
Learning to Control Reconfigurable Staged Soft Arms

Austin Nicolai1, Gina Olson1, Yiğit Mengüç1,2, Geoffrey A. Hollinger1

Abstract— In this work, we present a novel approach for
modeling, and classifying between, the system load states
introduced when constructing staged soft arm configurations.
Through a two stage approach: (1) an LSTM calibration routine
is used to identify the current load state then (2) a control input
generation step combines a generalized quasistatic model with
the learned load model. Our experiments show that accounting
for system load allows us to more accurately control tapered
arm configurations. We analyze the performance of our method
using soft robotic actuators and show it is capable of classifying
between different arm configurations at a rate greater than
95%. Additionally, our method is capable of reducing the end-
effector error of quasistatic model only control to within 1 cm
of our controller baseline.

I. INTRODUCTION

Compared to traditional rigid robots, soft robots provide
a unique set of challenges and benefits for applications in
low load, high flexibility tasks. Soft robots are used across
a variety of domains, including grasping [1], [2], prosthetic
devices [3], [4], and biologically inspired locomotion [5],
[6], [7], [8]. A common morphology seen in soft robots for
these applications is a long, thin bending arm. Soft bending
arms are most commonly constructed with three or more
longitudinal actuators in parallel, where bending is controlled
by lengthening or shortening actuators. Biological systems,
such as octopuses, use a similar arm architecture, with the
arm tapering towards the tip [9]. This tapering allows for
a trade-off between strength (near the base) and flexibility
(near the tip). Current state-of-the-art dynamic models for
soft bending arms require experimental fits to determine their
physical parameters. While these are suitable for controlling
individual arms, varying the arm configuration requires a
new set of parameters to be determined. A more generalized
model is desirable to take advantage of the fact that arm
configurations comprised of multiple link segments can be
reconfigured to suit different scenarios. The quasistatic model
proposed in [10] combines conservation of energy with static
equilibrium to provide a generalizable formulation; however,
this formulation assumes an unloaded arm.

In order to work with the types of staged arm architectures
previously mentioned, we need to be able to account for
the system load introduced when connecting multiple lon-
gitudinal actuators in sequence. In this work, we propose
an approach that augments the generalizable model in [10]

This work was funded in part by the National Science Foundation
National Robotics Initiative (NSF NRI award IIS-1734627).

1Collaborative Robotics and Intelligent Systems (CoRIS) Institute, Ore-
gon State University, Corvallis, Oregon 97331

2Facebook Reality Labs, Redmond, Washington
Authors’ email: {nicolaia, olsongi, yigit.menguc,

geoff.hollinger}@oregonstate.edu

with a data-driven, learned load model that accounts for
the violation of the no-load assumption. With this approach,
no additional learning or parameter fitting is required when
switching between arm configurations. Another benefit is that
the generalizable model provides a lower bound for our input
control pressures that would otherwise not be available when
learning the entire control model. In our approach, we first
determine the staged arm configuration in use via a long
short-term memory (LSTM) based, single-shot calibration
routine using an OptiTrack system. After calibration, only
simple pressure based on-off control is required to control the
arm. We validate the proposed approach on multiple staged
soft arms showing that it is able to accurately identify the arm
configuration in use. Additionally, we show that the learned
load model is able to compensate for the system load across
various staged arm configurations.

In summary, we present a novel control architecture for
reconfigurable staged soft arms that:

• Compensates for the system load introduced when con-
necting multiple longitudinal soft actuators in sequence.

• Leverages the temporal nature of the arm motion to
accurately identify the current arm configuration.

• Requires no additional learning or parameter fitting
when switching between arm configurations.

The remainder of this paper is organized as follows. We
discuss related kinematic modeling and data-driven control
methods in Section II. Next, we describe our proposed
approach in Section III. Our experiments and their results are
presented in Section IV. Finally, we conclude and propose
avenues for future work in Section V.

II. RELATED WORK

In soft robotics, kinematic modeling approaches com-
monly utilize the constant curvature approximation. An
overview of these techniques are presented by Webster and
Jones [11]. When actuator characteristics can be more easily
measured (e.g., cable driven arms) more precise geometric
models can be used [12], [13]. Controllers that incorporate
sensory feedback have also been proposed, including both
single camera [14] and multiple camera [15] controllers.

In recent years, many data-driven learning based ap-
proaches have been proposed for controlling soft robots.
An early model-free implementation of a static controller
was proposed by Giorelli et al. in which the inverse statics
of a cable driven soft robot were directly learned with a
neural network [16]. This approach was validated on physical
hardware for a 2 degree of freedom (DoF) [17] and 3 DoF
[18] soft manipulator and was shown to outperform the more
complex model used for comparison. An approach learning



the inverse kinematics of a soft robot was presented by
Thurunthel et al. in [19], [20]. In this approach, the problem
was formulated as a differential inverse kinematics problem
using local mapping which allows for multiple solutions
globally. More recently, Thurunthel et al. have proposed an
approach that additionally incorporates end-effector feedback
for learning the inverse kinematics [21]. They show that their
algorithm can deal with stochasticity and exhibits adaptive
behavior in an unstructured environment. Finally, Bruder et
al. have proposed using Koopman operator theory to learn
linear dynamical models for a non-linear soft robot arm [22].
The benefit to this method is that in the lifted linear state,
the optimization problem is convex allowing for use with
model predictive control techniques. While these data-driven
methods perform well, they do not extend to generalizable
arm configurations which is desirable for reconfigurable
staged arm architectures.

In addition to solely data-driven methods, hybrid con-
trollers that combine both model-based and model-free ap-
proaches have been proposed. Jiang et al. have proposed a
hybrid approach that first uses a cost function to transform
between task and configuration space [23]. Once a pose has
been identified, a neural network is used to map curvature
and arc length to control pressures. Another approach pro-
posed by Reinhart et al. observes that errors in the constant
curvature model reduce the accuracy of the inverse kinematic
controller [24]. To reduce this error, they model the error
with a neural network and show that their hybrid method is
capable of reducing tracking error for their arm. In our work
we use a similar hybrid technique, but rather than learning to
compensate for real world model error, we learn a load model
that allows us to further generalize the quasistatic model
presented in [10] to various staged soft arm configurations.

III. METHOD

The quasistatic model proposed in [10] is capable of
providing a mapping between control input and soft arm

states for individual unloaded link segments as given by

u = Pqs(κ, t), (1)

where Pqs represents the quasistatic model and u, κ, and t
represent the input control pressure, soft arm state, and soft
arm width, respectively. In our proposed approach, we learn a
model for the system load introduced when combining these
individual link segments into a staged arm configuration.
Following the previous notation, this extends our mapping
function to

ut = Pqs(κ, t) + Ploadt(s, κ), (2)

where t represents the width of a given link segment in the
staged arm and ut, Ploadt , and s represent the input control
pressure, learned load model, and load state for the link
segment of width t, respectively. We note that a load state is
defined for each link segment in an arm configuration, and
(in this work) does not change over time.

Our approach uses a fully connected deep network to learn
the load model and an LSTM to identify the current load
state. While all arm configurations in this work are used
during training, in general only a subset of all possible arm
configurations (equal to the number of unique load states)
need to be used. A block diagram overview of our system
can be seen in Figure 1.

A. Load State Estimation

Every arm configuration used in this work produces a
unique load state for each link segment in the arm. This
allows us to characterize the load state for each link segment
by simply determining which arm configuration is currently
in use. Additionally, this enables us to identify the current
configuration by only looking at the base link of the arm.

We classify which configuration the arm is in by looking
at how the base link control input, ubase, and state, κbase,
change with respect to time. In the absence of external
disturbances, κbase changes smoothly as ubase is increased.

Fig. 1: A block diagram of the architecture proposed in this work. The single-shot calibration routine is only performed
once per arm. During operation, real-time pressure control is performed for each individual link segment in the arm. For
each segment, an input control pressure is generated using the predicted load state and desired arm curvature state (goal κ).
Only the calibration routine requires use of the OptiTrack system.



The result of this is that the pair (ubase, κbase)i is highly
predictive of the pair (ubase, κbase)i+1. As such, we use
an LSTM based network for classification. To do this, we
perform a single-shot calibration routine using an OptiTrack
system. This calibration routine is comprised of a single
sweep of the arm through its entire valid pressure range.
During this sweep, (ubase, κbase) pairs are obtained from the
OptiTrack and actuators, respectively. These pairs of data are
passed into the LSTM after which a configuration prediction
is produced by selecting the class with highest probability.

Since an entire arm sweep is used as classification input,
it is time prohibitive to acquire training data solely by hand.
Instead, we augment our data by stitching together segments
of recorded sweeps to form training sweeps, as detailed in
Algorithm 1. In directly stitching these segments together
without smoothing, we’re able to approximate real world
disturbances (e.g., friction, manufacturing imperfections) al-
lowing our classifier to be more robust.

B. Control Input Mapping
We decompose the problem of mapping soft arm states

to control inputs into a quasistatic model mapping and load
mapping: ut = Pqs(κ, t) + Ploadt

(s, κ). This has several
benefits. In the planar case, adding a load to the system will
increase the control pressure required to achieve a given link
curvature state. This means the quasistatic model provides us
with a lower bound for the control input. In only learning
a portion of the overall state to control input mapping, we
minimize the potential impact of incorrect predictions by the
network. Since the actuator upper bound pressure ratings are
known, we can guarantee a safe control input.

Algorithm 1: Training Data Generation
// recorded: recorded data sequences

// N: training sequences to generate

// training: generated data sequences

Input: recorded, N
Output: training
// set of all possible segment lengths

seg len = {20% 30% 40%}
for i = 1 to N do

start idx = 0% // beginning of sequence

while start idx < 100% do
len

R← seg len // randomly select

seq
R← recorded // randomly select

end idx = start idx + len
if end idx ≥ 100% then

end idx = 100% // cut segment short

end
// append the segment to the generated

sequence and then update the index

segment = seq[start idx:end idx]
trainingi.append(segment)
start idx = end idx

end
end

Quasistatic Model: The quasistatic model developed
previously [10] assumes constant curvature (Figure 2), an
always planar cross section and no loads applied to each
individual arm segment. Only one actuator in each segment
is pressurized at a time. We calculate curvature by combining
moment equilibrium and conservation of energy with a
kinematic constraint. The pressurized actuator generates a
force FP that is dependent on the known pressure P and
unknown strain εP , while the passive actuator force FE

depends only on that actuator’s strain εE . The moment
balance for an arm of width t, summed about the unknown
location of the neutral axis, hP is

ΣM = −FP (εP , P )(−hP )+(−FE(εE))(t−hP ) = 0. (3)

Each actuator has a stored strain energy UP and UE , and the
pressurized actuator produces work WP . The energy balance
for each segment is

ΣE = WP (P, εP )− UP (εP )− UE(εE) = 0. (4)

The system of equations is closed through a kinematic rela-
tionship, which relates the pressurized and passive actuators
strains geometrically:

εP = −hPκ, (5)

εE = (t− hP )κ. (6)

The actuator force, work and strain energy are calculated
from experimental force characterizations [10].

Load Model: In order to learn the mapping for the load
model we utilize a fully connected deep network. That is,

Ploadt
(x) = f(Wx+ b), (7)

where the weight matrix, W , and offset vector, b, are learned
parameters; f(·) represents a non-linear activation function;
and the input x is given by (s, κ). An individual deep
network is trained for each of the link segment widths used
in our arm configurations. We note that this scales linearly
with the number of link segment widths available. Increasing
the length of the overall arm (as measured in number of link
segments) does not require additional networks to be trained,
but rather increases the number of load states to model.

Fig. 2: An illustration of the constant curvature assumption.



Training data is generated by recording the individual link
segment actuator pressure states at various curvatures. The
quasistatic model value is subtracted from the recorded pres-
sure to obtain the load model value to learn. To efficiently
generate training data, we perform arm sweeps that cover the
entire valid pressure range of the actuators. This is beneficial
because every sweep of the arm performs slightly differently
due to an accumulator tube and real world noise (e.g., friction
and manufacturing imperfections). This slight performance
variation naturally obtains data samples at different curvature
values throughout the valid pressure range.

The entire training data set is generated by combining
all recorded data points into a single distribution. For each
link width t, we have a set of load states, {s}, and a set of
recorded data pairs, {u, κ}. We model this distribution as

ut = Ploadt(s,κ) +N(µ, σ2), (8)

where ut are the recorded input pressures for link width t,
Ploadt(s,κ) is the true load model we wish to learn, and
N(µ, σ2) approximates the real world noise observed.

IV. EXPERIMENTS AND RESULTS

We demonstrate the capability of our approach through
three experiments. In all three experiments, we use four
different link segment widths: 80 mm, 65 mm, 50 mm,
and 35 mm. Staging these four widths in tapered config-
urations (connected via 3D printed spacing plates) provides
us with three unique arm configurations: 80-65-50mm, 80-
65-35mm, and 80-50-35mm. Each arm segment is made of
two actuators joined by six evenly spaced radial support
plates. Actuators were made using EcoFlex 00-30, had a
wall thickness of 1.5 mm, internal diameter of 6 mm, length
of 240 mm, and were reinforced with polyester expandable
sheathing (McMaster #9284K2). For full manufacturing de-
tails, we refer the reader to [10]. Links were controlled using
real-time feedback as detailed in Section IV-A.

In Experiment 1, we compare two classification methods:
a fully connected deep network and an LSTM. We use
precision and recall as our metrics for success. In general,
precision and recall are calculated as

Precision =
Tp

Tp + Fp
(9)

Recall =
Tp

Tp + Fn
, (10)

respectively, where Tp represents true positives, Fp repre-
sents false positives, and Fn represents false negatives.

In Experiment 2, we measure accuracy in curvature space
using the mean and maximum error (with standard devia-
tion). For each segment width, all load cases are averaged
into the reported metric. We compare several methods:

• Curvature Control (baseline) uses the OptiTrack sys-
tem for state feedback, directly controlling the arm to
the desired curvature. This represents the maximum
accuracy of our controller.

• Individual Curve Fit Control uses individually fit
curves (6th order polynomial) to model each load state

of each segment width. This approach scales combina-
torically with both the number of link widths and arm
configurations considered.

• Single Surface Fit Control uses a single surface fit
(6th order polynomial) to model all load states for every
segment width. This approach scales linearly with the
number of link widths.

• Deep Network Control uses a single trained deep
network to model all load states for each segment width.
This also scales linearly with the number of link widths.

In Experiment 3, mean and maximum errors of the end-
effector are reported in Euclidean space (with standard
deviation) to provide a more intuitive understanding of the
quality of control. We compare three methods:

• Curvature Control (baseline) represents the maximum
accuracy of our controller.

• Quasistatic Model Only Control uses only the model
proposed in [10] to control the arms and does not
account for load.

• Quasistatic Plus Load Model Control uses the pro-
posed approach to control the arm, accounting for load
using a fully connected deep network.

A. Hardware Setup

Full arm control was achieved by controlling individual
link segments with on-off feedback control. Our custom con-
trol board is capable of both pressure and curvature control
via real-time feedback. We note that our proposed approach
operates using only pressure feedback. Experiments 2 and
3 compare against direct curvature control as a means of
comparing against the maximum accuracy of our controller.

The control board is comprised of a diaphragm pump,
solenoid valves, pressure sensors, and an Arduino. The single
diaphragm pump provides airflow to the entire system while
the solenoid valves control whether or not individual link
segment actuators inflate, deflate, or maintain pressure. The
Arduino controls the pump speed and solenoid states. MAT-
LAB is used as to interface with both the control board and
the OptiTrack system. System feedback is available in two
forms: pressure and curvature. Pressure feedback is obtained
via onboard Honeywell Basic ABP Series sensors. Curvature
feedback is obtained from the positions of retroreflective
markers as given by the OptiTrack system.

B. Experiment 1: Configuration Classification Accuracy

We compare our proposed LSTM architecture against
a standard, fully connected deep architecture. While both
architectures receive the same input data, the fully connected
architecture represents a brute force approach that doesn’t
explicitly leverage the temporal nature of our data. The
specific architecture parameters can be seen in Tables I
and II. The layer naming convention denotes both the type of
layer and number of units (i.e., lstm30 represents an LSTM
layer with 30 units). We train and validate on 600 and 150
sweeps per arm configuration, respectively (total: 1800 and
450). The networks were trained for up to 500 epochs (with
early stopping) using the Adam optimizer [25].



For each arm configuration, we perform 25 classification
trials. Each trial involves placing the staged arm in the
OptiTrack staging area and performing a single sweep of
the base link segment’s full pressure range (0-12 psi). The
recorded (ubase, κbase) pairs are passed through the trained
classifiers and the load state prediction for each link in the
staged arm, ŝ, is given by the maximum class probability.

Full results from the experiment can be seen in Table IV.
We can see that both network architectures were able to
achieve high classification accuracy, with the LSTM slightly
outperforming the fully connected deep network. In both
cases, the 80-65-50mm configuration was easiest to classify.
This is likely because the 35 mm segment is the lightest, and
it is easy to detect the configuration without that segment.
Classifying between the 80-65-35mm and 80-50-35mm con-
figurations proved more difficult as the difference in motion
between them is more slight. An interesting result is that
the LSTM network architecture required far fewer trainable
parameters (11,373 vs. 250,883) and converged faster (287
vs. 326 epochs) to achieve the reported results, highlighting
the benefit of explicitly leveraging the data temporality.

C. Experiment 2: Load Model Accuracy
For this experiment, ground truth load states are given to

both the deep network and surface fit to directly measure the
quality of the load model learned. The deep network structure
can be seen in Table III. We train and validate on 1000 and
200 data points per load case (total: 3000 and 600 for the
80 mm segment, 2000 and 400 for the 65 mm segment, 1000
and 200 for the 50 mm segment). The network was trained
for up to 200 epochs using the Adam optimizer [25].

We control each loaded segment (i.e., all segments except
the 35 mm) to 25 distinct curvatures equally spaced along
the segment’s range of motion. We note that this range of
motion changes for each segment width and load condition,
and thus different curvatures are chosen for each condition.

The results of this experiment can be seen in Table V.
Here, we can see that direct curvature control provides a
very accurate baseline. The individual curve fits and our
proposed method perform accurately (and similarly, except
for the 65 mm segment). While the performance is similar,
the individual curve fit method scales combinatorically with
the number of link widths and arm configurations used.
Despite the single surface fit performing the worst in all
cases, the gap between it and other methods decreased as the
number of load cases modeled decreased (i.e., segment width
decreased). This makes sense since for fewer load cases, the
modeling problem is more straightforward.

We observed the 65 mm segment to experience inconsis-
tent performance in the low pressure region. Notably, this
affected the performance (both mean and maximum error
rates) of the individual curve fits more than our proposed
method. This is likely because the deep network inherently
models functions more complex than a 6th order polynomial.

D. Experiment 3: End-Effector Accuracy
In this experiment, we first perform the single-shot cali-

bration routine using only the LSTM classifier. The load state

prediction is then used for the remainder of the experiment,
even if misclassified, so as to fully capture the accuracy of the
proposed system. The load state and desired curvature state
are then used to generate control inputs, ut = Pqs(κgoal, t)+
Ploadt

(ŝ, κgoal) for each link in the arm configuration. We
control the arm to 25 distinct, randomly generated arm states
within the reachable workspace for all arm configurations
and measure the resulting end-effector location.

Full results can be seen in Table VI. As expected, the
curvature control baseline is the most accurate. Even though
the mean error appears to be somewhat high, we note that
this error largely comes from the shortening of the base curve
of the link segments as they bend. While the control is highly
accurate in curvature space (as shown in Experiment 2), as
the link bends and shortens, error is introduced along the
segment arc. This is further evidenced by the low standard
deviation in the results, demonstrating the consistency of
both the baseline and our approach. The link shortening can
be seen in Fig. 3 and is further discussed in [10].

From the table, we can see that the quasistatic model
only control performs poorly. This illustrates that without
accounting for the system load, the benefits of a staged arm
configuration (e.g., increased flexibility near the tip) cannot
be taken advantage of. This mode of control performs poorly
enough that it would not be suitable for many real world
tasks. As in Experiment 2, we can see that our proposed
approach performs closely to the curvature control baseline.
For all arm configurations, our proposed method achieves an
accuracy within 1 cm of the curvature control baseline.

V. CONCLUSION

We presented a novel approach capable of learning to
model the system load introduced when constructing tapered
staged soft arm configurations that is not accounted for in
the generalized kinematic model. Our proposed approach is
capable of modeling multiple load states allowing the staged
arms to be reconfigured with no additional training required.
Experiments on soft robotic hardware show that our approach
correctly identifies the arm configuration at a rate greater
than 95%. Additionally, our method reduces the end-effector
error of quasistatic model only control to within 1 cm of our
controller baseline. Our approach enables the use of tapered
staged arm configurations allowing us to take advantage of
their increased flexibility.

These results suggest a couple of avenues for future work.
First, the classification step can be extended to predict a seg-
ment’s general load state by changing the LSTM prediction
from classification to regression. This would allow the arm
to work with arbritrary external loads (e.g., manipulating an
object). Second, to further increase the real world capabili-
ties, we can incorporate soft sensors on the individual link
segments. Link segment curvature feedback can be obtained
from these, removing the need for the OptiTrack system.

VI. ACKNOWLEDGMENTS

We would like to thank Scott Chow and Christopher
Bollinger for their help troubleshooting code.



TABLE I: LSTM
Classifier Architecture

Layer Activation Dropout
lstm30 ReLU ∼
lstm30 ReLU ∼
dense3 Softmax ∼

TABLE II: Fully Connected
Classifier Architecture

Layer Activation Dropout
dense512 ReLU 20%
dense256 ReLU 20%
dense64 ReLU 20%
dense3 Softmax ∼

TABLE III: Fully Connected
Load Model Architecture

Layer Activation Dropout
dense128 ReLU 10%
dense32 ReLU 10%
dense1 Linear ∼

TABLE IV: Classification Accuracy Results. Both the mean and individual class metrics are
reported. The individual classes are specified by the arm configuration details (mm).

Precision Recall
Mean 80-65-50 80-65-35 80-50-35 Mean 80-65-50 80-65-35 80-50-35

Fully Connected 94.85% 100.0% 88.89% 95.65% 94.67% 100.0% 96.0% 88.0%
LSTM (proposed) 97.33% 100.0% 96.0% 96.0% 97.33% 100.0% 96.0% 96.0%

TABLE V: Individual Link Control Accuracy Results. Details regarding each method listed can be found in Section IV.

80 mm Segment 65 mm Segment 50 mm Segment
Mean

Error (m−1)
Max

Error (m−1)
Mean

Error (m−1)
Max

Error (m−1)
Mean

Error (m−1)
Max

Error (m−1)
Curvature Control
(baseline) 0.015 ± 0.011 0.047 0.022 ± 0.016 0.062 0.026 ± 0.017 0.079

Individual Curve
Fit Control 0.037 ± 0.021 0.086 0.189 ± 0.152 0.552 0.076 ± 0.047 0.160

Single Surface
Fit Control 0.071 ± 0.041 0.175 0.204 ± 0.177 0.551 0.082 ± 0.052 0.194

Deep Network
Control (proposed) 0.037 ± 0.028 0.123 0.103 ± 0.108 0.403 0.072 ± 0.041 0.154

TABLE VI: Full Arm Control Accuracy Results. Details regarding each method listed can be found in Section IV.

80-65-50mm Configuration 80-65-35mm Configuration 80-50-35mm Configuration
Mean

Error (cm)
Max

Error (cm)
Mean

Error (cm)
Max

Error (cm)
Mean

Error (cm)
Max

Error (cm)
Curvature Control
(baseline) 2.791 ± 0.380 3.386 3.342 ± 0.402 4.099 3.672 ± 0.626 5.103

Quasistatic Model
Only Control 9.215 ± 5.535 17.267 9.572 ± 5.484 18.171 8.110 ± 4.457 15.162

Quasistatic Plus Load
Model Control (proposed) 3.468 ± 0.512 4.490 3.9282 ± 0.602 5.339 4.125 ± 0.698 5.479

(a) Curvature control (b) Quasistatic model only control (c) Quasistatic plus load model control

Fig. 3: A comparison of the end-effector error produced by the control methods in Experiment 3. In each image, the theoretical
expected end-effector location (before link shortening) is represented by the orange square. The three dots represent the final
end-effector location for the different control methods. Curvature control is represented by the green dot, quasistatic model
only control is represented by the magenta dot, and quasistatic plus load model control is represented by the red dot.



REFERENCES

[1] H. Zhao, K. O’Brien, S. Li, and R. Shepherd, “Optoelectronically
innervated soft prosthetic hand via stretchable optical waveguides,”
Science Robotics, vol. 1, no. 1, 2016.

[2] M. Manti, T. Hassan, G. Passetti, N. D’Elia, C. Laschi, and
M. Cianchetti, “A bioinspired soft robotic gripper for adaptable and
effective grasping,” Soft Robotics, vol. 2, no. 3, pp. 107–116, 2015.

[3] G. Singh, C. Xiao, G. Krishnan, and E. Hsiao-Wecksler, “Design
and analysis of soft pneumatic sleeve for arm orthosis,” Proc. ASME
International Design Engineering Technical Conferences & Computers
and Information in Engineering Conference, 2016.

[4] P. Polygerinos, S. Lyne, Z. Wang, L. F. Nicolini, B. Mosadegh,
G. M. Whitesides, and C. J. Walsh, “Towards a soft pneumatic glove
for hand rehabilitation,” Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1512–1517, 2013.

[5] T. Umedachi, V. Vikas, and B. Trimmer, “Softworms: The design and
control of non-pneumatic, 3D-printed, deformable robots,” Bioinspi-
ration & Biomimetics, vol. 11, no. 2, p. 025001, Mar 2016.

[6] C. Branyan, C. Fleming, J. Remaley, A. Kothari, K. Tumer, R. Hatton,
and Y. Menguc, “Soft snake robots: Mechanical design and geomet-
ric gait implementation,” Proc. IEEE Conference on Robotics and
Biomimetics (RoBio 2017), pp. 282–289, 2017.

[7] H. Lin, G. G. Leisk, and B. Trimmer, “GoQBot: A caterpillar-inspired
soft-bodied rolling robot,” Bioinspiration & Biomimetics, vol. 6, no. 2,
p. 026007, Apr 2011.

[8] M. Calisti, E. Falotico, and C. Laschi, “Hopping on uneven terrains
with an underwater one-legged robot,” IEEE Robotics and Automation
Letters, vol. 1, pp. 461–468, 2016.

[9] W. Kier and K. Smith, “Tongues, tentacles and trunks: The biome-
chanics of movement in muscular-hydrostats,” Zoological Journal of
the Linnean Society, vol. 83, no. 4, pp. 307–324, 1985.

[10] G. Olson, S. Chow, A. Nicolai, C. Branyan, G. Hollinger, and
Y. Mengüç, “A generalizable equilibrium model for bending soft arms
with longitudinal actuators,” The International Journal of Robotics
Research, DOI:10.1177/0278364919880259, Oct. 2019.

[11] R. J. Webster and B. A. Jones, “Design and kinematic modeling of
constant curvature continuum robots: A review,” The International
Journal of Robotics Research, vol. 29, no. 13, pp. 1661–1683, 2010.

[12] F. Renda, M. Cianchetti, M. Giorelli, A. Arienti, and C. Laschi, “A
3D steady-state model of a tendon-driven continuum soft manipulator
inspired by the octopus arm,” Bioinspiration & Biomimetics, vol. 7,
no. 2, p. 025006, May 2012.

[13] F. Renda, M. Giorelli, M. Calisti, M. Cianchetti, and C. Laschi,
“Dynamic model of a multibending soft robot arm driven by cables,”
IEEE Transactions on Robotics, vol. 30, no. 5, pp. 1109–1122, Oct
2014.

[14] J. M. Croom, D. C. Rucker, J. M. Romano, and R. J. Webster,
“Visual sensing of continuum robot shape using self-organizing maps,”
Proc. IEEE International Conference on Robotics and Automation, pp.
4591–4596, 2010.

[15] D. B. Camarillo, C. R. Carlson, and J. K. Salisbury, “Configuration
tracking for continuum manipulators with coupled tendon drive,” IEEE
Transactions on Robotics, vol. 25, no. 4, pp. 798–808, 2009.

[16] M. Giorelli, F. Renda, G. Ferri, and C. Laschi, “A feed-forward neural
network learning the inverse kinetics of a soft cable-driven manipulator
moving in three-dimensional space,” Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 5033–5039, 2013.

[17] M. Giorelli, F. Renda, M. Calisti, A. Arienti, G. Ferri, and C. Laschi,
“Neural network and jacobian method for solving the inverse statics
of a cable-driven soft arm with nonconstant curvature,” IEEE Trans-
actions on Robotics, vol. 31, no. 4, pp. 823–834, Aug 2015.

[18] ——, “Learning the inverse kinetics of an octopus-like manipulator
in three-dimensional space,” Bioinspiration & Biomimetics, vol. 10,
no. 3, p. 035006, May 2015.

[19] T. Thuruthel, E. Falotico, M. Cianchetti, and C. C. Laschi, “Learning
global inverse kinematics solutions for a continuum robot,” in RO-
MANSY 21 - Robot Design, Dynamics and Control, V. Parenti-Castelli
and W. Schiehlen, Eds. Cham, Switzerland: Springer International
Publishing, 2016, pp. 47–54.

[20] T. Thuruthel, E. Falotico, M. Cianchetti, F. Renda, and C. Laschi,
“Learning global inverse statics solution for a redundant soft robot,”
Proc. 13th International Conference on Informatics in Control, Au-
tomation and Robotics, pp. 303–310, 2016.

[21] T. Thuruthel, E. Falotico, M. Manti, A. Pratesi, M. Cianchetti, and
C. Laschi, “Learning closed loop kinematic controllers for continuum
manipulators in unstructured environments,” Soft Robotics, vol. 4,
no. 3, pp. 285–296, 2017.

[22] D. Bruder, B. Gillespie, C. D. Remy, and R. Vasudevan, “Modeling
and control of soft robots using the Koopman operator and model
predictive control,” Proc. Robotics: Science and Systems Conference,
2019.

[23] H. Jiang, Z. Wang, X. Liu, X. Chen, Y. Jin, X. You, and X. Chen, “A
two-level approach for solving the inverse kinematics of an extensible
soft arm considering viscoelastic behavior,” Proc. IEEE International
Conference on Robotics and Automation, pp. 6127–6133, 2017.

[24] R. Reinhart, Z. Shareef, and J. Steil, “Hybrid analytical and data-driven
modeling for feed-forward robot control,” Sensors, vol. 17, no. 2, 2017.

[25] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2014.


