
Robotic Information Gathering using Semantic Language Instructions

Ian C. Rankin, Seth McCammon, and Geoffrey A. Hollinger

Abstract— This paper presents a framework that uses lan-
guage instructions to define the constraints and objectives
for robots gathering information about their environment.
Designing autonomous robotic sampling missions requires deep
knowledge of both autonomy systems and scientific domain
expertise. Language commands provide an intuitive interface
for operators to give complex instructions to robots. The
key insight we leverage is using topological constraints to
define routing directions from the language instruction such
as ‘route to the left of the island.’ This work introduces three
main contributions: a framework to map language instructions
to constraints and rewards for robot planners, a topology
constrained information gathering algorithm, and an automatic
semantic feature detection algorithm for upwelling fronts. Our
work improves on existing methods by not requiring training
data with language instruction to planner constraint pairs,
allowing new robotic domains such as marine robotics to
use our method. This paper provides results demonstrating
our framework producing correct constraints for 84.6% of
instructions, from a systematically generated corpus of over
1.1 million instructions We also demonstrate the framework
producing robot plans from language instructions for real-world
scientific sampling missions with the Slocum underwater glider.

I. INTRODUCTION

Designing information gathering missions for robots re-
quires either setting reward functions, cost functions, and
constraints for the planning algorithm or manually pro-
gramming routes. These functions are typically challenging
to define and require combined knowledge of autonomy
systems and the application domain. Additionally, routes
hand-designed by humans is time-consuming [1] and often
leads to sub-optimal information gathering routes [2]. In this
paper, we propose a framework which allows the user to
set mission goals, constraints, and reward functions more
naturally using language instructions. This framework can
be applied to any field robotic domain that semantic features
can be extracted from the environment. However, we focus
on the marine robotics task of studying coastal upwelling
fronts. These fronts are locations where cold, nutrient rich,
and deep water is pushed to the surface. The mixing of the
warm surface water with the deep ocean water and currents
caused by the fronts are of interest to both biological and
physical oceanography [3]. Our framework allows complex
language instructions for information gathering tasks; an
example command and planned path is given in Figure 1.

This research was funded in part by NSF grants IIS-1723924
and IIS-1845227. Authors are with the Collaborative Robotics and
Intelligent Systems (CoRIS) Institute, Oregon State University,
Corvallis OR, United States {rankini, mccammos,
geoff.hollinger}@oregonstate.edu. Thanks to Pat
Welch from the College of Earth, Ocean, and Atmospheric Sciences for
providing the ocean glider mission descriptions.

The main challenge in generating robot plans from lan-
guage instructions is grounding the language to real features
and actions in the environment. Language instruction ground-
ing is broadly defined as mapping language instructions to
real-world robot plans [4]. This requires identifying salient
features in the environment then mapping language instruc-
tions to these features. Previous works have performed this
grounding, but are designed for indoor environments with
well defined features, and require a large corpus of training
data. Neither of these exist in field robotic domains.

We separate the language understanding task and the
detection of semantic features into separate problems to
simplify each solution. We ground language instructions
without requiring a corpus of mappings from instructions
to robot plan constraints. This mapping is done using the
dependency information contained in Universal Dependency
(UD) trees, a parse of natural language sentences [5].
The robot plan constraints define the robot action, reward
function, information field, and route constraints. We use
homology constraints [6] to define the robot path as they
lend themselves to language routing instructions such as
‘route to the left of feature A’. These homology constraints
prescribe the information gathering paths to trajectories in
distinct homology classes.

This paper introduces three main contributions. The
first contribution is a grounding framework which directly
grounds language instructions from the relationship infor-
mation in a UD tree to robot plan constraints. The second
contribution is a homology-constrained information gather-
ing algorithm which uses Dijkstra’s algorithm to precompute
an h-augmented graph, a graph augmented with topological
information [6], to ensure expansion of the information
gathering algorithm to locations that satisfy the given con-
straints. The final contribution is a semantic feature extractor
to automatically locate coastal upwelling fronts using a
Convolutional Neural Network (CNN). Initial work from this
paper was first presented in a related workshop paper by
the authors [7]. This work extends the previous work by
expanding the results of the language grounding framework.

II. RELATED WORKS
A. Language grounding

One area where there has been a significant amount of
research on grounding language instructions to robot plans is
embodied AI. This field studies visually-grounded navigation
instruction following and question answering [8], [9], and
combine the language understanding and feature recognition
into a single framework. However, the semantic grounding
techniques commonly used in embodied AI systems focus on



end-to-end deep learning methods which require a significant
amount of training data. This training data is gathered from
photorealistic simulated indoor environments allowing the al-
gorithms to train over thousands to millions of iterations [9].
Unfortunately, it can be difficult to collect the large quantities
of data or simulation needed to train these networks from
field robotics applications. This makes current embodied AI
algorithms infeasible for these environments.

An alternative way to ground language instructions is
to use natural language dependency parsers, such as the
Stanford Parser [10], to find the structure of the language
instructions before grounding. Dependency parsers extract a
UD tree [5], which decomposes a sentence into its compo-
nent grammatical structures. In a UD tree each word has a
tag describing its dependency relationship, such as object or
determiner, and the root of the relationship. These parsers
use a Probablistic Context-Free Grammar (PCFG) model to
predict the dependencies [11]. Recent dependency parsers,
such as the Stanford Parser [10], use neural-networks to
model the PCFGs, which predict a dependency tag for each
input word. In our work we use the Stanza library [12],
an implementation of the Stanford Parser, to generate the
dependency trees which uses a bi-directional LSTM model
proposed by Qi et al. [13].

Previously the shape of the dependency tree has been
used to inform the language grounding process [14], [15].
More recent works have focused on grounding language
instructions using neural networks for mapping semantic
features to language instructions [16], mapping instructions
to skills [17], and learning unknown object groundings [18].
These methods all depend on large libraries of training
data in order to operate effectively. The closest work to
our proposed approach is Howard et al. [19], which uses
a probabilistic graphical model with the shape generated
from the UD tree to construct robot plan constraints from
natural language instructions. One common element across
natural language mission descriptions is defining the mission
relative to features in the environment using relational terms
such as ‘around’, ‘via’, or ‘north of’. By directly encoding
the groundings of these terms, we can produce groundings
without requiring a training corpus.

B. Semantics and Homology

We use semantic features to provide an interface between
the grounding framework and the robotic planner. Semantic
maps and features have been used in robotics in indoor
environments extensively [20], [21], [22]. Semantic features
for these environments are easy to determine using names of
rooms like “kitchen”. However, in unstructured field robotic
domains finding viable semantic features is challenging.
Fortunately, in our domain scientifically significant ocean
features such as upwelling fronts provide nameable semantic
features for planning.

In this paper we use homology constraints to allow the
user control over the path the robot takes rather than only
the start and goal locations. Two robot paths are defined to be
in the same homology class if they share start and end points

and they form the boundary of an area that does not contain
or intersect with any of the obstacles [6]. Previous works
have used homology classes during robot planning [23],
[24]. Bhattacharya et al. [6] shows using an h-augmented
graph standard graph search algorithms, such as A*, are
still valid for any admissible function valid in the standard
graph. We use these results to apply the h-augmented graph
to the informative path planning problem. Although previous
works have used topology to inform robot motion planning
[6], [25], and for informative path planning [23], [26], the
desired topological classes are unambiguous and known. In
this work we relax this assumption, and construct topological
route constraints from language instructions.

III. SEMANTIC FEATURE DETECTION

In order to generate features for the planning and ground-
ing framework, semantic features need to be extracted from
the environment. Some of these features such as island, cities,
or shipping lanes can come from maps; however, others need
to be detected from the environment. In our marine robotics
domain, we want to extract coastal upwelling fronts from
the environment. These salient scientific features can then be
used as semantic features within our grounding framework.

Real-world upwelling fronts are subject to large amounts
of noise, making detection challenging. We propose a CNN
approach to detect the upwelling fronts. Since we have small
amounts of labeled data from glider missions performed off
the Oregon coast, we selected a small supervised CNN, with
three convolutional layers, and two fully connected layers,
for our network architecture. We used salinity generated
by the Regional Ocean Modeling System (ROMS) for the
Oregon Coast for our training data [27]. We tried two
different representations of the input. The first representation
is an overhead patch representation extracted from a grid of
surface salinity. The second representation is coast oriented
depth slices. These slices find the point nearest to the coast
to the query point and orient the slice in that direction.
This representation has the benefit of directly encoding the
direction of the coast into the data making it both robust
to orientation change and adding depth information. Both
representations have a single label output indicating if the
center of the slice/path is an upwelling front.

IV. GROUNDING LANGUAGE INSTRUCTIONS

After we have a list of semantic features, we ground the
language instruction by finding a mapping from the language
instruction to a robot planner constraints. An example of a
grounding in the phrase “Sample the upwelling front, routing
to the east of the island” is the word ‘routing’ which maps
to a constraint on the way that the robot travels through
the world. To build these groundings we use the Stanford
Parser to create a Universal Dependency (UD) tree [28], [5].
Universal dependencies is a language-agnostic framework for
annotation of grammar. We use these annotations to deter-
mine groundings for actions, physical features, modifiers of
features, and path constraints.



Fig. 1: System diagram for generating a full robot plan from the command “Sample the upwelling front, routing to the east of the island.” The instruction
uses the Stanford parser to generate a UD tree. We use our grounding framework to generate a list constraints from the UD tree and the list of semantic
features from either a known list or using the automatic feature detector. The constrained information gathering algorithm takes the planner constraints and
semantic features of the environment and generates robot plans.

A. Identifying Constraint Types
Each node in the UD tree produced by the parser repre-

sents a word in the sentence, with a dependency relationship
to the word’s parent. The dependency encodes the structure
of the sentence, which is used to determine the type of
groundings for each word. Several key dependency relation-
ships in robot instructions and how each is handled are given
below.
• Root Node (root): Match the main verb to a planner.
• Adjective and Adverb modifiers (amod, advmod):

Attach the word as a modifier to its parent node to be
used to differentiate between possible groundings.

• Object, Oblique nominal, nominal modifier, con-
junct, parataxis (obj, obl, nmod, conj, parataxis):
Object nodes that require being ground to features in
the environment.

• Compound: Compounds are merged with their parent.
Once the UD tree is generated, we use a breadth-first

search to iterate through each node in the tree. At each node,
depending on its dependency relationship, we ground the
word using a lookup table of possible meanings. Specifically,
this lookup maps a word to one of multiple types of semantic
constructs: object features in the environment, actions (e.g.
Move, Sample), modifier (e.g. Left, North), adposition (e.g.
to, from), argument (e.g. routing), or objective (e.g. gradient
magnitude). In practice, most nodes are attached to their
parents modifying the grounding of objects or actions.

The root of the UD tree is the action word whose ground-
ing is the particular action planner that is used to plan the
final robot behavior (e.g. route following planner or infor-
mation gathering planner). The remainder of the groundings
provide this planner with its objectives and constraints. For
example in the UD tree shown in Figure 1, ‘routing to the

east of the island’ imposes a constraint on the planner, while
‘the upwelling front’ provides the objective.

B. Match objects to environment

To fully ground a language instruction, a mapping is
required between each obj / obl / nmod / conj / parataxis
node in the tree and the specific physical feature or set
of features in the environment it refers to. This mapping
is performed by iterating through the tree using a breadth
first search and matching each word to a list of possible
groundings. Each grounding in the list has a unique name and
a set of keywords which describe the grounding (e.g. ‘Shaw
Island’ is the unique name and keywords would be ‘island’,
‘Shaw’). Each keyword is a member of a Wordnet synonym
set, which has a semantic meaning behind each keyword
[29]. Wordnet is a lexical database of English words, where
each word is grouped into sets of synonyms. During a search
for a given word (e.g. ‘isle’), the algorithm first searches
through the list to find exact matches of the name. Failing to
do so, the algorithm then looks for exact keyword matches,
(e.g. looking for the word ‘island’, would find all groundings
with the keyword ‘island’). If this search also fails, the
algorithm uses the Resnik [30] revised Wu and Palmer [31]
method of measuring semantic relatedness on the synonym
set. If this similarity is greater than a user-defined parameter
then that feature matches with the tested keyword and is
added to the possible grounding list. In practice we found that
setting this threshold to 0.875 produced good mappings from
words to groundings without using the test set of instructions.

C. Apply Modifiers

After mapping words groundings in the environment, a
word may ground to multiple features if it does not uniquely



map to a single feature. For example, the phrase ‘upwelling
front’ may result in a list of possible groundings if there
is more than one upwelling front in the environment. The
grounding modifiers derived from an object node’s children
can be used to help to identify a mapping to a single feature.
The parse function applies modifier functions on lists of
groundings (e.g. the ‘leftmost’ or ‘southern’), and resolves
groundings to strict constraints on the action’s planner. This
function also checks for the validity of groundings (e.g. a
reward function passed to a move action is invalid).

Finally, the number of groundings for each node is
checked. If the word is plural, multiple groundings are
allowed. Otherwise, if multiple groundings remain, such as
our example instruction, the system enters a clarification state
which asks the user to choose which of the list of possible
groundings is correct. This failure mode can occur either
if the framework misunderstands something or if the user
does not fully specify the grounding. The result of applying
groundings to the parsed instruction is a set of relational
constraints on actions (e.g. ‘to the east of the island’).

D. Preprocessor

The ability of our grounding framework to correctly
ground a sentence is reliant on the ability of the parser to
construct the correct UD tree from the language instruction.
To improve the parser’s performance, we perform a set of
systematic find-and-replace preprocessing steps using regex.
The first of these is (‘routing’ → ‘routing to the’). The
second is replacing robot names, which often contain numer-
als which confuse the parser, with named tokens which the
parser recognizes as named entities. Because we use topolog-
ical constraints, which do not restrict distance, all references
to metric distances are removed from the statements.

V. HOMOLOGY CONSTRAINED PLANNING

A. Semantic Topology Augmented Graph

An intuitive way to apply the constraints produced by the
grounding framework to paths within the planning domain
is to understand the constraints as identifying a particular
homology class of trajectories between the robot’s current
position and its goal. To build a plan for the robot using these
constraints, we turn to homology augmented graphs [6]. The
homology augmented graph expands a roadmap, such as a
Probabilistic Roadmap (PRM) [32], in R2 with an additional
dimension that contains information about the homology
class of trajectory required to arrive at a particular vertex.
The homology information is encoded in a h-signature, a
variable which uniquely describes the topological class of a
given trajectory belongs to. The h-signature used in this work
is a discrete version of the continuous winding number used
in Bhattacharya et al. [25]. Our homology signature uses the
same parallel non-intersecting rays as Kim et al. [33] for the
discrete winding number, which means each obstacle either
has a {+}, {0}, or {-} signature.

In our planning problem, topological features can fall in
one of two classes: points of interest and hazards. Depending
on the mission specification, a geographic or oceanographic

Fig. 2: H-signatures for different start, Xs, and goal, Xg , locations and
left or right mappings. Red paths are ‘right’ (θ ≤ 0), blue paths are ‘left’
(θ > 0).

feature can fall in either category (though never both at the
same time). Hazards are features that should be avoided,
and that act as the obstacles in the environment which
partition it into different topological trajectory classes. Points
of interests are named points of our mission, and must be
included as vertices of the h-augmented graph. Features are
identified as points of interest or hazards by the type of
planner constraint that references them: hazards for routing
constraints, points of interest for destinations. While gener-
ating the h-augmented graph we only use features listed in
the the instruction, so we can guarantee the results of the
mapping to be topologically unique classes.

When planning with a topological constraint, the first
step is to construct our h-augmented graph. We begin this
process by adding all points of interest as vertices, and then
transition to randomly sampling the environment to construct
a PRM. Then, we construct our h-augmented graph using the
method described in [6], using the hazards as the represen-
tative points of obstacles. Once the h-augmented graph is
constructed, we translate the constraints from the mission
description into a desired h-signature. We first map absolute
direction (e.g. north or south), to the relative directions left
and right, based on the robot’s direction of travel. Then, we
need to determine what the appropriate h-signature is for the
relative directions. As shown in Figure 2, the h-signature is
guaranteed to be {+} for left instructions and {-} for right
instructions, since they will always cross the reference ray
left-to-right and right-to-left, respectively. However, the {0}
homology signature is ambiguous and could map to either
direction. We determine which mapping to use by checking
the h-signature of the straight line path between the start and
goal and determining if that path is to the ‘left’ (θ > 0) or
‘right’ (θ ≤ 0) of the obstacle. If the straight line path has
the h-signature {0}, then the mapping is clear. Otherwise, if
it is to the left with signature {+}, then {0} must be to the
right, and vice-versa if it is to the right with signature {-}.

B. Constrained information gathering algorithm

In this paper we use a modified formulation of the Infor-
mative Path Planning problem [34]. The standard formulation
is interested in finding an optimal path for a robot which
maximizes the information gathering reward function, sub-
ject to a cost budget. We reformulate it to look for an optimal
path subject to both cost, goal, and homotopic constraints
given by the language instruction.



Fig. 3: ROC curves for SVM and CNN upwelling front detectors using the
patch and slice data representations.

Planning for the constrained information gathering prob-
lem is performed on the semantic h-augmented graph. This
graph allows easy checking of the homology constraint
during expansion of the search tree. As the informative path
planning problem is an NP-hard problem [35], we use a
Monte-Carlo Tree Search (MCTS) to refine the search of the
tree to areas of higher reward [36]. We use MCTS, since its
expansion and rollout function can be constrained to always
produce paths that meet the desired routing constraints.

To ensure the homology constraint is met, a precomputed
list of the lowest cost path in each homology class is used.
We perform this precomputation with Dijkstra’s algorithm
rooted at the goal node. During the MCTS tree expansion,
we only expand to nodes where the cost of the path plus the
shortest precomputed path of the given homology class is less
than the budget. In the rollout stage of the MCTS algorithm,
random actions are selected until B < C(P) + C(Ppre),
where Ppre is the shortest path that satisfies all constraints
from the precomputed list. This reduces the search space to
areas of only viable expansion. Additionally, the approximate
rewards from each rollout stage is a better approximation of
rewards on that sub-tree due to the precomputed path forcing
reasonable paths from the rollout function.

VI. RESULTS

The results are broken into three sections: results for the
automatic upwelling front detector, results for the ground-
ing instructions, and end-to-end results for the grounding
framework and planner. We use a test dataset of upwelling
fronts labeled by experts to verify the detection algorithm.
To validate the grounding framework we tested it on a
library of 1.1 million systematically generated language
instructions. Finally, end-to-end results of instructions for
real-world marine robotic sampling missions performed at
Oregon State University (OSU) are grounded to a full robot
plan. Comparison methods are not used in the language
grounding task because to the best of the authors knowledge
there are no existing methods which can ground language
instructions to field robotic sampling tasks.

A. Upwelling front detector

Expert labeled data is used to train and test the upwelling
front detector. The labeled data used to train the upwelling
front detector came from 7 Slocum glider deployments done
by OSU between 2011 to 2013. The data collected was hand-
labeled by an expert researcher in OSU’s College of Earth
Ocean, and Atmospheric Sciences (CEOAS) with upwelling
front positions. We then extracted surface patches and depth
slices from the ROMS model output at each label. Since
upwelling fronts occur relatively rarely in the ocean, there
is an imbalance in the data. To prevent bias during training
the minority upwelling front data was oversampled.

Our data was split into training, validation, and test sets.
The test and validation sets were each a complete deployment
chosen at random from the entire dataset. We compare
the performance of our proposed CNN and Support Vector
Machine (SVM) as baseline method using both the patch and
slice representations. Results of the upwelling front detector
are shown as Receiver Operator Characteristic (ROC) curves
for the test data in Figure 3. These results show that the
classifier performance relies on the data representation more
than the particular classifier since representing the data as
a slice data outperformed the patch representation for both
classifiers. This can be attributed to the slice data better
representing the data by providing the classifier rotation
invariance to the coast line, as well as the additional in-
formation added through the depth data.

B. Grounding language instructions

We test the language grounding framework by finding the
planner constraints of 1.1 million automatically generated
language instructions from phrasal templates and checking
to the true planner constraints. An example phrasal template
is “{move action} to {feat 1} by going to the {dir} of
{feat 2}” where each variable in brackets is replaced from
a list of possibilities. During the procedural generation of
the language commands, we also record the corresponding
ground truth plan constraints. We use 10 phrasal templates
that are representative of common language instructions in
our domain of scientific sampling missions to generate a
testing library of 1.1 million language instructions and their
corresponding constraints. This process involves iterating
through all possible combinations of features, directions,
action words, reward functions, and information objective
types for the map shown in Figure 1.

We compare the ground truth constraints with those pro-
duced by our grounding framework. The results from this
test are shown in Figure 4. These results show a low failure
rate of 6.51%. In cases where the grounding fails to produce
correct results, the most common cause of failure was an
incorrect UD tree produced by the parser. An example failed
instruction is “Move to upwelling front alpha, routing to
the left of upwelling front bravo and routing to the right of
Shaw island.” The grounding framework failed to produce
the correct constraints for this instruction because the parser
incorrectly assigns ‘to the right of Shaw Island’ as a modifi-
cation redundantly clarifying the position of upwelling front



(a) All instructions; 1 149 576 total in-
structions.

(b) Route following instructions;
855 000 total instructions.

(c) Information gathering instructions;
295 576 total instructions.

Fig. 4: Accuracy of groundings from phrasal templates. Figure (a) shows all instructions from Figures (b) and (c). Request Clarification uses the method
outlined in Section IV-C

Fig. 5: Full system results compared with expert designed routes and paths
without topological constraints. The solid lines using topological constraints
are closer to the expert-designed paths. Instructions for these paths are given
in Section VI-C.

bravo rather than assigning it as a new routing instruction.
Future work could potentially handle parser errors using
a machine learning approach trained on synthetic data to
generate constraints from the parse tree.

C. Full system results
We validate the full system using several mission de-

scription of real ocean glider missions undertaken at OSU
provided by scientists in the OSU CEOAS. Three instructions
for a robotic sampling mission were given for different
ocean gliders to be performed at the same time. These three
instruction are shown verbatim below, see Figure 5.
• Fly osu683 2km south of the NH line starting at NH1

and going to NH30, with the initial waypoint being the
offshore point.

• Fly osu684 on the NH line starting at NH1 and going
to NH29.5, with the initial waypoint being the offshore
point.

• Fly osu686 2km north of the NH line starting at NH1
and going to NH29, with the initial waypoint being the
offshore point.

The NH line is a line of constant latitude at N44◦39.2′, NH1
is on the NH line 1 nautical mile from the Oregon Coast
line, and NH30 is on the NH line 30 nautical miles from the
coast line. An issue with these language instructions being
converted directly to our planning framework is the distance
above or below the NH line desired. As mentioned previously
in Section IV-D, our routing framework produces topological
routing constraints, which do not encode distance.

The resultant paths from the first three language instruc-
tions are shown in Figure 5. These paths do not exactly

follow the parallel plans described by instructions, but they
generate a similar path that fits in the context of the topolog-
ical constraints used by our framework. We believe the paths
using topological constraints meet the spirit of the provided
instructions with metric constraints. These results show that
our method works end-to-end, generating constraints from a
set of language instruction and outputting a robot executable
plan for a real-world robotic sampling mission.

While our framework is able to generate paths for the
above set of instructions. We also received an additional set
of three instructions. One path is shown verbatim below.
• Fly osu683 roughly parallel to the 400m isobath for a

line 4km long centered on the NH line.
Our system fails to ground these instructions to a path since
it has no notion of isobathymetry, and does not understand
placing a route centering an isobathymetry line at a line of
constant latitude. We leave this as an avenue for future work.

VII. CONCLUSION

In this paper, we have presented a framework for generat-
ing robot plans from language instructions. This framework
is well suited for field robotic applications where acquiring a
large corpus of language instructions to robot plan constraints
is infeasible. By using a semantic h-augmented graph, we are
able to generate robot plans following topological constraints
derived from natural language instructions. Finally, we pre-
sented an automatic upwelling front detector which can
detect the locations of upwelling fronts from ROMS model
data. Combined with the semantic language groundings, this
detector forms a complete system for information gathering
plans to be generated from language instructions. We demon-
strated the system correctly grounding over 970 000 unique
language instructions, as well as grounding instructions for
a real robotic sampling missions performed by OSU into
executable robot paths. In future work we would like to
investigate ways of improving the language understanding
of novel instructions without relying solely on hand-designed
rules on the UD tree. These could help alleviate the errors in
grounding caused by the Stanford Parser. We would also like
to investigate an automatic method for understanding novel
words without a predefined lookup of possible groundings.
Finally, we would like to investigate ways to handle temporal
constraints beyond the current spatial constraints.



REFERENCES

[1] T. Somers, N. R. J. Lawrance, and G. A. Hollinger, “Efficient learning
of trajectory preferences using combined ratings and rankings,” in
Proc. Robotics: Science and Systems Conference Workshop on Math-
ematical Models, Algorithms, and Human-Robot Interaction (RSS),
Boston, MA, 2017.

[2] T. Somers and G. A. Hollinger, “Human–robot planning and learning
for marine data collection,” Autonomous Robots, vol. 40, no. 7, pp.
1123–1137, 2016.

[3] Y. Zhang, M. A. Godin, J. G. Bellingham, and J. P. Ryan, “Using an
autonomous underwater vehicle to track a coastal upwelling front,”
IEEE Journal of Oceanic Engineering, vol. 37, no. 3, pp. 338–347,
2012.

[4] D. Arumugam, S. Karamcheti, N. Gopalan, E. C. Williams, M. Rhee,
L. L. Wong, and S. Tellex, “Grounding natural language instructions
to semantic goal representations for abstraction and generalization,”
Autonomous Robots, vol. 43, no. 2, pp. 449–468, 2019.

[5] J. Nivre, M.-C. De Marneffe, F. Ginter, Y. Goldberg, J. Hajic, C. D.
Manning, R. McDonald, S. Petrov, S. Pyysalo, N. Silveira et al.,
“Universal dependencies v1: A multilingual treebank collection,” in
Proc. International Conference on Language Resources and Evalua-
tion (LREC), 2016, pp. 1659–1666.

[6] S. Bhattacharya, M. Likhachev, and V. Kumar, “Topological con-
straints in search-based robot path planning,” Autonomous Robots,
vol. 33, no. 3, pp. 273–290, 2012.

[7] I. C. Rankin, S. McCammon, and G. A. Hollinger, “Optimized robotic
information gathering using semantic language instructions,” in Proc.
Robotics: Science and Systems Conference Workshop on Robots in
the Wild: Challenges in Deploying Robust Autonomy for Robotic
Exploration (RSS), Virtual, 2020.

[8] P. Anderson, A. Shrivastava, D. Parikh, D. Batra, and S. Lee, “Chasing
ghosts: Instruction following as Bayesian state tracking,” in Proc.
Advances in Neural Information Processing Systems, 2019, pp. 369–
379.

[9] E. Wijmans, S. Datta, O. Maksymets, A. Das, G. Gkioxari, S. Lee,
I. Essa, D. Parikh, and D. Batra, “Embodied question answering in
photorealistic environments with point cloud perception,” in Proc.
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 6659–6668.

[10] D. Chen and C. D. Manning, “A fast and accurate dependency parser
using neural networks,” in Proc. Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2014, pp. 740–750.

[11] S. Russell and P. Norvig, Artificial intelligence: a modern approach.
Prentice Hall, 2002.

[12] P. Qi, Y. Zhang, Y. Zhang, J. Bolton, and C. D. Manning, “Stanza:
A Python natural language processing toolkit for many human lan-
guages,” arXiv preprint arXiv:2003.07082, 2020.

[13] P. Qi, T. Dozat, Y. Zhang, and C. D. Manning, “Universal dependency
parsing from scratch,” in Proc. Conference on Computational Natural
Language Learning (CoNLL), 2019.

[14] T. Kollar, S. Tellex, D. Roy, and N. Roy, “Toward understanding natu-
ral language directions,” in Proc. ACM/IEEE International Conference
on Human-Robot Interaction (HRI), 2010, pp. 259–266.

[15] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee,
S. Teller, and N. Roy, “Understanding natural language commands
for robotic navigation and mobile manipulation,” in Proc. AAAI
Conference on Artificial Intelligence, 2011, pp. 1488–1493.

[16] D. Nyga, S. Roy, R. Paul, D. Park, M. Pomarlan, M. Beetz, and
N. Roy, “Grounding robot plans from natural language instructions
with incomplete world knowledge,” in Proc. Conference on Robot
Learning, 2018, pp. 714–723.

[17] N. Gopalan, E. Rosen, G. Konidaris, and S. Tellex, “Simultaneously
learning transferable symbols and language groundings from percep-
tual data for instruction following,” in Proc. Robotics: Science and
Systems (RSS), Virtual, 2020.

[18] M. Tucker, D. Aksaray, R. Paul, G. J. Stein, and N. Roy, “Learning
unknown groundings for natural language interaction with mobile
robots,” in Robotics Research. Springer, 2020, pp. 317–333.

[19] T. M. Howard, S. Tellex, and N. Roy, “A natural language planner
interface for mobile manipulators,” in Proc. IEEE International Con-
ference on Robotics and Automation (ICRA), 2014, pp. 6652–6659.

[20] A. Borkowski, B. Siemiatkowska, and J. Szklarski, “Towards semantic
navigation in mobile robotics,” in Graph Transformations and Model-
Driven Engineering. Springer, 2010, pp. 719–748.

[21] M. Luperto, A. Q. Li, and F. Amigoni, “A system for building
semantic maps of indoor environments exploiting the concept of
building typology,” in Robot Soccer World Cup. Springer, 2013,
pp. 504–515.

[22] J. Fasola and M. J. Mataric, “Using semantic fields to model dynamic
spatial relations in a robot architecture for natural language instruction
of service robots,” in Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2013, pp. 143–150.

[23] S. McCammon and G. A. Hollinger, “Planning and executing optimal
non-entangling paths for tethered underwater vehicles,” in Proc. IEEE
International Conference on Robotics and Automation (ICRA), 2017,
pp. 3040–3046.

[24] F. T. Pokorny, M. Hawasly, and S. Ramamoorthy, “Topological
trajectory classification with filtrations of simplicial complexes and
persistent homology,” The International Journal of Robotics Research,
vol. 35, no. 1-3, pp. 204–223, 2016.

[25] S. Bhattacharya, R. Ghrist, and V. Kumar, “Persistent homology
for path planning in uncertain environments,” IEEE Transactions on
Robotics, vol. 31, no. 3, pp. 578–590, 2015.

[26] S. McCammon and G. A. Hollinger, “Topological hotspot identifica-
tion for informative path planning with a marine robot,” in Proc. IEEE
International Conference on Robotics and Automation (ICRA), 2018,
pp. 4865–4872.

[27] A. F. Shchepetkin and J. C. McWilliams, “The regional oceanic
modeling system (ROMS): a split-explicit, free-surface, topography-
following-coordinate oceanic model,” Ocean Modelling, vol. 9, no. 4,
pp. 347–404, 2005.

[28] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard,
and D. McClosky, “The Stanford CoreNLP natural language
processing toolkit,” in Association for Computational Linguistics
(ACL) System Demonstrations, 2014, pp. 55–60. [Online]. Available:
http://www.aclweb.org/anthology/P/P14/P14-5010

[29] G. A. Miller, WordNet: An electronic lexical database. MIT press,
1998.

[30] P. Resnik, “Semantic similarity in a taxonomy: An information-based
measure and its application to problems of ambiguity in natural
language,” Journal of Artificial Intelligence Research, vol. 11, pp. 95–
130, 1999.

[31] Z. Wu and M. Palmer, “Verbs semantics and lexical selection,” in
Proc. Annual Meeting on Association for Computational Linguistics.
Association for Computational Linguistics, 1994, pp. 133–138.

[32] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[33] S. Kim, S. Bhattacharya, and V. Kumar, “Path planning for a tethered
mobile robot,” in Proc. IEEE International Conference on Robotics
and Automation (ICRA), 2014, pp. 1132–1139.

[34] A. Singh, A. Krause, C. Guestrin, W. J. Kaiser, and M. A. Batalin,
“Efficient planning of informative paths for multiple robots,” in Proc.
International Joint Conference on Artificial Intelligence, vol. 7, 2007,
pp. 2204–2211.

[35] A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser, “Efficient informa-
tive sensing using multiple robots,” Journal of Artificial Intelligence
Research, vol. 34, pp. 707–755, 2009.

[36] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in
Proc. European Conference on Machine Learning. Springer, 2006,
pp. 282–293.


