol. 24, no. 3. ACM, 2005, pp. 795-802.

D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros,
“Context encoders: Feature learning by inpainting,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 2536-2544.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems, 2014, pp. 2672—
2680.

S. lizuka, E. Simo-Serra, and H. Ishikawa, “Globally and locally con-
sistent image completion,” Transactions on Graphics (ToG), vol. 36,
no. 4, p. 107, 2017.

Y. Li, S. Liu, J. Yang, and M.-H. Yang, “Generative face completion,”
in Proceedings of the Conference on Computer Vision and Pattern
Recognition. 1EEE, 2017, pp. 3911-3919.

R. Yeh, C. Chen, T. Y. Lim, M. Hasegawa-Johnson, and M. N. Do,
“Semantic image inpainting with perceptual and contextual losses,”
arXiv preprint arXiv:1607.07539, vol. 2, p. 3, 2016.

O. Ronneberger, P. Fischer, and T. Brox, ‘“U-net: Convolutional
networks for biomedical image segmentation,” in International Confer-
ence on Medical image computing and computer-assisted intervention.
Springer, 2015, pp. 234-241.

G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro,
“Image inpainting for irregular holes using partial convolutions,” arXiv
preprint arXiv:1804.07723, 2018.

L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” Signal Processing Magazine,
vol. 29, no. 6, pp. 141-142, 2012.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278-2324, 1998.

Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international
conference on machine learning, 2016, pp. 1050-1059.

N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised
learning of video representations using LSTMSs,” in Proceedings of
International conference on machine learning, 2015, pp. 843-852.

