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Abstract— Cooperative manipulation tasks impose various
structure-, task-, and robot-specific constraints on mobile manip-
ulators. However, current methods struggle to model and solve
these myriad constraints simultaneously. We propose a twofold
solution: first, we model constraints as a family of manifolds
amenable to simultaneous solving. Second, we introduce the
constrained nonlinear Kaczmarz (cNKZ) projection technique
to produce constraint-satisfying solutions. Experiments show
that cNKZ dramatically outperforms baseline approaches, which
cannot find solutions at all. We integrate cNKZ with a sampling-
based motion planning algorithm to generate complex, coordi-
nated motions for 3–6 mobile manipulators (18–36 DoF), with
cNKZ solving up to 80 nonlinear constraints simultaneously and
achieving up to a 92% success rate in cluttered environments.
We also demonstrate our approach on hardware using three
Turtlebot3 Waffle Pi robots with OpenMANIPULATOR-X arms.

I. INTRODUCTION

Autonomous mobile manipulator (AMM) teams can be
employed for cooperative construction, mitigating risk to
humans. AMM teams encounter mobility and task-specific
constraints in coordinated transportation tasks. Consider a
team of robots transporting a large solar panel to a space
telescope amidst debris: the robots must move in tandem
and are coupled by the carried structure. Thus, successful
transportation requires satisfying diverse constraints (e.g.,
structure orientation, end-effector pose) simultaneously. This
set of constraints also demands a unified representation
encodable in a nonlinear optimizer to generate compliant
configurations, which motion planners can use to create
constrained trajectories.

Existing approaches often prioritize a single constraint,
addressing others as subordinate (e.g., in the null space
of the first constraint) or treating the set of constraints as
one composite function [1–5]. These approaches prove
inadequate as constraint complexity grows, particularly with
larger teams tackling intricate tasks [6, 7]). The increasing
numbers of constraints often result in substantial residuals,
limiting the use of these methods in multi-robot coordinated
planning [8].

This paper presents the constrained nonlinear Kaczmarz
(cNKZ) method for solving large, diverse systems of non-
linear constraints for coordinated multi-robot scenarios, e.g.,

1Collaborative Robotics and Intelligent Systems (CoRIS) Institute, Ore-
gon State University, {agrawaak, mayerpa, geoff.hollinger}
@oregonstate.edu

2Department of Computer Science, Purdue University zkingston
@purdue.edu

This work was supported by ONR awards N0014-21-1-2052 and N00014-
22-1-2114. Code is available at https://github.com/JBVAkshaya/
PlanningOnManifoldIntersection

Fig. 1: (a) Coordinated multi-robot problems require simultaneous constraint
satisfaction. (b) We model constraints as a family of manifolds and propose
a novel constrained nonlinear Kaczmarz (cNKZ) optimizer to find constraint-
satisfying configurations. We integrate our approach within a sampling-based
planner to find constraint-satisfying motion. (c) cNKZ solves problems for
six robots (36 DoF) with 80 constraints in complex environments.

cooperative mobile manipulation tasks. We propose encoding
object geometry, task requirements, and robot limitations as
manifolds to unify the constraint representation to support the
use of cNKZ. We also incorporate cNKZ into a sampling-
based motion planner, demonstrating on complex problems
with over 30 DoF and more than 80 constraints. We assess
computational efficiency in simulations with varied structures
and increasing complexity and team sizes where cNKZ out-
performs baseline approaches. Additionally, we demonstrate
that our proposed planner can transport a linear structure in
a cluttered environment on real hardware with three AMMs.

The main contributions of this work are:
• A unified formulation of constraints representing struc-

tural, task-specific, and physical robot limitations as
manifolds,

• Adaption of nonlinear Kaczmarz (NKZ) to constrained
planning as a projection technique and introduce con-
strained NKZ (cNKZ), a modification with constraint-
specific residual thresholds for solving large systems of
constraints efficiently, and

• A centralized sampling-based constrained motion plan-
ning algorithm that integrates cNKZ to generate feasible
paths for cooperative multi-robot manipulation.

II. RELATED WORK

Constraint Definitions: Zhang et al. [9] used task space
regions (TSR) to define pose constraints for coordinated
multi-robot transportation. However, current methods cannot
solve multiple TSR chains simultaneously, only solving one



while satisfying others through rejection strategies [7, 10].
Thus, non-serial, closed-chain, and task-specific constraints
cannot be simultaneously solved using analytical or numerical
methods. Other methods use implicit functions to define
constraints for multi-robot task sequences (e.g., [6]). This
approach can model diverse constraints but is underdeveloped
for coordinated manipulation. Inspired by prior work, we use
implicit manifolds to define rigid structure, task-specific, and
robot-specific constraints (Sec. III) and leverage sampling-
based planners to plan over intersections of manifolds
(Sec. IV-B).
Projection Methods: In motion planning domain, iterative
nonlinear solvers like randomized gradient descent (RGD) and
Newton’s methods are effective projection techniques [11,
12]. However, Newton’s method, which requires Jacobian
inverse calculation, is limited to full-rank systems. For
overdetermined and underdetermined systems, variants like
Newton-Raphson (NR), Newton-Krylov, and Broyden’s meth-
ods use Jacobian pseudo-inverses [11, 13–17]. However,
in systems with many concatenated constraints and high
dimensional configuration spaces, these methods diminish in
effectiveness due to their holistic consideration of constraints,
which struggles to minimize individual constraint errors.
Consequently, Jacobian pseudoinverse-based approaches are
inadequate for coordinated multi-robot manipulation tasks.

Unlike prior approaches, Constellation [18] is a cyclic
method. It iteratively solves for each constraint, computes
the centroid of these solutions, and repeats. While capable
of addressing many constraints, its poor convergence time
precludes its integration into a planner. The nonlinear Kacz-
marz method (NKZ) is an efficient cyclic solver for low
residual thresholds. It is a gradient descent-based method that
computes the Jacobian of a single constraint per iteration
rather than the entire Jacobian matrix [19]. This cyclic
approach scales well in high-dimensional spaces and improves
convergence rates, making it suitable for coordinated multi-
robot manipulation. However, NKZ has not been used in
robotics context, partially due to its inability to define
constraint-specific residual thresholds. It fails to account for
constraints representing different physical quantities (e.g.,
velocity, distance, angular, and trigonometric measurements).
Our proposed constrained nonlinear Kaczmarz (cNKZ) op-
timizer introduces manifold-level residual thresholds, ac-
commodating distinct nonlinear properties of each manifold
(Sec. IV-A).

III. CONSTRAINTS MODELED AS MANIFOLDS

As discussed in Sec. I and Sec. II, multiple robots coop-
eratively maneuvering a structure induces various constraints
to be satisfied simultaneously. There are difficulties in
representing and handling multiple constraints simultaneously
in current nonlinear optimizers [6]. To solve multiple con-
straints simultaneously, we develop a generalized constraint
representation, which we use to address constraints such as:

• Structural Constraints
• Task-induced Constraints
• Robot-specific Operational Constraints

We present the notation in Sec. III-A and outline our unified
manifold definition in Secs. III-B to III-D. It is important to
note that the constraints listed above are not exhaustive. Task-
induced and robot-specific operational constraints can change
depending on the task requirements and robot limitations.
The constraints defined are tailored to the specific nature of
our tasks and the robotic hardware used in our experiments.

A. Preliminaries

We have a team of n AMMs operating in collaboration
to manipulate a rigid structure S with a known shape
and pre-defined contact points that represent specific grips
(Fig. 1). We denote the state configuration of the ith AMM
as qi ∈ C = Rr with r degrees of freedom (DoF). This
formulation presents a kinematic motion planning problem for
q̄ = [qT

1 , · · · , qT
n ]

T ∈ C = Cn, representing the collective
state configuration (system configuration) of all n AMMs
having m = n× r DoF.

Let us denote an obstacle-free configuration space by
Cfree. The contact point ei coincides with the end-effector
pose for the ith AMM. Hence, we can define contact
configuration of the ith AMM by pi = [fpos(qi), fori(qi)]
where f is the forward kinematics function.

While carrying the structure cooperatively, the robot team
has to resolve all the constraints implied on them due to
structural rigidity, task requirements, and robot limitations.
Let us consider that there are N such constraints together.
These constraints are formulated as a manifold Mj :=
hMj

(q̄) : Rm → Rlj , j ∈ {1, · · · , N}. The sampled system
configuration q̄ is projected on the intersection of all N
manifolds to generate configurations in Csatisfy that satisfy
all the constraints that are imposed on the end-effectors
simultaneously and lie in Cfree.

B. Structural Constraints

While carrying a structure, the motion of the robots’ end-
effectors is limited due to the inherent rigidity of the structure,
which we refer to as Structural Constraints. Assuming that
the robots have securely grasped the structure at specified
positions, these contact points will maintain constant spatial
relationships. Thus, we leverage the distance and angular
properties to define the structural constraints comprehensively.

Manifold Definition 1: Fixed Distance between Con-
tact Points (M1): Let Li,j be the distance between the
ith and the jth contact point on the structure. For a
comprehensive set, we consider all the possible distinct
pairs of contact points. Hence, we obtain the manifold
StructureF ixedDistance(M1) : hM1

(q̄) represented by:

hM1(q̄) = [· · · ,
∣∣∥fpos(qi)− fpos(qj)∥ − Li,j

∣∣, · · · ]T
∀ {i, j} ∈ {{i, j} | i ̸= j and i, j ∈ {1, · · · , n}}.

(1)

Manifold Definition 2: Fixed Angles between Contact Points
(M2): Let us consider a set of three distinct contact points
on the structure S defined by Hpairs = {{i, j, k} | i ̸= j ̸=
k & i, j, k ∈ {1, · · · , n}}. Furthermore, we define a vector
v(a,b) for any pair of contact points (a, b) on the structure. In



the case of contact points i, j, k, the angle between v(i,j) and
v(j,k), ∠v(i,j)v(j,k), remains constant regardless of the robot
states {qi, qj , qk}. However, to ensure successful motion,
the fixed angle between these contact points must align with
the angle calculated from the end-effector positions, obtained
through the robot’s forward kinematics. We establish Va,b =
fpos(qa)− fpos(qb) as the vector between the contact points
a and b of the AMMs.

Mathematically, the angle between two vectors can
be computed using the dot product of these vectors.
We leverage these mathematical principles to derive
StructureF ixedAngle(M2) : hM2(q̄) (Eq. (2)):

hM2
(q̄) = [· · · ,Vi,j ·Vj,k − cos(∠v(i,j)v(j,k)), · · · ]T

∀ {i, j, k} ∈ Hpairs.
(2)

Furthermore, we utilize cross product to check vector
collinearity. Note that M2 angular constraints apply only
to teams of three or more robots, as a minimum of three
contact points is required to define an angle.

C. Task-induced Constraints

Based on the nature of the task (e.g., carrying a tank filled
with water), constraints can be applied to facilitate robot and
object motions. We refer to this set of task-specific constraints
as Task-induced constraints. We establish a constraint to fix
the end-effectors’ relative orientation Def. 3 to adhere to the
end-effectors constraints for real-world experiments (Fig. 1).
While not explicitly addressed in this work, additional task-
specific constraints (e.g., restricting structure orientation or
movement to a fixed plane) can be defined using similar
methods.

Manifold Definition 3: Restricted Orientation between
End-effectors and their Respective Contact Points (M3):
Due to the shape of the end-effector, we introduce a constraint
to maintain orthogonality between the end-effector and its
respective contact points. Given collinear contact points, we
restrict the end-effector orientation to be orthogonal to a
vector formed by any two contact points. Hence, we define
the manifold TaskF ixedOrient(M3) : hM3(q̄) as:

hM3
(q̄) = [· · · ,

(
fpos(qi)− fpos(qj)

)
· fori(qk), · · · ]T ,

∀ {i, j, k} ∈ Hpairs.
(3)

Manifold Definition 4: Maintaining Structure on the Same
Plane (M4): An additional task constraint on the structure’s
orientation is applied to facilitate a balanced load amongst
the AMMs. For example, we constrained the structure to be
horizontal (in the X-Y plane) at all times. In this situation, the
contact points of individual AMMs satisfy the same plane,
hence giving TaskSameP lane(M4) : hM4

(q̄) as:

hM4(q̄) = [· · · , P (fpos(qi))− P (fpos(qj)), · · · ]T ,
∀ {i, j, k} ∈ Hpairs.

(4)

P represents a function that imposes this constraint, e.g.,
to maintain horizontal movement, P (pi) = pi,z , where pi,z

represents the z-coordinate of pi.

D. Robot-specific Operational Constraints

Manifold Definition 5: Differential-drive-based Nonholo-
nomic Robot (M5): One of the most common nonholo-
nomic constraints is the differential drive mechanism, which
depends on the robot’s velocity. We consider a nonholo-
nomic differential-drive-based ground robot with configu-
ration qi,x, qi,y, qi,yaw and control input velocities u(t) =
[ui,x, ui,y] for the ith robot. Then, we can represent the
manifold RobotDiffDrive(M5) as:

hM5
(q̄) = [· · · , ui,x sin(qi,yaw)−ui,y cos(qi,yaw), · · · ]T

∀i ∈ {1, · · · , n}}.
(5)

IV. PROJECTION ON INTERSECTION OF MANIFOLDS

We propose the constrained nonlinear Kaczmarz (cNKZ)
algorithm (Alg. 1), a nonlinear projection method that gener-
ates configurations satisfying all constraints simultaneously
in Sec. IV-A, followed by a centralized cooperative motion
planner in Sec. IV-B. While we integrate cNKZ into an
RRT for cooperative and coordinated manipulation in clutter,
its applicability extends beyond, demonstrating potential for
solving multiple constraints in high-dimensional spaces across
various domains.

A. Constrained Nonlinear Kaczmarz Algorithm (cNKZ)

As outlined in Sec. II, the global residual threshold ap-
proach of nonlinear Kaczmarz (NKZ) for constraint systems
proves inadequate for our system’s diverse manifolds, which
have varying sensitivity levels. For example, M1 residual
denotes distance error, while M2 represent angular errors. We
address this limitation by implementing weighted manifold
sets, enabling fine-tuning for sensitivity adjustments for
specific manifolds. Moreover, cNKZ allows the definition of
independent residual thresholds for each manifold, offering
more precise accuracy control and accommodating the distinct
nonlinear properties arising from the manifolds’ functional
dependencies (e.g., the trigonometric cos function in M2).

Let us refer to the manifold-specific residual threshold as
the manifold threshold. Note that each manifold has a set
of constraints, each corresponding to an intrinsic dimension.
Every iteration selects an individual constraint and evaluate it
against the predetermined manifold threshold. If unsatisfied,
the corresponding Jacobian is computed to generate an
updated configuration. This single-constraint update approach
reduces computational complexity and accelerates conver-
gence in the projection process (Fig. 2). The process continues
till all constraints are satisfied with the required individual
accuracy (Alg. 1).

We can define a system of nonlinear equations F(q̄) ≤ ϵ̄ by
concatenating all the constraints and their respective manifold
thresholds to obtain ϵ̄ (Eq. (6)). Here, F : Rm −→ Rl is a
nonlinear vector-valued function, and q̄ ∈ Rn is the valid
configuration in C. Here, m is the number of system-level
DoF, l is the total number of nonlinear equations, and n is
the number of robots:

F (q̄) = [· · · , (hMi
(q̄))T , · · · ]T ∀ i ∈ {1, · · · , N}, (6)



Algorithm 1 PROJECT cNKZ(F , q̄0, γ, ϵ̄)

1: Initialize: q(0) = q̄0, step = 0, r = −F (q(0))
2: rstatus = |r| ≤ ϵ̄

▷While any manifold threshold is unsatisfied
3: while min (rstatus) ̸= True & step ⩽ γ do
4: i = step (mod l)

▷Update if constraint i is unsatisfied
5: if rstatus[i] ̸= True then

▷Compute constraint specific Jacobian
6: gi = J i(q

(step))
▷Project on hyperplane of ith constraint

7: q(step+1) ←− q(step) − r(i)
∥gi∥2 · gi

8: rnew = −F (q(step+1))
9: end if

▷Update q̄proj

10: if ∥rnew∥ < ∥r∥ then
11: q̄proj ←− q(step+1)

12: r = rnew
13: end if
14: step = step+ 1
15: end while
16: return q̄proj

where N is the number of manifolds. Our target is to find
q̄∗ such that F (q̄∗) ≤ ϵ̄. In every iteration, cNKZ obtains
the residual corresponding to a single hyperplane to give an
updated configuration q̄

′
:

q̄
′
= q̄− F i(q̄)

∥J i(q̄)∥2
J i(q̄), (7)

where J i is the ith row of the jacobian (J ) of F .

B. Multi-Constrained Motion Planning Algorithm

To generate an executable trajectory, we extend the RRT
algorithm [20], capitalizing on its flexibility and scalability
to higher-dimensional configuration spaces [9]. We adapt
the conventional steer-to-extend functionality, integrating the
cNKZ projection method (illustrated in Alg. 1) to produce
control inputs for constrained trajectories applicable to multi-
robot teams [6, 16]. Additionally, we employ a rejection
strategy to ensure compliance with joint limits and perform
collision checking, thereby maintaining feasibility.

V. EXPERIMENTS AND RESULTS

In this section, we analyze the performance of cNKZ, our
proposed projection algorithm, on optimizing for system-level
state configurations over various combinations of manifold
and robots, and compare its performance against baseline
nonlinear optimization approaches. We also analyze the
success rate and computational time required for generating
motion plans and associated projections for transporting
straight, T-shaped, and I-shaped structures using up to six
AMMs (up to 36 DoF). We compare transporting different
structures based on the following criteria:

Fig. 2: An example illustrative behavior of residual progression over iterations
for a constituent constraint (from 38 constraints simultaneously solved for I
shaped structure using 5 robot team (30 DoF)). cNKZ converges the fastest,
followed by NKZ, whereas NR gets stuck in a local minima loop.

• Success Rate: Average number of successful projections
on the intersection of manifolds and successful path
generation rate over multiple trials.

• Computation Time: Average computational time re-
quired to generate successful paths and projections.

To assess the performance in 3D environments, we simu-
lated teams of AMMs where the base robot had dimensions
of 0.4 m × 0.4 m × 0.4 m and can maneuver in 3D space
with four DoF (x, y, z, yaw). The mobile manipulator
was equipped with a 2-DoF robotic arm with link lengths of
0.2 m and 0.1 m and operated in the Y-Z plane of the base
robot’s fixed body frame. All experiments were performed
on a laptop with an Intel Core i7-12700H CPU.

A. Different Projection Techniques

We evaluate the precision of constrained nonlinear Kacz-
marz (cNKZ) through comparative analysis with Newton-
Raphson (NR), nonlinear Cimmino’s (CIM), and nonlinear
Kaczmarz (NKZ) methods [11, 19, 21]. We compare the
success rate and projection time to assess cNKZ’s efficacy
for performing efficient projection.

We randomly sample configurations for three AMMs
operating within predefined environments in our experimental
setup. Subsequently, NR, CIM, NKZ, and cNKZ project
each sample onto the intersection of manifolds. We consid-
ered structural (M1 and M2) and task-enforced constraints
(M3 and M4) for three AMMs tasked with transporting
a linear structure spanning 1 m with fixed contact points
L = 0.5 m interval. We conducted a comparison of various
projection techniques across 200 simulated trials.

Tbl. I demonstrates cNKZ vastly outperforming other
projection algorithms. NKZ and cNKZ achieved high success
rates, while NR and CIM struggled. cNKZ halved projection
time versus NKZ as manifolds increased. For an I-shaped
structure constraint, NKZ and cNKZ both converged, although
cNKZ is faster (Fig. 2). NR is stuck in loop due to
pseudo-Jacobian dependence. While applicable to various
equation system ranks—full, overdetermined, or underdeter-
mined—cNKZ excelled in success rate and computation time.



TABLE I: Comparative analysis of projection algorithms for constraint representing manifolds. The table presents performance metrics for various
constraint-imposing manifolds and their combinations, applied to a team of three robots (18 DoF) transporting a linear structure. The leftmost column
specifies the constraint manifolds and the mapping from system configuration space to intrinsic dimensionality of constraints (in parentheses). Performance
is evaluated using average computation time and success rate for the proposed cNKZ projection algorithm, compared against existing methods: NR, CIM,
and NKZ. Note that ’–’ represents all failures.

Manifolds Residual Success Rate (%) Average Computation Time (Seconds)
(Rm → Rl) Threshold NR CIM NKZ cNKZ NR CIM NKZ cNKZ

M1, M3 0.5 0.0 5.0 100.0 100.0 – 0.392±0.18 0.019±0.01 0.016±0.0

(R18 → R6) 6.0 0.0 0.0 100.0 100.0 – – 0.067±0.02 0.042±0.01

M3, M4 0.5 0.0 6.5 100.0 99.5 – 1.978±1.02 0.15±0.08 0.1±0.03

(R18 → R8) 2.0 1.0 10.5 100.0 100.0 0.118±0.1 1.578±1.01 0.092±0.03 0.054±0.02

M1, M2, M3 0.5 0.0 0.0 100.0 100.0 – – 0.356±0.17 0.16±0.04

(R18 → R12) 2.0 0.0 0.0 100.0 100.0 – – 0.171±0.04 0.091±0.02

M1, M2, M3, M4 0.5 0.0 0.0 100.0 100.0 – – 1.02±0.52 0.392±0.11

(R18 → R14) 6.0 0.0 0.0 100.0 100.0 – – 0.168±0.06 0.094±0.02

TABLE II: Comparison of structural constraint residuals: Constraints as
structural manifolds (Sec. III-B) results to 100× lower residuals compared
to TSR.

Structural Constraint TSR + NR(Residual) Ours + cNKZ (Residual)

M1 0.117 ± 0.074 0.0054 ± 0.0043

M2 0.397 ± 0.306 0.0003 ± 0.0004

(a) S 5 (Medium) (b) T 3 (High) (c) I 5 (High)

Fig. 3: Sample paths generated for 6 AMMs carrying a straight structure, 3
AMMs carrying a T-shaped structure, and 5 AMMs carrying an I-shaped
structure in different complexity environments.

B. Different Constraint Representation Techniques

In cooperative motion planning, there is an absence of an
algorithm that can resolve multiple constraints concurrently.
For fair comparison, we focus on structural constraints, com-
paring against task space regions (TSR) used in multi-robot
coordination [9]. We evaluate robot configuration quality by
comparing structural constraint residuals using TSR with NR
method and Family of manifolds (structural manifolds) with
cNKZ projection. Over 1000 runs with three AMMs, TSR
shows significantly higher M1 and M2 residuals than our
method (Tbl. II), due to their reliance on the pseudo-Jacobian
inverse, which introduces higher errors.

C. Coordinated Constrained Motion Planning on Intersection
of Manifolds

To evaluate the integration of cNKZ with RRT, we ran-
domly generated environments of increasing complexity in
simulation. We categorized the environmental complexity
based on the volume ratio of free space and overall space.
Thus, we generated 50 environments (20 m × 20 m × 20 m)
of low, medium, and hard complexity each. Our task is to find
a feasible path to transport a structure from an initial position
to a goal position over a constrained tree. We assumed
the team of AMMs was holding the structure at predefined

Fig. 4: (a) Three robots successfully maneuver a large structure around
obstacles of comparable dimensions in a congested space. (b)-(e) Four
different environments that are utilized for hardware trials.

contact points at the start of the experiments. We tested the
real-world feasibility of generating executable trajectories
using three non-holonomic TurtleBot3 Waffle Pi robots with
OpenMANIPULATOR-X arms.

1) Comparison: Varying Team Size and Diverse Structural
Shapes: To gauge the effectiveness of the cNKZ projection
for path generation, we employ up to six AMMs (Fig. 3) and
evaluate on a variety of structures: straight structures with
lengths ranging from 1 m to 2.5 m, each with fixed contact
points set at intervals of L = 0.5 m from the preceding point,
as well as T-shaped (1 m × 1 m × 0.5 m) and I-shaped
(1 m × 1 m × 1 m) structures using teams of three and
five AMMs, respectively. All contact points are illustrated in
Tbl. III. Projection techniques perform optimization in the
composite robot configuration space.

Compared to RRT with NKZ projection, the cNKZ pro-
jection method demonstrated a higher success rate of up to
15% across various complexity levels with up to 5× faster
computational time for generated plans. cNKZ also has a
higher successful projection rate and is up to 10× faster
while computing successful projections.

Incorporating the cNKZ projection method facilitated
successful navigation while transporting straight structures
using a six-AMM team, even in challenging complexity
environments, although with a reduced success rate. Notably,
the cNKZ algorithm simultaneously resolved 80 nonlinear
constraints for this experiment.



TABLE III: Performance analysis of centralized constrained motion planning for coordinated multi-robot tasks using the proposed cNKZ projection
algorithm integrated with RRT. The left panel illustrates the structural geometry, with colored dots representing contact points for the robot end-effectors,
and outlines the mapping from system configuration space to intrinsic dimensionality of constraints (Rm → Rl). Success rate percentages include successful
plans across environments of varying complexity (determined by cluttered space volume) and the average percentage of successful projections per plan.
Computation time statistics present mean ± standard deviation (in minutes) for generating a successful plan and producing a successful projection per plan
(in seconds).

R
m

−→
R

l

Constraints
(Structure #Robots)

Success Rate (%) Average Computation Time
Environmental Planning Projection Planning (minutes) Per Projection (seconds)

Complexity NKZ cNKZ NKZ cNKZ NKZ cNKZ NKZ cNKZ

R
18

→
R

12

T 3

Low 76.0 90.0 100.0 100.0 2.04±0.6 1.11±0.43 1.22±0.36 0.59±0.16

Medium 60.0 74.0 100.0 100.0 1.85±0.58 1.04±0.4 1.1±0.35 0.54±0.15

Hard 62.0 76.0 100.0 100.0 1.63±0.46 1.17±0.5 0.97±0.28 0.56±0.17

R
18

→
R

14

S 3

Low 80.0 92.0 91.65 97.13 3.72±1.87 1.83±0.49 2.23±1.12 1.05±0.37

Medium 66.0 76.0 91.94 97.05 3.8±1.64 1.73±0.54 2.28±0.98 1.0±0.38

Hard 78.0 86.0 92.38 97.07 4.36±1.54 1.78±0.49 2.62±0.92 1.04±0.34

R
24

→
R

30

S 4

Low 84.0 86.0 100.0 100.0 13.86±3.27 2.82±1.15 8.31±1.96 1.58±0.56

Medium 82.0 82.0 100.0 100.0 14.19±3.67 3.12±1.21 8.51±2.2 1.59±0.44

Hard 82.0 84.0 100.0 100.0 12.44±2.95 3.0±1.17 7.46±1.77 1.56±0.53

R
30

→
R

37

I 5

Low 66.0 78.0 73.61 99.4 120.74±31.4 14.03±3.46 60.36±15.7 7.01±1.73

Medium 62.0 72.0 74.19 99.75 111.39±25.49 14.01±3.99 54.38±13.52 7.0±2.0

Hard 50.0 62.0 76.63 99.65 93.03±33.23 12.46±3.75 46.51±16.61 6.23±1.87

R
30

→
R

52

S 5

Low 72.0 68.0 93.22 99.56 82.73±6.38 8.94±2.42 49.63±3.83 5.36±1.45

Medium 46.0 50.0 94.83 99.12 76.71±6.61 8.82±2.11 46.02±3.96 5.29±1.26

Hard 28.0 36.0 94.5 99.06 76.19±7.84 6.96±2.06 45.7±4.7 4.17±1.23

R
36

→
R

80

S 6

Low 66.0 68.0 60.42 87.92 101.03±18.32 19.36±5.71 60.61±10.99 10.84±2.83

Medium 52.0 60.0 62.96 87.58 100.23±18.24 19.57±8.03 60.13±10.94 10.28±2.78

Hard 38.0 56.0 61.05 87.86 93.19±15.2 20.52±6.4 55.91±9.12 10.81±2.92

2) Hardware Experiments: Experiments used a 1.2 m
flexible rod and a rigid PVC rod in four 3.2 m × 5 m envi-
ronments with large obstacles1 (Fig. 4). Notably, the obstacles
in these environments are comparable to the structure and the
robot team, occupying more than half of the space along one
dimension in the arena. This setup significantly complicates
maneuvering the structure. We conducted 16 trials (8 per rod
type), executing two trajectories per environment. Completing
the task requires continuous satisfaction of all structural (M1

and M2), task-induced (M3), and robot-specific operational
(M5) constraints. We plan in the combined position and
velocity space of the robot, and impose a constraint (M5) to
enforce the differential drive constraint.

The robot team successfully navigated the structure in every
trial, however an average execution error of 0.22± 0.04 m
and 12 ± 7 degrees is observed between the planned and
actual end locations for the base robots, due to execution
errors (e.g., wheel slippage).

VI. CONCLUSIONS AND FUTURE WORK

We have introduced the constrained nonlinear Kaczmarz
(cNKZ) projection technique, which outperforms existing
nonlinear solvers, particularly Newton-Raphson (NR) and
nonlinear Cimmino’s (CIM) algorithm, achieving over 90%
successful projections at twice the speed of a baseline
nonlinear Kaczmarz (NKZ) approach. When integrated within
a sampling-based planner, cNKZ can solve for plans for
6 AMMs (36 DoF) with up to 80 constraints, improving

1Video of sample trajectories from our hardware experiments is avail-
able in the supplementary materials and at https://youtu.be/
KaV8r8EmkIk?si=ZzEawVdeAmRt7Ura.

planning times over the baseline NKZ approach by an order
of magnitude and succeeding where NR and CIM fail.
We also have introduced a framework for modeling the
diverse constraints imposed on multi-robot teams as implicit
manifolds, effectively representing structural, task-induced,
and robot-specific operational constraints.

Although incorporating cNKZ within a sampling-based
planner generated successful plans, the number of success-
ful projections discarded due to environmental collision
is substantial. In addition, given a heavy payload, it is
observed that the motion of robots is heavily altered when
performing the task. Recent approaches have addressed this
by modeling forces and integrating it with higher level motion
planner [22]. These caveats motivate a more efficient and
scalable constrained motion planning algorithm to handle
online execution, for which our proposed cNKZ method and
constraint formulation lay the foundation.
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