
Hybrid Decentralization for Multi-Robot Orienteering with
Mothership-Passenger Systems

Nathan L. Butler and Geoffrey A. Hollinger

Abstract— We present a hybrid centralized-decentralized
planning algorithm for a multi-robot system consisting of
a Mothership robot and multiple Passenger robots. In this
system, the Passenger robots execute tasks while the Moth-
ership provides support. This paper addresses the challenge of
planning Passenger robot movements, framing it as a Stochastic
Multi-Agent Orienteering Problem (SMOP) complicated by
factors like stochastic operational efforts and disruptive events.
We optimize the task completion efficiency of the system by
combining centralized solutions from the Mothership with local
plans from Passengers to enhance system resilience. Our contri-
butions include defining the SMOP, developing a solution using
Decentralized Monte Carlo Tree Search, presenting a hybrid
algorithm that integrates centralized plans into the distributed
framework, and evaluating the algorithm’s performance in
a simulated environment. Our results show that our hybrid
approaches outperform fully centralized and fully distributed
algorithms in highly-dynamic scenarios with up to a 26.6%
increase in task completion efficiency over baseline methods.

I. INTRODUCTION

Rising sea-levels threaten coastal communities worldwide
with flooding and displacement. Melting polar ice sheets are
key contributors to this issue, with the West Antarctic Ice
Sheet alone predicted to cause over three meters of sea-level
rise. Marine ice sheets are particularly unstable as the ice is
warmed by both hot air above and by warm water below the
ice shelf, triggering sudden, rapid collapse. Because of this,
uncertainty persists in models predicting the melting rate and
volume loss of receding marine ice sheets. A rich collection
of under-ice data would help scientists improve these models
and more accurately forecast sea-level rise. [1].

However, exploring the marine under-ice environment is
challenging and dangerous. The ice shelf restricts surface
access, so underwater vehicles may be unable to surface
in emergencies and risk becoming trapped. This threat to
human crew members prompts the use of an unmanned Au-
tonomous Underwater Vehicle (AUV). Nevertheless, many
AUVs rely on frequent surfacing to reduce localization
error and exchange information. As this is not an option,
error could accumulate, resulting in the vehicle developing
poorly-informed plans that exceed its battery life or lead it
into hazardous regions where turbulent ocean currents cause
damaging collisions. Both events risk costly AUV damage
and data loss.

One proposed concept for a more robust system employs
a team of small, inexpensive Passenger AUVs to explore

*This work is funded in part by NSF award 2322055
*Nathan Butler and Geoffrey Hollinger are with the Collab-

orative Robotics and Intelligent Systems (CoRIS) Institute, Ore-
gon State University, Corvallis OR 97331, USA {butlnath,
geoff.hollinger}@oregonstate.edu

Fig. 1: Mission schematic for a Mothership-Passenger system exploring an
under-ice environment, including hybrid communication network.

the under-ice environment while aggregating data on a large,
capable Mothership AUV stationed far from high-risk areas.
The Mothership first transports a team of Passengers under
the ice shelf. The Passengers then deploy to perform multiple
data collection tasks in parallel before attempting to return to
the Mothership to exit the region. During operations, a team
of support robots coordinate to maintain localization accu-
racy and facilitate communications between the Mothership
and Passengers, as illustrated in Fig. 1.

In this paper, we focus on planning the Passenger robots’
movements between data collection tasks distributed through
the environment. We assume that scientists define these tasks
prior to the mission and that more can be added online
as the Mothership processes incoming data. With this, we
aim to generate an optimal set of schedules by 1) allocating
tasks to individual robots and 2) planning each robot’s tour
through its task set such that the global reward is maximized
and budget constraints (usually time or energy) are met. We
frame this problem as a Multi-Agent Orienteering Problem
(MOP) [2] made more difficult by stochastic factors common
to the robotics domain such as: communication packet loss,
unpredictable travel costs, and random equipment failure [3].

Previously published works have solved the MOP and
related Multi-Robot System (MRS) scheduling problems us-
ing two distinct approaches: 1) centralized MRS networking,
where planning is done at a global scale and 2) distributed
MRS networking, where schedules are created locally [4].
However, to the best of our knowledge, no prior works
explore ways to leverage a hybrid centralized-distributed
network, such as that available in the Mothership-Passenger
system, to solve complex orienteering problems.

We propose a hybrid solution that combines centralized
and distributed planning. The Mothership uses its compu-

tational power to develop centralized solutions, while each
Passenger generates local plans using lightweight solvers.
Passengers can request updated tours from the Mothership
to compare against their local plans, sharing the best options
across the network for dynamic rescheduling. This approach
combines the high-quality solutions of centralized control
with the resilience of distributed systems.

The contributions of this paper include:
1) Defining the Stochastic Multi-Agent Orienteering

Problem (SMOP)
2) A distributed solution to this problem built on decen-

tralized Monte Carlo tree search
3) A hybrid decentralized algorithm that incorporates

plans from a centralized node into the distributed
framework

4) Simulations conducted with high fidelity simulated
under-ice tidal data

II. RELATED WORK

We organize the related works into two sections to explore
the background and current approaches in this area. The
first category explores recent advancements in the Stochastic
Team Orienteering Problem (STOP). The second covers
solutions to the MOP used to coordinate a team of agents
when a centralized solver is unavailable or infeasible.

The Stochastic Orienteering Problem extends the classic
NP-Hard deterministic OP by introducing stochastic costs
and rewards sampled from probability distributions. When
solving schedules for a team of agents, we consider the
STOP [2]. Recent research, such as Panadero et al.’s work,
has focused on solving STOP using simheuristic methods,
particularly the state-of-the-art simulation biased-randomized
Variable Neighborhood Search (Sim-BRVNS) algorithm,
which effectively combines simulations with metaheuristics
in an anytime solver [5], [6]. Additionally, Juan et al. and
Karunakaran et al. explore genetic algorithms for solving
STOP variants. Juan et al. incorporate Monte Carlo simu-
lation to handle stochasticity, while Karunakaran et al. use
an island model to evolve diverse policies that are robust to
varying scenarios [7], [8].

In distributed systems, the MOP is commonly used to
coordinate team schedules, allowing agents to exchange
information and converge on a global solution [2]. Recent
works by Best et al. and Skrynnik et al. employ a decen-
tralized Monte Carlo Tree Search (Dec-MCTS) method to
solve tours for multiple agents in an anytime, distributed
manner by communicating partial solutions between agents.
Dec-MCTS’s action distribution method has proven effective,
providing anytime performance in lossy networks [9], [10].
Other researchers have explored MOP variants, such as the
prize-collecting MOP, where Murray et al. proposed policies
to minimize inefficiencies [11], and the robust multiple-
path orienteering problem, for which Shi et al. introduced
approximation-based and MCTS-based solutions [12].

Our work lies at the intersection of centralized STOP
and distributed MOP approaches. By extending MOP to
incorporate stochastic costs, we can use distributed MOP

solvers to enable robust coordination among Passengers in
uncertain environments. Introducing a Mothership robot into
the MRS allows us to leverage powerful STOP solvers from
the literature, developing centralized solutions that enhance
the distributed system.

III. PROBLEM FORMULATION

We consider a team of robots that must coordinate in
an uncertain environment to complete spatially-distributed
tasks. Each task can only be completed once, so revisiting a
completed task offers no reward. The team must coordinate
to create schedules, or tours, for each member to follow to
multiple tasks. The energy expended by a robot moving be-
tween two locations is difficult to predict but can be modeled
with a probability distribution. The objective is to select
a set of schedules that maximize the reward gained from
completed tasks. However, unpredictable disruptive events
may occur during execution, motivating online rescheduling.

We begin formalizing the SMOP by defining a team
of N robots a = {a1, a2, ...aN}, with each robot ai as-
signed an energy budget bi, a start task, and an end task.
The environment contains V spatially-distributed tasks v =
{v1, v2, ...vV }. Each task vj is defined with a deterministic
location, work cost cjw, and reward rj , such that when robot
ai completes task vj it reduces its budget by cjw and collects
reward rj . The stochastic cost incurred by a robot traveling
from task vj to task vk is defined by cj,ke > 0, which follows
a Gaussian distribution with mean E[cj,ke] > 0.

To represent the problem, we model the environment
as a complete graph G = {v, e}, where the set of tasks
v forms the nodes and the edges e represent the travel
costs between tasks. The travel costs are probabilistic and
represented by distributions. We assume that the distribution
of cost realizations is well-represented by a set of scenarios,
S, where each scenario s ∈ S contains a set of sampled edge
costs, denoted s = {c0,1e , c0,2e , ...}.

We solve for a tour, or sequential ordering of nodes,
for each robot to follow. A tour for ai is denoted ti =
(vi,1, vi,2, ...), and the reduced set of tasks that are uniquely
visited by ai is denoted ui = {vi,1, vi,2, ...}. We consider
T = {t1, t2, ..., tN} as a solution to the problem in solution
space T .

The goal is to maximize the total reward accumulated by
all robots, considering the stochastic nature of travel costs.
For each scenario s, the reward depends on the number of
unique tasks completed by each robot, provided their energy
budgets are not exceeded. With this, we solve for the optimal
set of tours T∗ that maximizes task completion efficiency.
The objective can be expressed as:

T∗ = argmax
T∈T

1

|S|
∑
s∈S

∑
i∈N

f(ti,ui, s), (1)

where f(ti,ui, s) represents the total reward gained from ui,
derived as:

f(ti,ui, s) = ls(ti) ·
∑

vi,j∈ui

rj . (2)

The indicator function ls(ti, s) enforces budget constraints
by forcing the tour’s reward to 0 if the sampled tour cost
exceeds bi:

ls(ti, s) =
{

1, if bi −
∑

vi,j∈ti(c
j−1,j
e + cjw) > 0

0 otherwise

}
.

(3)
In the multi-robot setting, each robot seeks the tour t∗i that

maximizes its individual contribution to the global reward.
We consider the solution space of individual tours P , such
that ti ∈ P . The utility of robot i’s schedule is calculated
as the difference in the reward with robot i participating and
without robot i’s contribution. With this, we optimize:

t∗i = argmax
ti∈P

1

|S|
∑
s∈S

g(ti,ui, s), (4)

where

g(ti,ui, s) =
∑
ai∈a

f(ti,ui, s)−
∑

aj∈a\ai

f(tj ,uj , s). (5)

IV. HYBRID RESCHEDULING

We explore two ways in which the Mothership supports
a distributed team of Passenger robots: 1) through offline
planning before deployment, and 2) by providing online
schedules enhanced by aggregated data. This section details
the algorithms used for scheduling on the Mothership and
each Passenger, and how planning information is shared
across the hybrid system. Fig. 2 provides an overview of
our hybrid framework, which guides the following sections.

This framework governs the exchange of scheduling in-
formation between all robots in the MRS. The Mothership
M runs a centralized solver to generate tours for one or
more robots, sharing each tour tmi with the respective robot
ai. Passenger ai solves a set of k tour options Tl

i =
{tli,1, tli,2, ..., tli,k}, which it compares against its stored set
of tour options Ti = {ti,1, ti,2, ..., ti,k} and the received
Mothership tour tmi . The local schedule selection algorithm
UpdateScheduleDists reduces these to a set of the k best
tours and updates ai’s stored set Ti.

Each tour ti,j ∈ Ti is associated with a probability pi,j ,
forming a distribution pi = {pi,1, pi,2, ..., pi,k} representing
the likelihood that ai will follow each tour in Ti. When ai’s
tour distribution θi = (Ti,pi) is shared with other robots, it
informs their sampling-based planners about ai’s likely task
visits. Each robot stores a set of received schedule distribu-
tions θi = {θ1, θ2, ..., θN} for reference during planning.

A. Centralized Solver

We adopt the Sim-BRVNS algorithm from Panadero et al.
to solve the STOP on the Mothership [5]. The SimBRV NS
function solves the STOP for a team of N robots by:

1) Converting the STOP into a deterministic problem
using the mean values of edge cost distributions.

2) Solving this deterministic problem using a constructive
heuristic

3) Evaluating the solution in a stochastic setting via
Monte Carlo Simulation (MCS), where edge costs are
sampled from the Mothership’s graph Gm

4) Applying a biased-randomized variable neighborhood
search to explore additional solutions

The solver iterates between steps 3 and 4 within a given
time limit, returning the best-performing set of N schedules
based on the evaluation function (1). For more details on this
method, refer to [13], [6].

In the SMOP -SimBRV NS function, we extend Sim-
BRVNS to the multi-robot SMOP case using the schedule
distributions from θm stored on the Mothership. In this case,
the Mothership solves a single tour for ai. During each
iteration of the MCS stage, the solver samples a set of tours
for all robots except ai. The sampled tours and the current
solution are evaluated on Gm, and the utility reward for
ai’s tour is calculated using (4). At the end of the solver’s
runtime, the highest-scoring solutions Tm

i are returned.

B. Distributed Solver

We select the Dec-MCTS algorithm proposed by Best
et al. to solve local tour solutions on each Passenger ai
[9]. The algorithm grows a search tree by cycling through
four phases: selection, expansion, simulation, and backprop-
agation, while sharing partial solution information between
robots. Each node in the tree represents a tour, with the root
node corresponding to the Passenger’s current location. The
algorithm returns the set of the k best-performing tours Tl

i.
For further reading on Dec-MCTS, see [9].

We apply this algorithm to the SMOP by adding an
additional sampling layer to the rollout phase. During this
phase, multiple rollouts of the leaf node’s tour are performed.
The rollout process simulates adding valid tasks to the
tour, maximizing the ratio of added reward to incurred
travel cost. These travel costs are sampled from the local
graph Gi. Nodes are considered valid only if they are not
already included in tours sampled from θi at the start of the
rollout. The local utility reward of the simulated tour is then
calculated against the sampled tours using (4).

C. Hybrid Scheduling Algorithms

Two distinct algorithms, Alg. 1 (Mothership Rescheduling)
and Alg. 2 (Passenger Rescheduling) run on the Mothership
and each Passenger, respectively. Alg. 1 enables the Moth-
ership to solve either the STOP for team scheduling (line
2) or an individual robot’s schedule for online SMOP (line
6). The STOP is used at the mission’s outset to generate
an offline mission plan for each robot, while tours for the
SMOP are solved during runtime for ai as requested. Basic
communication functions Send(Content,Receiver(s)) and
Receive(Content, Sender) to share data between robots.

Alg. 2 manages rescheduling for each Passenger ai. Upon
startup, ai receives an initial tour from the Mothership and
begins executing it (lines 1-5). During runtime, ai can request
updated schedules from the Mothership (line 6). If a new
schedule is received, ai updates its schedule distribution

Fig. 2: Procedure for sharing schedule distributions within system. The Mothership’s centralized solver generates set Tm of tours and sends tmi to Passenger
ai. On ai, a MCTS solver produces set Tl

i tours with local information. New schedules on ai are compared to stored set Ti schedules, with the highest-
scoring subset of k schedules assigned as new (Ti, pi)

Algorithm 1 Mothership Scheduling

Input: robots a, task graph Gm, stored schedule distribu-
tions θm

1: if mission is beginning then ▷ Run on startup
2: Tm ← SimBRV NS(Gm, a)
3: Send(Tm, a) ▷ Distribute tours
4: end if
5: if Receive(request, ai) then ▷ Run as requested by ai
6: tmi ← SMOP -SimBRV NS(Gm, ai,θm)
7: Send(tmi , ai) ▷ Return solved tour
8: end if

(lines 7-9). If no update is provided, the Passenger runs Dec-
MCTS to generate local solutions (line 10). These local
options are then evaluated against stored schedules using the
UpdateScheduleDist function (line 11) as described in the
next section. Finally, the Passenger shares its updated sched-
ule distribution with the Mothership and nearby Passengers
(line 14), and then returns the best-performing schedule from
the new distribution for execution.

These algorithms equip the system to operate as a central-
ized network when Passengers have consistent connection
to the Mothership by granting centrally-generated plans
precedence over local tours. Additionally, Alg. 2 enables
Passengers with strong connections to neighboring robots to
develop plans as a distributed system by exchanging schedule
distributions.

D. Updating Schedule Distributions

The UpdateScheduleDist function evaluates both old
and new schedules developed for ai to determine the best
subset to carry forward. Alg. 3 outlines the procedure used to
assess and select the top schedules from a set of candidates.
The algorithm iterates through each candidate schedule t,
first modifying t according to locally-stored information
with Prune (i.e. removing tasks that ai knows have been
completed).

A Monte Carlo Simulation is then performed using local
budget constraints and graph information to assess the failure
probability of t across multiple scenarios (line 4). Next,
LocalUtil evaluates the local utility of t using (4). The utility
and failure probability are combined into a score α for each
tour (lines 5 and 6). The algorithm stores each tour-score pair

Algorithm 2 Passenger ai Scheduling

Input: robots r, task graph Gi, stored schedule distributions
θi, stored local schedules Ti

Output: new schedule ti
1: if mission beginning then ▷ Receive init.
tours

2: ti ← extract tmi from Receive(Tm,M)
3: θi ← ([ti], [1.0]) ▷ Init. dist. (Ti,pi)
4: return ti ← argmax

ti∈Ti

[pi(ti)]

5: end if
6: Send(request,M) ▷ Request tour from M
7: if Receive(tmi ,M) then ▷ Use received tour
8: θi ← ([tmi], [1.0])
9: else ▷ Else solve local tours

10: Tl
i ← Dec-MCTS(Gi, ai)

11: (Ti,pi)← UpdateScheduleDist(Ti ∪ Tl
i)

12: θi ← (Ti,pi)
13: end if
14: Send(θi, a ∪M) ▷ Share new sched. dist.
15: return ti ← argmax

ti∈Ti

[pi(ti)]

in a list (line 7). Tours are then sorted by α and reduced to
a list of the top n candidates (line 9). Finally, the scores α
are normalized to create a probability distribution p for the
selected schedules T′.

V. EXPERIMENTS AND RESULTS

We evaluate our Dec-MCTS SMOP solution and two ver-
sions of our hybrid Mothership-Passenger algorithms along-
side a centralized, offline STOP solver, defined as follows:

• Sim-BRVNS: Solve STOP with Sim-BRVNS to gen-
erate a full team schedule offline prior to mission
execution. No online optimization [5].

• Dec-MCTS: Use Dec-MCTS to solve local sched-
ules without input from Mothership. No initial offline
scheduling, no online hybrid rescheduling [9].

• 2-Stage (Ours): Solve initial offline schedules, then
perform local-only rescheduling during deployment.

• 2-Stage Hybrid (Ours): Solve initial offline schedules,
then reschedule using local solutions and requested
solutions from Mothership (Alg. 1 and Alg. 2).

Algorithm 3 UpdateScheduleDist

Input: tours to evaluate T, stored schedule distributions θi,
budget bi, task graph Gi

Output: new schedule distribution (Ti,pi)
1: pairs← ∅
2: for t ∈ T do
3: Prune(t, Gi) ▷ Prune completed tasks
4: rel←MCS(t, bi, Gi) ▷ Eval. fail rate
5: rew ← LocalUtil(t,θi) ▷ Eq. 4
6: α← rew · rel ▷ Compute tour score
7: pairs← pairs ∪ (t, α) ▷ Add to pairs
8: end for
9: (T′,α)← SelectTopSchedules(pairs, n)

10: α← Normalize(α)
11: return (T′,p)

A. Evaluation Methods

We motivate our experiments within the context of an
under-ice environment. The operational area is modeled as
a 2D grid, utilizing simulated under-ice ocean current data
generated by Si et al. [14]. These ocean currents are unknown
to the robots at the start of the mission and influence
vehicle movements by increasing energy consumption when
traveling against strong flows. Robots traveling with the
current experience less energy drain. All robots are assumed
to move at a constant velocity. Given the uncertainty in
energy cost predictions due to unknown currents, robots
model movement costs as stochastic. Each test environment
is randomly sampled from a pool of 20 flow datasets.

Communication between robots occurs at a fixed fre-
quency, with message success rates impacted by underwater
absorption and signal spreading. We approximate packet
loss as an exponential decay function of distance between
transmitting and receiving robots, with packet success prob-
abilities reducing to 80% at 5000 meters [15]. Beyond this
range, the success rate decreases rapidly to the point where
messaging attempts are no longer viable.

The simulated MRS consists of a Mothership, Worker
robots, and Support robots. Each Worker is provided with
a team of Support robots, who provide infrastructure for
communication and localization by distributing themselves
evenly between the Mothership and the Worker. The Moth-
ership and Workers focus on coordinating tours to randomly
distributed tasks. The Mothership serves as both the starting
and ending point for each Worker’s schedule, and its position
is randomly assigned at the start of each test. Fig 3 shows an
example simulation environment, including the Mothership
location (M) and the task locations (V’s). During operation,
Workers share completed task information with the Moth-
ership and neighboring robots. In the online rescheduling
cases, Workers update their tours at a fixed frequency during
runtime.

We evaluate each algorithm’s ability to coordinate teams
of robots in this stochastic environment with increasing levels
of disruption with the following tests:

Fig. 3: Example simulation environment with sampled flow data, random
task locations V, and random Mothership location M.

1) Robot Failures: Initialize 30 tasks. At each simulation
step, there is a probability (0%, 2.5%, 5%) that a ran-
dom worker will experience a failure, resulting in zero,
some, or most robots dead at the end of runtime. This
failure has a 50% chance of either fully immobilizing
the worker or partially reducing its remaining battery
life by 50%.

2) New Tasks: Initialize 20 tasks. At each simulation step,
there is a probability (0.0%, 5.0%, 10.0%) that the
Mothership will generate a new task, resulting in the
problem size increasing by approximately 0%, 50%,
or 100% throughout runtime.

Finally, we assess the algorithms’ performance in each test
with teams of 3 and 6 Workers to observe scalability trends
between group sizes.

B. Results

For each test case, we ran each algorithm in 30 randomly-
generated environments. Fig. 4 presents the task efficiency
rate results, or the mean task rewards gained by all Workers
that successfully completed tours through the environment
and returned to the Mothership, per (1).

We observe the following high-level trends in the test
results. First, in the baseline scenarios (0.0% robot failures
or new tasks), the offline Sim-BRVNS solver achieves the
highest mean reward, consistent with the results expected
from the powerful STOP solver. Our 2-Stage and 2-Stage
Hybrid algorithms follow, while Dec-MCTS performs the
worst in every baseline test, highlighting the benefit of an
initial planning stage. Next, as disturbances are introduced
into the environment via failures and new tasks, the efficacy
of the initial offline plan tends to decrease at a higher
rate relative to the other methods. On average, the reward
obtained by Sim-BRVNS declined by 60.0% between the
baseline and high disturbance scenarios over all tests. The 2-
Stage method experienced the next highest average decrease
of 44.6%, followed by 2-Stage Hybrid at 39.5%, and Dec-
MCTS at 32.4%. These results underscore the robustness
provided by replanning in highly dynamic scenarios. Finally,
in the high-disturbance cases (5.0% robot failures or 10.0%

(a) Robot Failures: 3 Workers (b) Robot Failures: 6 Workers

(c) New Tasks: 3 Workers (d) New Tasks: 6 Workers

Fig. 4: (a), (b) Algorithm comparison results for teams of 3 and 6 Worker robots operating in a 30 task environment with increasing per-timestep robot
failure probability. (c), (d) Algorithm comparison results for teams of 3 or 6 Worker robots operating in a 20 task environment with increasing per-timestep
new task introduction probability. Results show mean task completion efficiency with standard error over 30 trials. As environment dynamics increase, the
utility of the initial offline Sim-BRVNS solution degrades while replanning approaches remain robust. 2-Stage and 2-Stage Hybrid achieve relatively high
rewards in most instances, with 2-Stage Hybrid performing best in high-disruption scenarios where the utility of the mothership’s information is greatest.

new tasks) we observe that 2-Stage Hybrid completes tasks
most efficiently. In particular, 2-Stage Hybrid achieves a
26.6% mean reward improvement over Dec-MCTS in the
3 Worker 5.0% failure test and a 7.5% increase over 2-
Stage in the 6 Worker 10.0% task rate test, while performing
competitively with 2-Stage in the other high-disturbance
scenarios. These results suggest that the hybrid rescheduling
phase is effective in bolstering the quality of rescheduled
solutions in highly dynamic scenarios.

The results also draw out differences between the offline
STOP solution and our online SMOP approaches. In all
baseline scenarios, performance declines from Sim-BRVNS
to our 2-Stage rescheduling methods. Despite starting with
a highly optimal offline plan, the 2-Stage approaches allow
Workers to replan conservatively by selecting low-risk tours
that skip high-risk tasks. Additionally, 2-Stage outperforms
2-Stage Hybrid in many low-to-medium disruption scenarios.
This is likely the result of two aspects: 2-Stage following
the initial offline solution longer than 2-Stage Hybrid due to
low-quality Dec-MCTS solutions being rejected by Alg. 2,
and 2-Stage Hybrid lacking sufficient information to produce
Sim-BRVNS plans that improve on the initial solution due to
communication limits. As a result, 2-Stage Hybrid performs
best when environment dynamics diminish the utility of the
initial plan and when the mothership is well-informed.

Overall, our results show that the 2-Stage and 2-Stage
Hybrid algorithms consistently perform best in the presence
of disruptive events. Both approaches scale well across
different problem sizes, as their distributed nature allows
computation to be performed in parallel across the mother-

ship and all passengers. However, we anticipate diminishing
performance with larger instances, as anytime solvers may
struggle to find high-quality solutions given limited solving
time. Initial offline planning improves performance in most
scenarios, and online replanning maintains this advantage
in dynamic conditions. In highly dynamic cases, 2-Stage
Hybrid’s distributed scheduling approach, which integrates
centralized and local planning, achieves the best results.

VI. CONCLUSION

In this work we explored leveraging a Mothership-
Passenger MRS for solving the Stochastic Multi-Agent Ori-
enteering Problem. We formulated the problem, in which
a team of robots must coordinate to solve tours through a
stochastic environment while adhering to budget constraints.
We presented a distributed solution to this problem based
on Dec-MCTS and a hybrid centralized-distributed algorithm
that reinforces the distributed algorithm with solutions in-
serted by a centralized Mothership. We then presented the
results from two sets of experiments carried out in a simu-
lated under-ice domain. The tests showed the resilience of
our algorithms to a variety of disturbances, underscoring the
coordination benefits provided by an initial offline schedul-
ing phase and highlighting the utility of well-informed
Mothership-provided plans during online rescheduling. Fu-
ture work will seek to reduce the communication overhead
in the system and explore ways to adapt our framework to
more general problem formulations.

REFERENCES

[1] R. B. Alley, S. Anandakrishnan, K. Christianson, H. J. Horgan,
A. Muto, B. R. Parizek, D. Pollard, and R. T. Walker, “Oceanic
Forcing of Ice-Sheet Retreat: West Antarctica and More,” Annual
Review of Earth and Planetary Sciences, vol. 43, pp. 207–231, May
2015. Publisher: Annual Reviews.

[2] A. Gunawan, H. C. Lau, and P. Vansteenwegen, “Orienteering Prob-
lem: A survey of recent variants, solution approaches and applica-
tions,” European Journal of Operational Research, vol. 255, pp. 315–
332, Dec. 2016.

[3] W. Cai, Z. Liu, M. Zhang, and C. Wang, “Cooperative Artificial
Intelligence for underwater robotic swarm,” Robotics and Autonomous
Systems, vol. 164, p. 104410, June 2023.

[4] A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot Task Allocation:
A Review of the State-of-the-Art,” in Cooperative Robots and Sensor
Networks (A. Koubâa and J. Martı́nez-de Dios, eds.), Studies in
Computational Intelligence, pp. 31–51, Cham: Springer International
Publishing, 2015.

[5] J. Panadero, A. A. Juan, C. Bayliss, and C. Currie, “Maximising
reward from a team of surveillance drones: a simheuristic approach
to the stochastic team orienteering problem,” European Journal of
Industrial Engineering, vol. 14, pp. 485–516, Jan. 2020. Publisher:
Inderscience Publishers.

[6] J. Panadero, A. A. Juan, E. Ghorbani, J. Faulin, and A. Pagès-
Bernaus, “Solving the stochastic team orienteering problem: compar-
ing simheuristics with the sample average approximation method,”
International Transactions in Operational Research, vol. 31, no. 5,
pp. 3036–3060, 2024.

[7] A. A. Juan, A. Freixes, P. Copado, J. Panadero, J. F. Gomez, and
C. Serrat, “A Genetic Algorithm Simheuristic for the Open UAV
Task Assignment and Routing Problem with Stochastic Traveling
and Servicing Times,” in 2021 Winter Simulation Conference (WSC),
pp. 1–12, Dec. 2021. ISSN: 1558-4305.

[8] D. Karunakaran, Y. Mei, and M. Zhang, “Multitasking Genetic
Programming for Stochastic Team Orienteering Problem with Time
Windows,” in IEEE Symposium Series on Computational Intelligence
(SSCI), pp. 1598–1605, Dec. 2019.

[9] G. Best, O. M. Cliff, T. Patten, R. R. Mettu, and R. Fitch, “De-
centralised Monte Carlo Tree Search for Active Perception,” in Al-
gorithmic Foundations of Robotics XII: Proceedings of the Twelfth
Workshop on the Algorithmic Foundations of Robotics (K. Goldberg,
P. Abbeel, K. Bekris, and L. Miller, eds.), pp. 864–879, Cham:
Springer International Publishing, 2020.

[10] A. Skrynnik, A. Andreychuk, K. Yakovlev, and A. Panov, “Decen-
tralized Monte Carlo Tree Search for Partially Observable Multi-
Agent Pathfinding,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 38, pp. 17531–17540, Mar. 2024. Number: 16.

[11] T. Murray, J. Garg, and R. Nagi, “Prize Collecting Multiagent Orien-
teering: Price of Anarchy Bounds and Solution Methods,” IEEE Trans-
actions on Automation Science and Engineering, vol. 19, pp. 531–544,
Jan. 2022.

[12] G. Shi, L. Zhou, and P. Tokekar, “Robust Multiple-Path Orienteering
Problem: Securing Against Adversarial Attacks,” IEEE Transactions
on Robotics, vol. 39, pp. 2060–2077, June 2023.

[13] A. A. Juan, Y. Li, M. Ammouriova, J. Panadero, and J. Faulin,
“Simheuristics: An Introductory Tutorial,” in Proceedings of the Win-
ter Simulation Conference (WSC), pp. 1325–1339, Dec. 2022. ISSN:
1558-4305.

[14] Y. Si, A. L. Stewart, A. Silvano, and A. C. Naveira Garabato,
“Antarctic Slope Undercurrent and onshore heat transport driven by
ice shelf melting,” Science Advances, vol. 10, Apr. 2024.

[15] W. Kuperman and P. Roux, “Underwater Acoustics,” Springer Hand-
book of Acoustics, p. 149, Jan. 2007.

