
Behavior Tree Learning for Robotic Task Planning through
Monte Carlo DAG Search over a Formal Grammar

Emily Scheide, Graeme Best, and Geoffrey A. Hollinger

Abstract— We present an algorithm for learning behavior
trees for robotic task and motion planning, which alleviates the
need for time-intensive or infeasible manual design of control
architectures. Our method involves representing the search
space of behavior trees as a formal grammar and searching
over this grammar by means of a new generalization of Monte
Carlo tree search for directed acyclic graphs, named MCDAGS.
Additionally, our method employs simulated annealing to expe-
dite the aggregation of the most functional subtrees. We present
simulated experiments for a marine target search and response
scenario, and an abstract task selection problem. Our results
demonstrate that the learned behavior trees compare favorably
with a manually-designed tree, and significantly outperform
baseline learning methods. Overall, these results show that
our method is a viable technique for the automatic design of
behavior trees for robotic task planning.

I. INTRODUCTION

As robots are employed in increasingly complex domains,
such as for marine monitoring [2], search and rescue [3],
and manipulation [4], they must be capable of adaptively
switching between autonomous behaviors. A control archi-
tecture specifies how the behavior switching reacts to online
observations and the changing state of the environment. The
manual design of control architectures is often infeasible
due to it being inherently time-intensive and requiring expert
knowledge, particularly as robotic tasks become increasingly
complex or applications require larger multi-robot teams.
This motivates the need to automatically generate control
architectures that function well in challenging task domains.

Recently, behavior trees have become a popular control
architecture in robotics and computer games [5]. They offer
advantages in readability, recursivity, and modularity [2], [6],
[7], [8], [9], [10] as compared to finite state machines, deci-
sion trees, and various other controlled hybrid systems [7],
[11]. These advantages are inherent to the behavior tree
design, which is built with respect to tasks rather than
states. Put simply, a behavior tree is a directed rooted tree
that is comprised of leaf nodes, which evaluate conditions
and activate actions, and internal nodes, which describe a
logic structure. Behavior tree operation occurs through the
switching between a number of tasks, based on changing

*Approved for public release; distribution is unlimited. This work was in
part sponsored by DARPA under agreement #HR00111820044 and Office
of Naval Research Grant N00014-17-1-2581. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect those of the sponsor.

*A preliminary version of this work appeared as a workshop paper [1].
*The authors are with the Collaborative Robotics and

Intelligent Systems (CoRIS) Institute, Oregon State Uni-
versity, Corvallis, OR, USA. {scheidee, bestg,
geoff.hollinger}@oregonstate.edu

Fig. 1. MCDAGS searches over a formal grammar that describes behavior
trees by incrementally constructing a DAG (above). Leaf nodes in the DAG
correspond to feasible behavior trees (below). Green DAG nodes represent
grammar derivations that lead to the most promising behaviors trees.

observed input signals [7]. Due to the advantages such a
structured tree brings, it is more feasible to manually design
behavior trees than state-based methods.

Even so, the manual design of a behavior tree can still
become too time-intensive or even impossible for sufficiently
complex robotic task domains. To meet the increasing de-
mand for autonomous robotics, it is vital that this design be
as expedited as possible, without sacrificing functionality. In
order to expedite this process given the difficulties of manual
design, we require an automatic behavior tree generation
method that is robust to task complexity. Given a set of robot
capabilities and a task simulator, the goal of the learning
method is to find the behavior tree structure that maximizes
the expected reward. This is challenging because it is difficult
to design a concise and complete representation of the large
search space of all behavior trees. Additionally, the learning
is required to be with respect to a task simulator, which
typically is computationally expensive and noisy.

In this paper, we propose a new learning algorithm for
generating behavior trees that maximize task performance.
Our algorithm, illustrated in Fig. 1, learns an optimal behav-
ior tree by searching over a formal grammar that represents
the set of well-structured behavior trees. The search is
carried out by a generalization of Monte Carlo tree search

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 904 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received November 2, 2020.

Fig. 2. A manually-designed behavior tree for a marine target search and response application. In the state shown, the robot is carrying an object and
taking it to the drop-off location. Leaf squares are actions, ovals are conditions, ? denotes a fallback, → denotes a sequence, and ! denotes a not-decorator.
The flow of execution is from left to right. Red denotes a node that has failed, green denotes a node that has succeeded, and blue denotes that a node is
currently executing. Unshaded nodes are currently inactive as they are currently not being evaluated or performed.

(MCTS) [12] that searches over a directed acyclic graph
(DAG). This DAG representation enhances the connectivity
between related regions of the search space (see Fig. 1), and
thus allows for better propagation of information that aids the
learning. Our MCTS generalization is inspired by [13], [14],
with improvements regarding how information is propagated
and utilized. MCTS periodically alternates with rounds of
simulated annealing (SA) to expedite the aggregation of
functional subtrees into a more desirable behavior tree. Un-
like previous behavior tree learning methods, our algorithm
is suitable for learning high-level robot behaviors, without
requiring introspection within a problem-specific simulator.

We demonstrate the efficacy of our method in two problem
domains. In an abstract action selection problem, we high-
light the computational benefits of the proposed learning al-
gorithms. In a marine target search and response problem, we
show the applicability of our method to robotics scenarios.
Our method achieves significantly better task performance
compared to methods that have a simplified grammar, use a
tree rather than a DAG, or do not use simulated anneal-
ing. Overall, we demonstrate that our learning algorithm
is capable of generating behavior trees that achieve equal
performance to a manually-designed tree (see Fig. 2).

II. RELATED WORK

Behavior trees have been adopted for a wide range of
applications [5], ranging from video games [15] to marine
robotics [2], [16]. However, the design of behavior trees
requires significant human expertise to be effective for the
problem at hand. Common methods for learning behavior
trees are genetic programming [15], [17], [18], [19], Q-
learning [6], [20], and backchaining [21]. While our learning
algorithm is inspired by these methods, we found them to be
not suitable for robotics applications as the focus is typically
on learning low-level actions, rather than autonomous behav-
iors, often require introspection within a problem-specific
simulator, or need significant human input.

A key difference between these learning approaches is how
they represent a behavior tree, where different representations
warrant different construction methods. One such represen-

tation is a formal grammar, which has the advantage of
having well-defined rules that incrementally build behavior
trees. Grammars have been proposed in [18], [19], which do
not enforce any specific structure. In contrast, [22] uses a
grammar that introduces structural guidance. The grammar
we design in this paper generalizes these grammars to
enforce a more functional behavior tree structure.

These grammar representations of behavior trees open
up the possibility of employing general grammar-search
algorithms developed for other contexts. Grammar search
algorithms seek to find the sequence of production rules
that derives the word that maximizes reward. In [23], an
architectural shape grammar is searched using Q-learning.
In [13], they propose a generalization of MCTS that searches
over a DAG representation of a grammar. We adapt this
method to be robust to challenges in behavior tree learning.

Game tree search can also be described as a DAG search,
where transpositions represent states reachable through mul-
tiple move sequences. MCTS generalizations for DAGs have
been proposed for game trees [14], [24] and adapted for
other contexts [25], [26]. In [14], a spectrum of MCTS
variants are explored, and counterexamples are presented
that show that standard MCTS methods (similar to [13])
fail when the multiple ancestor paths are not accounted for
correctly. Inspired by the study in [14], we propose several
improvements to the grammar search of [13].

While MCTS methods provide asymptotic convergence
guarantees [27], [28], these guarantees do not hold when
generalizing to DAGs [14]. Importantly, MCTS techniques
for DAGs are prone to being stuck in local optima. To over-
come this issue, we complement our MCTS generalization
with alternating rounds of simulated annealing.

A. Background: Behavior Trees

An example behavior tree is shown in Fig. 2. Behavior
trees [7] are directed rooted trees, which are comprised
of control flow, execution, and decorator nodes. The types
of control flow nodes are fallback, sequence, and parallel,
and they determine which nodes are active. Execution node
types are action and condition nodes. Action nodes trigger

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 904 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received November 2, 2020.

execution of robot actions, and take on a value of either
success, running, or failure. Condition nodes are either true
or false depending on the state of the robot and the world.
Decorator nodes have one child condition node by definition,
and, given the state of that condition node as input, return a
state. A common example is the not-decorator node, which
returns the logical complement of the child condition. In
this work, we consider all of these behavior tree components
except parallel nodes, which are less commonly used.

III. PROBLEM FORMULATION

We address the problem of learning behavior trees as
a means of automating the design of a robot’s control
architecture. A robot’s capabilities are described as a set of
actions and its sensors are described as a set of conditions.
The goal is to learn the best assembly of these conditions
and actions in the form of a behavior tree that maximizes
task performance. We formalize this problem as follows.

A robot’s behavior capabilities are defined as actions A
and sensing capabilities are defined as Boolean conditions C.
The action and condition sets are divided into overlapping
groups g ∈ G by category of application, with g = [Ag, Cg]
where Ag ⊆ A is the actions and Cg ⊆ C is the conditions
in a group. These groups guide the learning to connect
related actions and conditions within subtrees. We introduce
a default action a? ∈ A as an action the robot should execute
if all else fails.

These conditions and actions are to be assembled into a
behavior tree. Each behavior tree b in the set of all valid
behavior trees B can be evaluated by running it through
a black box simulator that returns a reward f(b). This
reward function is application-specific and encodes the task
performance achieved if behavior tree b is used for decision
making; we present an example reward function for a marine
target search and response domain later in Sec. V.

Ultimately, we aim to find the behavior tree, b∗ ∈ B, that
achieves the maximum reward; i.e.,

b∗ = argmax
b∈B

f(b). (1)

The goal is for the resulting behavior tree to be the most
efficient and well-suited for autonomously guiding the robot
through the execution of all tasks within its task domain.

IV. BEHAVIOR TREE LEARNING ALGORITHM

We propose a new algorithm for learning behavior trees.
We introduce a formal grammar that encodes the search
space of well-structured behavior trees. This grammar formu-
lates a directed acyclic graph, as illustrated in Fig. 1, which
we search over with a new generalization of MCTS, named
MCDAGS. MCDAGS finds high-performing behavior trees
and a set of promising subtrees. Optimized behavior trees are
constructed by aggregating these promising subtrees through
simulated annealing. This alternating process continues as
shown in Alg. 1. We detail the formal grammar, MCDAGS,
and SA components of our algorithm as follows, then provide
a brief analysis of the computation time and optimality.

Algorithm 1 Behavior tree learning with MCDAGS and SA
Input: formal grammar F consisting of actions Ag

and conditions Cg in groups g ∈ G
Output: behavior tree b∗

1: b∗ ← (), f∗ ← −∞ . Best tree and reward
2: shortcuts← {} . Promising subtrees
3: for i = 1 to num rounds do
4: if i is odd or i < 10 then
5: b, f, new shortcuts← MCDAGS(F)
6: else
7: b, f ← SA(shortcuts, b∗)

8: shortcuts← shortcuts ∪ new shortcuts
9: F ← UPDATEGRAMMAR(F, shortcuts)

10: if f > f∗ then b∗ ← b, f∗ ← s

11: return b∗

A. Behavior Tree Formal Grammar

We design a set of production rules, which together form
a formal grammar. This set of rules guides the autonomous
production of well-structured behavior trees. This set of rules
is universal, and is applicable to any robot or scenario, as
it takes in any set of groups of actions, Ag , and conditions,
Cg , as input.

The structure the grammar enforces has a fallback node
at the root, and then a layer of sequence nodes. Next, it
allows fallback, action, condition, or not-decorator nodes
with the constraint that conditions must appear to the left
of actions. If a fallback was chosen at the previous level,
the deepest level is allowed to contain action, condition, or
not-decorator nodes only. We also enforce that each subtree
only contains actions and conditions that are in the same
group. We also enforce that the right-most subtree is the
default action a?. Figs. 1-3 present example behavior trees
that satisfy this structure.

This grammar is defined as F = [T,N, P, S]. Terminal
characters are T = {?,→, !, [a], (c),), (, z}, where ? denotes
fallback, → denotes sequence, ! denotes not-decorator, [a]
denotes an action a ∈ A, (c) denotes a condition c ∈ C,
(denotes going down a level, and) denotes going up a
level. Character z ∈ Z denotes a shortcut subtree learned
by the MCDAGS rounds. Non-terminal characters are
N = {S, s, s+, A?, sg, fg, Ag, Cg, Čg, r

1
g , l

1
g, r

2
g , l

2
g},∀g ∈ G,

where S is the start character.
The production rules, P , are defined in Table I. Each

behavior tree is constructed by applying a sequence of
production rules. Derivation of the behavior tree starts at the
start character S, which then expands to a fallback node ? at
the root with subtrees below it on level 1, each denoted by the
non-terminal character s (see Table I Part 1). An additional
subtree containing the [a?] action is added to the right side.

Each subtree s is assigned a group g ∈ G, and is expanded
to a sequence node → at the root with child nodes below
it on level 2, specific to group g. The children allowed at
this level are non-terminal characters Ag , Čg , r1g , l1g , and fg
(Part 2.1). Ag converts into any action node [a] in group

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 904 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received November 2, 2020.

TABLE I
BEHAVIOR TREE FORMAL GRAMMAR PRODUCTION RULES.

Terminal characters are shown in red and non-terminals in blue.

1. Setup a fallback node with sequence subtrees:
S → ? (s s+ A?) s+ → s s+ s+ → s
A? → → ([a?])

2. Subtree structure, ∀g ∈ G:
2.1 Level 1 to Level 2:
s → sg sg → → (Ag r1g) sg → → (fg r1g)
sg → → (l1g Ag) sg → → (l1g fg)
2.2 Level 2:
r1g → fg r1g r1g → fg r1g → Ag r1g
r1g → Ag l1g → l1g fg l1g → fg
l1g → l1g Čg l1g → Čg

2.3 Level 2 to Level 3:
fg → ? (Ag r2g) fg → ? (l2g Ag)
2.4 Level 3:
r2g → Ag r2g r2g → Ag

l2g → l2g Čg l2g → Čg

2.5 Conditions and not-decorators:
Čg → Cg Čg → ! (Cg)

3. Insert actions ∀a ∈ Ag and conditions ∀c ∈ Cg:
Ag → [a] Cg → (c)

4. Add shortcut subtrees ∀z ∈ Z:
s → z

g (Part 3). Čg converts into any condition node (c) or not-
decorator node with any child condition ! (c) in group g
(Parts 2.5 and 3). We also enforce that a particular action or
condition can only appear once in a subtree.

Character r1g either adds just one Ag or fg character to
the right of the original location of r1g , or adds one Ag or
fg and another instance of r1g to allow for the addition of
multiple action and fallback nodes (Part 2.2). l1g does the
same except to the left of the original location of l1g , and it
adds Čg characters (which lead to conditions) instead of Ag

(actions) (Part 2.2). This definition ensures that conditions
appear before sibling actions.

Character fg sets up an optional level 3 of the tree by
converting to a fallback node ? at level 2 with another level
of children below it (Part 2.3). The children allowed below
on level 3 are Ag , Čg , r2g , and l2g . The r2g and l2g characters are
equivalent to r1g and l1g except they do not allow the addition
of fallback nodes and subsequent children (Part 2.4).

Information is passed to subsequent rounds by adding the
most promising learned subtrees to the grammar. This allows
the expedited rediscovery of these subtrees in subsequent
rounds. The grammar is updated to include production rules
that represent each of these shortcut subtrees z (Part 4).

B. Monte Carlo DAG Search over a Formal Grammar

Our learning algorithm seeks to find the best behavior
tree b∗ by searching through the grammar F . The grammar
encodes the search space as a DAG. The root represents word
S, edges represent production rules, internal nodes represent
partial derivations, and leaf nodes represent behavior trees.

MCDAGS incrementally constructs and searches over a
single-rooted DAG D. Like MCTS [12], MCDAGS cycles
between four phases: selection, expansion, simulation, and
backpropagation. The key differences to MCTS are in the

Algorithm 2 Search for best behavior tree over grammar F
with Monte Carlo DAG search

1: function MCDAGS(F)
2: D ← {} . DAG
3: b∗ ← (), f∗ ← −∞ . Best tree and reward
4: for fixed number of samples do
5: n← SELECTNODE(D)
6: n+ ← EXPANDORCONNECT(n, F)
7: f ← ROLLOUT(n+) . Reward f(b)
8: if f > 0 then ADDBACKWARDSEDGES(D, n+)

9: BACKPROPAGATE(D, n+, f)
10: if f > f∗ then b∗ ← BT(n+), f∗ ← f

11: shortcuts← GETSHORTCUTS(D)
12: return b∗, f∗, shortcuts

expansion and backpropagation phases, as well as how
intermediate solutions are constructed to pass to subsequent
rounds. Pseudocode is provided in Alg. 2.

In the selection phase (line 5), a leaf node n of D is
selected. We use the standard UCT selection procedure [27],
which recursively follows nodes from the root that maximize
an upper confidence bound computed from learned statistics.

In the expansion phase (line 6), a production rule is applied
to the word represented by n. If the resulting word already
appears in D, then an edge is added from n to this node. If
the resulting word is not in D, then a new node n+ is added
with an edge from n.

The rollout phase (line 7) applies random production
rules to the word represented by n+ until a terminal word,
representing behavior tree b, is reached. The reward function
f(b) is evaluated. Additionally, we create a reconstructed tree
b′ that only contains nodes of b that were activated while
evaluating f . b′ has identical functionality to b, but ensures
the most relevant information is retained for the next round.

If the behavior tree is promising then we add edges to n+

from valid ancestors (line 8), which are found via backward
induction of the production rules up to a fixed depth. This
ensures that promising solutions are well connected in D.

In the backpropagation phase (line 9), the statistics at
ancestor nodes of n+ are updated. Specifically, the reward
f(b) is incorporated into the averages of all ancestors. The
count of visits is incremented for ancestors only on the
selection path. This technique and alternatives are compared
in [14]; we found this technique achieved the best results.

The most promising subtrees are passed to subsequent
rounds by incorporating them into the grammar (Part 4).
These subtrees are selected by extracting the nodes at each
level with the highest reward. The trees b′ are separated into
level 1 subtrees and merged into the retained set.

C. Simulated Annealing for Subtree Selection and Ordering

Although MCDAGS learns a variety of promising sub-
trees, it is not always successful at combining these subtrees
into a single behavior tree. To aid this process, we alternate
with rounds of simulated annealing, which aims to select and
order promising subtrees into an effective behavior tree.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 904 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received November 2, 2020.

The SA algorithm is initialized with the current overall
best-performing behavior tree. At each iteration, neighboring
solutions are constructed from the current solution by swap-
ping two subtrees, removing a single subtree, or inserting a
new subtree, where the possible subtrees are retained from
previous learning rounds. A neighbor solution is selected at
random, evaluated, and compared to the current solution. If
the neighbor is better, then it replaces the current solution.
If it is worse, then it replaces it with some probability
that decreases as the learning progresses. SA returns to the
previous best solution if no progress is being made.

D. Analysis

Our algorithm is an anytime algorithm such that the so-
lution is incrementally improved. In most practical domains,
the computation time will be dominated by calls to the sim-
ulator f(b), which occur once per iteration. MCTS provides
guarantees for asymptotic convergence rates to the optimal
sequence when searching over trees [27], [28]. Unfortunately,
these guarantees do not carry over to searching over DAGs,
as demonstrated with counterexamples in [14]. However, our
results empirically demonstrate performance improvements
due to the DAG structure enabling better information propa-
gation. Simulated annealing provides a theoretical guarantee
for the probability of finding the optimal solution approach-
ing one [29], although in practice restarts are commonly used
to avoid local optima [30], as in our algorithm. While this
analysis does not yield strong guarantees of optimality, this
is unlikely to be achievable by any practical algorithm due to
the complex structure of the search space; hence, randomized
heuristic algorithms are imperative for this learning problem.

V. SIMULATION EXPERIMENTS

We evaluate the performance of our algorithm at learning
high-performing behavior trees in two example domains:
(1) an abstract task assignment problem, and (2) a marine
robotic target search and response scenario. We compare
to the manually-designed tree and a variety of comparison
methods to evaluate the components of our algorithm.

A. Comparison Methods

To evaluate the overall performance and specific function-
ality of various components of our algorithm, we compare to
six restricted versions of our algorithm, as well the manually-
designed tree. Due to the limited availability of comparable
method implementations for direct comparison, we focus
on evaluating restricted versions of our proposed method to
motivate and study the individual components:
• Manual Design: A behavior tree we designed by study-

ing the internals of the problem-specific simulator, and
ensuring that all possible ways of reward collection are
encompassed

• MCDAGS+SA: Our method as described in Sec. IV
• No Default: Our method without providing a default

action a?

• MCTS+SA: Our method except with a tree search struc-
ture instead of a DAG

• MCDAGS: Our method except without the SA rounds
• No Groups: Our method without the input actions and

conditions sorted into groups
• No Restarts: MCDAGS without periodic restarts
• No Structure: No Groups with a simplified grammar that

does not enforce the structure described in Sec. IV-A:

S → ? (l r) S → → (l r)
r → l r r → l l → S
l → [a] ∀a ∈ A l → (c) ∀c ∈ C S → z ∀z ∈ Z

Each trial was run for 50 rounds with an Intel Xeon 3.7GHz
CPU. This took on the order of 1-10 hours, although our
implementation has not been optimized for efficiency.

B. Abstract Task: Multiplication of Conditions

We begin by presenting results for an abstract task that
requires switching between several actions based on which
conditions are currently active. These experiments served as
a useful domain for refining and validating our method ready
for the following marine robotics search scenario.

1) Experimental setup: For these experiments, we define
an abstract set of conditions C = {0, 1, 2, 3} and actions
A = {0, 1, ..., 6}. At each timestep, the correct action to
be chosen is the multiplication of the conditions that are
currently true. If no conditions are true, then the correct
action is 1. The simulator iterates through the power set
of the conditions, and the total reward is defined as the
sum of correct actions. The simulator is a black box, in the
sense that the behavior tree learning algorithms do not know
which specific action-condition combination contributed to
the reward. No groups G or default action a? are used here.
While this abstract problem is relatively small, it requires
learning complex combinations of subtrees, and therefore
serves as a useful domain for evaluating the algorithms.

2) Results: The results are presented in Fig. 4. Firstly,
the methods with MCDAGS significantly outperforms the
MCTS method. This shows that the DAG better captures
the structure of the search space than a tree, and this struc-
ture is successfully exploited by our method. Interestingly,
MCDAGS without SA performed better than with SA, we
believe due to the MCDAGS rounds being much more useful
than SA; this is not the case in the following domain.
Searching over our grammar clearly outperforms the less-
structured grammar, which shows the benefit of restricting
the search space to more meaningful behavior trees.

C. Marine Robotic Target Search and Response

1) Experimental setup: We next present a marine target
search and response scenario. A robot moves through a
marine environment locating targets, disarming sea mines,
and retrieving objects of interest. The goal is to maximize
the completion of these tasks. Each task has a reward, and
the total reward is the sum of these task rewards. The robot’s
conditions and actions are divided into groups: g1 = [{go to
comms, report},{in comms, target found, at surface}], g2 =
[{disarm},{mine found, is armed}], g3 = [{pick up, take to
drop off},{object found, carrying object}], g4 = [{go to likely
target},{likely target found}], g5 = [{random walk},{}], g6

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 904 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received November 2, 2020.

Fig. 3. A learned behavior tree for the marine robotic target search and response domain. Five subtrees were successfully learned. Although the structure
differs from the manually-designed tree, the functionality is near-equivalent and achieves similar task performance.

0 10 20 30 40 50
Rounds

0.5

0.6

0.7

0.8

Re
wa

rd
 (n

or
m

al
ize

d)

MCDAGS+SA
MCTS+SA
MCDAGS
No Structure

Fig. 4. Convergence of various learning algorithms for the multiplication
of conditions task selection problem. The optimal solution in this domain
has a reward of 1.0. Shown are means and standard errors over 50 trials.

= [{shortest path},{}], and g7 = [{coverage},{}]. We define
the default action a? to be the coverage planner to ensure
the robot inherently moves. The robot moves on a roadmap
with a random distribution of targets, mines, and objects of
interest. The robot observes nearby objects with small false-
positive and false-negative rates.

2) Results: In Fig. 3, we show a representative example
behavior tree learned by our method. In comparison with
the manually-designed behavior tree in Fig. 2, our method
achieves similar functionality and performance, despite the
variation in the structure. We observe that subtrees for
g1, g2, g3, and g4 were learned such that all actions and
crucial conditions are present. We note the learning chose
to replace the default coverage planner with a different
action in this instance, but this was not always the case. For
100 trials on different worlds, the learned tree achieves 2%
better performance on average. This demonstrates that our
algorithm is capable of learning a robust, high-performing
behavior tree that is comparable to a manually-designed tree.

We compare the performance of various methods in Fig 5.
MCDAGS+SA outperforms all of the comparison learning
methods and reaches a similar performance to the manually-
designed tree (reward 1.0). Our full method significantly out-
performs the cases where MCDAGS is replaced with MCTS,
which shows the benefits of searching over a DAG rather
than a tree. Additionally, we observe a small improvement
when alternating between SA and MCDAGS. When there is

0 10 20 30 40 50
Rounds

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
wa

rd
 (n

or
m
al
ize

d)
Manual Design
MCDAGS+SA
No Default
MCTS+SA

MCDAGS
No Groups
No Structure

Fig. 5. Convergence of various learning algorithms for the marine target
search and response scenario. Rewards are normalized with respect to
Manual Design. Shown are medians and standard errors over 10 trials.

no enforced structure, the learning was relatively poor, which
shows the benefit of our structured grammar. Similarly, our
method without restarts also did poorly (not shown in plot),
showing the need to divide the learning into rounds. The
learning performed significantly better when the actions and
conditions are grouped together. Marginal improvement was
achieved when a? is provided, showing that having this
information speeds up the learning but good solutions are
still found without this information.

VI. FUTURE WORK

We presented an algorithm that generates behavior trees
with comparable performance to a manually-designed be-
havior tree, and showed the benefits of using a grammar that
enforces functional structure, a DAG instead of a tree, and
simulated annealing for expediting the aggregation of learned
subtrees. In the future, it would be interesting to investi-
gate online refinements of learned behavior trees. A related
challenge would be to learn to formulate specific actions in
conjunction with their optimal placement within a behavior
tree. Additionally, it would be pertinent to demonstrate the
efficacy of this method for more complex domains, such as
those involving heterogeneous multi-robot teams [31].

VII. ACKNOWLEDGMENT

We would like to thank John Keller for the behavior tree
implementation.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 904 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received November 2, 2020.

REFERENCES

[1] E. Scheide, G. Best, and G. A. Hollinger, “Learning behavior trees for
robotic task planning by Monte Carlo search over a formal grammar,”
in Proc. RSS Workshop on Learning (in) Task and Motion Planning,
2020.

[2] P. Ögren, “Increasing modularity of UAV control systems using
computer game behavior trees,” in Proc. AIAA Guidance, Navigation,
and Control Conf., 2012, p. 4458.

[3] Y. Tian, K. Liu, K. Ok, L. Tran, D. Allen, N. Roy, and J. P. How,
“Search and rescue under the forest canopy using multiple UAS,” in
Proc. Int. Symp. on Experimental Robotics, 2018, pp. 140–152.

[4] J. A. Bagnell, F. Cavalcanti, L. Cui, T. Galluzzo, M. Hebert,
M. Kazemi, M. Klingensmith, J. Libby, T. Y. Liu, N. Pollard et al.,
“An integrated system for autonomous robotics manipulation,” in Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2012,
pp. 2955–2962.

[5] M. Iovino, E. Scukins, J. Styrud, P. Ögren, and C. Smith, “A survey of
behavior trees in robotics and AI,” arXiv preprint arXiv:2005.05842,
2020.

[6] B. Banerjee, “Autonomous acquisition of behavior trees for robot
control,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2018, pp. 3460–3467.

[7] M. Colledanchise and P. Ögren, Behavior trees in robotics and AI: An
introduction. CRC Press, 2018.

[8] A. Klöckner, “Interfacing behavior trees with the world using descrip-
tion logic,” in Proc. AIAA Guidance, Navigation, and Control (GNC)
Conf., 2013, p. 4636.

[9] C. I. Sprague, Ö. Özkahraman, A. Munafo, R. Marlow, A. Phillips, and
P. Ögren, “Improving the modularity of AUV control systems using
behaviour trees,” in Proc. IEEE/OES Autonomous Underwater Vehicle
Workshop (AUV), 2018.

[10] C. Paxton, A. Hundt, F. Jonathan, K. Guerin, and G. D. Hager,
“CoSTAR: Instructing collaborative robots with behavior trees and
vision,” in Proc. Int. Conf. on Robotics and Automation (ICRA), 2017,
pp. 564–571.

[11] P. I. Cowling, M. Buro, M. Bida, A. Botea, B. Bouzy, M. V. Butz,
P. Hingston, H. Muñoz-Avila, D. Nau, and M. Sipper, “Search in Real-
Time Video Games,” in Artificial and Computational Intelligence in
Games. Schloss Dagstuhl, 2013, vol. 6.

[12] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of Monte Carlo tree search methods,” IEEE Trans. on
Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–
43, 2012.

[13] F. de Mesmay, A. Rimmel, Y. Voronenko, and M. Püschel, “Bandit-
based optimization on graphs with application to library performance
tuning,” in Proc. Int. Conf. on Machine Learning (ICML), 2009, p.
729–736.

[14] A. Saffidine, T. Cazenave, and J. Méhat, “UCD: Upper confidence
bound for rooted directed acyclic graphs,” Knowledge-Based Systems,
vol. 34, pp. 26–33, 2012.

[15] M. Colledanchise, R. Parasuraman, and P. Ögren, “Learning of be-
havior trees for autonomous agents,” IEEE Trans. on Games, vol. 11,
no. 2, pp. 183–189, 2018.

[16] S. Bhat, I. Torroba, Ö. Özkahraman, N. Bore, C. Sprague, Y. Xie,
I. Stenius, J. Severholt, C. Ljung, J. Folkesson et al., “A cyber-
physical system for hydrobatic AUVs: System integration and field
demonstration,” in Proc. IEEE OES Autonomous Underwater Vehicles
Symp., 2020.

[17] C.-U. Lim, R. Baumgarten, and S. Colton, “Evolving behaviour trees
for the commercial game DEFCON,” in Proc. European Conf. on the
Applications of Evolutionary Computation, 2010, pp. 100–110.

[18] A. Neupane and M. Goodrich, “Learning swarm behaviors using gram-
matical evolution and behavior trees,” in Proc. Int. Joint Conference
on Artificial Intelligence (IJCAI), 2019, pp. 513–520.

[19] D. Perez, M. Nicolau, M. O’Neill, and A. Brabazon, “Evolving
behaviour trees for the Mario AI competition using grammatical evo-
lution,” in Proc. European Conf. on the Applications of Evolutionary
Computation, 2011, pp. 123–132.

[20] R. Dey and C. Child, “QL-BT: Enhancing behaviour tree design and
implementation with Q-learning,” in Proc. IEEE Conf. on Computa-
tional Intelligence in Games (CIG), 2013.

[21] M. Colledanchise, D. Almeida, and P. Ögren, “Towards blended
reactive planning and acting using behavior trees,” in Proc. IEEE Int.
Conf. on Robotics and Automation (ICRA), 2019, pp. 8839–8845.

[22] M. Nicolau, D. Perez-Liebana, M. O’Neill, and A. Brabazon, “Evo-
lutionary behavior tree approaches for navigating platform games,”
IEEE Trans. on Computational Intelligence and AI in Games, vol. 9,
no. 3, pp. 227–238, 2016.

[23] M. Ruiz-Montiel, J. Boned, J. Gavilanes, E. Jiménez, L. Mandow, and
J.-L. Pérez-de-la-Cruz, “Design with shape grammars and reinforce-
ment learning,” Advanced Engineering Informatics, vol. 27, no. 2, pp.
230–245, 2013.

[24] B. E. Childs, J. H. Brodeur, and L. Kocsis, “Transpositions and
move groups in Monte Carlo tree search,” in Proc. IEEE Symp. on
Computational Intelligence and Games, 2008, pp. 389–395.

[25] D. Bauer, T. Patten, and M. Vincze, “Monte Carlo tree search on
directed acyclic graphs for object pose verification,” in Proc. Int. Conf.
on Computer Vision Systems, 2019, pp. 386–396.

[26] A. Pélissier, A. Nakamura, and K. Tabata, “Feature selection as Monte-
Carlo search in growing single rooted directed acyclic graph by best
leaf identification,” in Proc. SIAM Int. Conf. on Data Mining, 2019,
pp. 450–458.

[27] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,”
in Proc. European Conf. on Machine Learning, 2006, pp. 282–293.

[28] G. Best, O. Cliff, T. Patten, R. R. Mettu, and R. Fitch, “Dec-MCTS:
Decentralized planning for multi-robot active perception,” Int. J.
Robotics Research, vol. 38, no. 2-3, pp. 316–337, 2019.

[29] V. Granville, M. Krivanek, and J. Rasson, “Simulated annealing: A
proof of convergence,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 16, no. 6, pp. 652–656, 1994.

[30] F. Mendivil, R. Shonkwiler, and M. Spruill, “Restarting search algo-
rithms with applications to simulated annealing,” Advances in Applied
Probability, vol. 33, no. 1, pp. 242–259, 2001.

[31] M. Colledanchise, A. Marzinotto, D. V. Dimarogonas, and P. Ögren,
“The advantages of using behavior trees in mult-robot systems,” in
Proc. Int. Symp. on Robotics (ISR), 2016.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 904 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received November 2, 2020.

