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Abstract— In this work we address the challenge of predicting
the missing dimension (elevation angle) from 2D underwater
sonar images. The high noise levels in these images, from
phenomena such as non-diffuse reflections, frequently limits the
usefulness of physical models. We thus propose the utilization of
Convolutional Neural Networks (CNNs) as a powerful method
to extract meaningful information without being misled by noisy
data. We also introduce a self-supervised method that uses
the physics of the sonar sensor to train the network on real
data without ground-truth elevation maps. Our method can
produce accurate elevation angle estimates given only a single
image. Finally, we demonstrate that our method produces more
accurate 3D reconstructions than competing methods, both in
simulation and on real data.

I. INTRODUCTION

3D reconstructions of marine environments can provide
rich information to human operators in tasks such as ship
hull inspection [1], seafloor mapping [2], and pipe inspection
[3]. Current methods for obtaining these reconstructions
oftentimes involve the use of divers with optical cameras,
which is a slow and potentially dangerous process. Robotic
underwater vehicles have the potential to obtain these recon-
structions in a safer and more time-efficient manner. Due to
the turbidity of water, the preferred sensing modality in such
applications is often sonar (visibility ∼100 m) as opposed to
optical cameras (visibility ∼1 m) [4].

3D sonars are available to generate these reconstructions,
but they are often much more expensive and slower to operate
than alternative sensors, in addition to being too heavy
to mount on a research-class Remotely Operated Vehicle
(ROV) [4]. This limits their application in rapid mapping
applications. As a solution to these drawbacks, 2D imaging
sonars are relatively inexpensive, provide images at tens of
hertz, and can be mounted on small ROVs.

In spite of these advantages, the use of 2D imaging sonars
for 3D reconstruction has been limited due to difficulties
in recovering the missing dimension, the elevation angle,
from 2D images. These difficulties often stem from the
poor signal-to-noise ratio in these images, which is often
much lower than standard camera imagery. This makes the
development of an inverse sensor model and tasks such as
feature association very difficult [4], [5]. There has been
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Fig. 1: Inputs and outputs for ElevateNet. ElevateNet takes in 2D sonar
images (left) and produces pixelwise estimates of the elevation angle. The
network can be trained in a fully supervised manner when ground truth
information is available, as is the case with synthetic data. Our method can
also train in a self-supervised manner on real sonar images, where ground
truth information is not available.

a variety of previous work attempting to estimate the ele-
vation angle from these images, including using priors in
the environment such as the shadow of the object on the
seafloor [6] or moving the vehicle in specific ways around
the object to reduce ambiguity in the elevation [7], [8].
While these methods provide high-quality reconstructions in
specific applications, they do not cover the case where the
object is in the water column (and no shadow is produced)
and the vehicle can only traverse around the object in a
constrained manner, as would be the case in a cluttered
environment.

These drawbacks constrain the speed of producing 3D
maps and thus limit the usefulness of sonar-equipped un-
derwater vehicles. Our method is a first step towards a
more flexible approach to providing dense reconstructions,
to enable “fly-through” missions where a robot only has to
traverse quickly through the environment to construct a 3D
map.

In contrast to the difficulties in underwater applications,
terrestrial applications have seen an abundance of methods
for obtaining the missing depth dimension from 2D RGB
images [9], [10]. In many recent works, Convolutional Neural
Networks (CNNs) have proven to be a powerful method
to obtain high-quality depth estimates. These methods can
even be trained in a self-supervised manner, meaning they
do not require a ground truth estimate of depth in order to be
trained [10]. This is an attractive property for our application,
where ground truth information is often unavailable. Self-
supervision in terrestrial applications is done by using one
image of a scene to generate a depth estimate. This estimate
is then used to produce an image of the scene from a different
viewpoint [10]. An actual image of that scene from that



different viewpoint can then be used to compute an error and
train the network. The intuition is that if the depth estimate
from the first frame is accurate, the predicted image will also
be accurate, and vice-versa.

To enable self-supervision, many RGB-based methods rely
on well-established theory, such as pixel disparities and the
stereo vision model, to stabilize the training of the network.
Such theory does not exist in a general form for underwater
sonar images, and thus we propose an approach that does
not require these sensor properties for model training.

In this work, we propose a self-supervised CNN for
generating estimates of the elevation angle in 2D sonar
images. In contrast to previous approaches for estimating the
elevation angle, which rely on sensitive physical models or
many views taken at specific poses, we use a CNN to obtain
a higher-level representation of the image and avoid being
misled by large amounts of noise.

To train our network, we present a self-supervised method
that uses real sonar data. To do this, we leverage the physics
of the sensor to predict the next frame and thus enable the
training process. Before training on real data we pre-train
the model using synthetic data, which provides two benefits.
First, it allows us to train a network using only a small
amount of real data, which is often scarce for underwater
sonar imagery. Second, because this is an under-constrained
problem (multiple estimates can lead to the same image),
training on synthetic data puts the CNN in an appropriate
part of the parameter space. Fine tuning is then done using
real data.

To our knowledge, ours is the first method for training
a network on real underwater sonar data to predict the
pixelwise elevation angle. As we show, by allowing the
network to train on real data, it is able to better account for
the noise in real imagery, thus improving 3D reconstruction
ability in the real world. Fig. 1 shows an overview of our
method.

In short, our contributions are as follows:
• A novel CNN for generating dense reconstructions of

underwater environments from a single sonar image.
Our approach does not require the object to be in a
specific part of the environment or specific traversals
around the object.

• A self-supervised training scheme that uses the physics
of the sonar sensor to enable training on real data
without ground truth elevation angle information.

II. RELATED WORK

A. 2D Imaging Sonars

To inform our discussion of related work, we first describe
the imaging sonar model shown in Fig. 2. At a high level,
2D imaging sonars operate by sending out acoustic pulses
and measuring both the time of flight and intensity of the
returned acoustic energy. From the time-of-flight, a range r
to the reflector can be obtained (Fig. 2a). From the amount
of acoustic energy returned, the pixel value (from 0-255) can
be obtained. Bearing to the target is obtained by sending out
a series of acoustic pulses along a horizontal swath (Fig.

(a) Computation of range
and elevation angle

(b) The acquisition of
bearing by emitting

multiple beams

Fig. 2: Mapping from Euclidean to polar coordinates.

2b). Thus, the dimensions of a 2D sonar image are range r
and bearing θ. Note that the elevation angle φ is lost in the
imaging process. The purpose of this work is to recover this
missing dimension.

B. Estimating the elevation angle

Previous work on recovering the missing elevation angle
from 2D sonar images can be grouped roughly into three
categories: feature-based methods, single-view physics-based
methods, and multi-view methods.

Feature-based methods often use the tracking of image
features across multiple frames to estimate the elevation
angle. Due to the noise present in these images, feature
annotation is often done by hand [11], [12]. Alternatively,
Westman et al. use A-KAZE features to identify high-quality
image features and automate this process [5]. While these
methods produce high-quality results, they are constrained to
producing sparse reconstructions. In this work we complete a
pixelwise estimation, thus generating dense reconstructions.

Using a physical model of the sonar and determining
the elevation angle from the intensity values returned has
also been a popular option in previous work [2], [6]. For
example, Aykin and Negahdaripour use shape-from-shading
to predict the elevation angle of objects on the seafloor [6].
While this method produces promising results for objects on
the seafloor, the reconstruction approach requires the object
to display a visible shadow on the seafloor for initializing
the optimization. Additionally, this and other physics-based
methods that attempt to determine the elevation angle from
pixel values are often sensitive to noise in the sonar images
[6]. To avoid this sensitivity, our method uses a CNN to gain
a higher-level representation of the object.

Multi-view methods for recovering the elevation angle
often involve the development of a framework that lever-
ages a specific trajectory of the vehicle around the object.
Guerneve et al. develop a method that relies on the vehicle
moving in the direction of ambiguity (in the z-direction)
[8]. Aykin and Negahdaripour use a state-of-the-art space
carving method to leverage roll of the vehicle at various
points around the object and generate a 3D reconstruction
[7]. At each pose, points that do not give returns in image
space are “carved” away from the final object mesh. As we
will show, such multi-view methods do not perform well on
cases where only part of the object is seen, as is the case for
applications that require rapid mapping.
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(a) Learned part of ElevateNet. C = Convolution/Batch normalization/ReLU
layer. DC = Deconvolutional layers. C(a,b,c) are number of filters, output image
width, output image height respectively for a convolutional layer.
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(b) Training methods for ElevateNet. Training on synthetic data
(left loop) can be done by directly comparing the output with the
ground truth elevation map. Training on real data (right loop) uses
the output to predict the next image and a photometric loss is
applied between the prediction and the actual next sonar image.

Fig. 3: Our overall model architecture. (a) shows detailed model parameters of ElevateNet which can be used directly on synthetic data. (b) presents the
two training methods used (on synthetic and real data, respectively). Note that the dotted box in both Fig. (a) and (b) represents the same model.

C. Using CNNs to estimate missing dimension

To our knowledge, ours is the first CNN used for directly
estimating the missing dimension in 2D sonar images. There-
fore, we will review terrestrial applications in this section.
There are two broad groups of methods for training these
CNNs: supervised and self-supervised training schemes.

Training CNNs to predict depth from 2D RGB images in a
supervised manner has received much research attention [9],
[13]. For example, Eigen et al. use a Kinect sensor to obtain
ground truth depth maps, which are used to train a CNN that
achieves excellent estimation performance [9]. Given that
there is no such 3D sensor widely available for underwater
vehicles, we are interested in methods that do not require a
ground-truth sensor to be used.

Self-supervised methods for training CNNs do not require
a 3D sensor for training [10], [14]. Instead, given an initial
image, such methods estimate the pixelwise depth, producing
a predicted point cloud. A virtual image is then taken of the
estimated point cloud at a different pose. This virtual image
can then be compared to an actual image at that different pose
and the pixelwise difference between the two can be used for
training [10]. To take this virtual image, bilinear sampling is
used, which after defining sub-gradients is differentiable.

III. METHODS

In this section we first discuss our architecture, describe
how we train on synthetic data, and finally outline an
extension for training with real data. For notation, we denote
the learned part of the CNN (Fig. 3a) as the model and the
process by which to incorporate real data (Fig. 3b) as the
architecture.

A. Model

We first discuss the model, shown in Fig. 3a. Our network
takes in a 2D sonar image and outputs an elevation angle

estimate for every pixel in the image. To facilitate training,
we treat the estimation as a classification and not a regression
problem. Thus, we discretize the elevation angle into 20 bins
over the range from −10◦ to 10◦. Because we are completing
a pixelwise classification, we adopt a network architecture
similar to the U-Net CNN for pixelwise prediction tasks [15].

At this point, the model can be trained on synthetic data
where we have ground truth information. However, because
synthetic data does not capture all sources of noise, it would
be beneficial to train using real sonar images as well.

B. Architecture

To incorporate real data into the training process, we
present a method that predicts the next frame given the
current frame and the estimated elevation map. This process
is shown in the right loop of Fig. 3b. To start, the output
elevation map from the model (Elevpred) is a polar point
cloud with coordinates (R, θ, φ) or range, bearing, elevation
angle respectively. We convert this into Cartesian coordinates
using the transformation for a polar point (R, θ, φ):

Xc = R cosφ sin θ, (1)
Yc = R cosφ cos θ, (2)
Zc = R sinφ, (3)

where (Xc, Yc, Zc) are the Cartesian coordinates of the point,
R is the range to the point from the sonar, φ is the elevation
angle to the point, and θ is the bearing to the point.

We denote the resulting point cloud as Pest. We then
take a simulated sonar image of Pest from the reference
frame of the next image I2 (also called image warping). This
produces a predicted image I ′2. To produce the simulated
sonar image we use the differentiable bilinear sampling
module by Jaderberg et al. [16].



This predicted image can then be compared pixelwise to
the actual image I2. This difference is called the photometric
loss and can be used to train the model. The intuition behind
this is that an accurate estimate of the elevation angle will
lead to an accurate estimate of the next frame and vice versa.
In this manner we embed the physics of the sonar sensor into
the training process.

C. Training with synthetic data

We first train our model with synthetic data because we
have the ability to generate large amounts of training data,
and the ground truth elevation maps provide a clear training
signal. We used a weighted cross entropy loss function (as
implemented in PyTorch [17]) where we weight pixels with
sonar returns 5x more than those without returns. We term
this the LClass loss. Because the ground truth elevation map
is such a strong signal, we did not find self-supervision to
help when training on synthetic data.

To choose the best model based on synthetic data, we com-
plete a parameter sweep over the number of layers, filter size,
number of filters, learning rate, and batch size. We found the
number of elevation bins did not affect performance greatly.
We trained each model in the sweep for 120 epochs. We
found a batch size of 9, a filter size of 5x5, and a learning
rate of 1E-03 to achieve the lowest validation loss. The final
model and its parameters can be seen in Fig. 3a.

D. Training with real data

After training with synthetic data, the model can be fine-
tuned on real data, which improves its performance by
adjusting to realistic noise. By integrating the physics of the
sonar sensor into the training process, we are able to train
without ground truth elevation maps.

For training on real data, we use a photometric loss,
defined as:

Lossphotometric =

Y∑
i=0

X∑
j=0

M |I ′2[i, j]− I2[i, j]| , (4)

where M is a scaling coefficient (to be on the same order
as the synthetic loss) and X and Y are the image width
and height respectively. We found M = 14 to bring the
reconstruction loss to the same order as the synthetic loss.
This loss function allows for training in a self-supervised
manner, which is necessary for real data where we do not
have ground truth elevation angle information.

IV. EXPERIMENTS AND RESULTS

In this section we first present the overall robotic system
used in this work. We then demonstrate that our approach
produces more accurate elevation angle estimates and 3D
reconstructions than baseline methods in simulation. Fi-
nally, we demonstrate that training on real-world underwater
dataset enables more accurate 3D reconstructions on real
data.

In all of our experiments we test the approaches in runs
where only part of the object is visible. This is motivated by
applications where the vehicle must operate in a cluttered

Fig. 4: The Seabotix vLBV300 and Gemini 720i imaging sonar (white
rectangle in the lower right) used in experiments.

environment, or is only completing a “fly-through” mapping
mission. Therefore, the reconstructions estimated are over
the part of the object actually seen, not the entire object.

A. System Overview

The vehicle used in this work is a Seabotix vLBV300
Remotely Operated Vehicle (Fig. 4). The vehicle is teth-
ered, allowing for real-time data to be streamed back to a
basestation. To estimate the 6D pose of the vehicle, it is
equipped with a Doppler Velocity Logger (DVL) and Inertial
Measurement Unit (IMU) which are fused together by a
Greensea Inertial Navigation System (INS) 1.

Onboard the vehicle is a Tritech Gemini 720i imaging
sonar which operates at 720kHz and uses 256 beams to
sweep a 120◦ swath in the bearing direction. Images are
collected at 20 Hz. The range-resolution is range dependent
but is roughly 8 mm. Images we collected had on the order
of 350 pixels in the range direction. These parameters are
roughly equivalent to those found in sonars used in previ-
ous work, including the SoundMetrics DIDSON, BlueView
M900-90, and the Aris Explorer 3000 [18], [19], [20].

B. Performance on synthetic data

We first describe the generation of our synthetic dataset
and then show that we estimate the pixelwise elevation angle
accurately. We then validate that these accurate estimations
lead to more accurate 3D reconstructions.

1) Synthetic dataset: We generate synthetic data using
the simulator by by Cerqueira et al. which models the same
Tritech Gemini 720i sonar on our vehicle [21]. We generate
a dataset of 8454 synthetic images of spheres, cylinders, and
cubes which are often the shapes of underwater objects of
interest (e.g. mines, pipes, etc.) [22], [23]. The sphere has a
radius of 19 cm, the cylinder has a radius of 5 cm and height
10 cm, and the cube a side length of 30 cm.

We take care to avoid overfitting in our training set by
imaging objects at a variety of poses and from a variety of
ranges. We also take images with varying maximum ranges
(from 1-5 meters).

1https://greenseainc.com/products/ins



TABLE I: Synthetic Pixelwise Elevation Angle MAE (m)

Entire test set Sphere Cube Cylinder
Min. dist. to

training ex. (cm) <10 10-20 20-30 <10 10-20 20-30 <10 10-20 20-30 <10 10-20 20-30

Predrandom 0.160 0.170 0.180 0.200 0.190 0.183 0.213 0.211 0.206 0.0673 0.068 0.187
Predzero 0.114 0.112 0.120 0.140 0.120 0.114 0.145 0.135 0.135 0.0527 0.0545 0.146

CNN (ours) 0.087 0.105 0.120 0.100 0.110 0.126 0.105 0.109 0.105 0.0635 0.0657 0.186

From the simulator we get images of size 600x256 pixels.
Images are downsampled to 304x128 pixels and normalized
before being fed into the network. Images are normalized
according to:

In = (I − µ)/σ, (5)

where In is the normalized image, I is the original image
and µ and σ are the mean and standard deviation of the
dataset respectively.

We break up the dataset into 75% for training, 15% for
validation and 10% for test. We ensure that the test data
contains images of all three shapes (sphere, cylinder, cube).
The network is then trained according to the procedure
described in Section III-C.

2) Evaluating pixelwise error: We first show that our
method can produce more accurate elevation maps than
competing methods. We compare against two baselines. The
first, Predrandom predicts a random elevation angle for
every pixel. This baseline gives a sense of the overall amount
of ambiguity in the elevation dimension. The next baseline is
Predzero, which predicts an elevation angle equal to zero for
all of the pixels in the image. We do not compare against
physics-based methods because oftentimes they require an
environmental prior (such as the shadow of an object lying
on the seafloor) and thus are not applicable to the general
case of an object in the water column [6].

For our performance metric we use the Mean Absolute
Error (MAE) in elevation angle estimation. To give context
to this error, we convert the error into meters, thus resulting
in the final reported metric, defined as:

MAE =
1

|N |
∑
n∈N
|rn sin(φp,n − φt,n)|, (6)

where N is the set of pixels whose elevation angles are
estimated and rn, φp,n, and φt,n are the range, predicted
elevation angle, and ground truth elevation angle to point n.

To give insight towards the ability for our method to
extend to views unseen, we compare each method across
subsets of data, each with vehicle poses at varying amounts
of distance away from the training set. Specifically, for each
shape we generate 3 subsets: one with poses greater than 0
and < 0.1 m away from the closest training example, one
with poses in the range 0.1-0.2 m to the closest training
example, and finally a set with poses 0.2-0.3 m away from
the closest training example.

The results can be seen in Table I. Over the entire test
set, our method performs well, reaching errors below 0.1 m
when the poses are near training data. Naturally, as the poses
become increasingly further away from the training set, our

method performs worse, but still achieves results competitive
with or better than baselines.

For the sphere, our method performs well when the test
poses are close to the training data. Interestingly, it maintains
its performance even up to 0.2 m away from any training
pose. As the test data gets far away from the training data,
Predzero performs better, suggesting that we are starting to
observe the object closer to the φ = 0 plane.

Our low error on the cube demonstrates the ability for
our method to perform well on simple objects. Even as we
move into test views that are far away from any given training
view (up to 0.3 m difference), our method still outperforms
competing methods by a large margin.

Finally, we find that our method is unable to beat the
Predzero baseline on the cylinder. Further analysis suggests
that the network appears to confuse the cylinder with a cube
and thus predicts a plane instead of a curved surface. The
reasoning for this could be that the cylinder and cube objects
(Figs. 5e and 5f) look very similar in image space.

3) Synthetic 3D Reconstruction Results: We next demon-
strate that our method can produce high-quality reconstruc-
tions using the estimated elevation maps. We compare our
method and the Predzero baseline on their 3D reconstruction
abilities in a manner similar to previous work [7]. For brevity,
we do not include results from Predrandom.

In this experiment we also add the aforementioned state-
of-the-art space carving method proposed by Aykin and
Negahdaripour [7]. While this method relies on multiple
views, it is to our knowledge the only method for dense
reconstruction that does not require an environmental prior
(e.g. shadow on the seafloor) to compute a reconstruction.
To ensure this method is working on our data, we test it
on images of the sphere taken from a variety of views
and roll angles, to ensure convergence. We note that this
set of viewpoints is not indicative of the rapid mapping
scenario targeted in our experiments. We achieve an RMSE
of 0.021 m, indicating a working method.

Because a single view does not offer much coverage over
the entire object, we use 20 views of the object to generate
a mesh for each method. We note that entire coverage of the
object may not still be attained and thus the generated meshes
are only over a portion of the ground truth objects. This
highlights the ability of our method to generate estimates
even when a diverse set of views are not possible.

We first compare the methods qualitatively. The output
of Predzero and our approach is a 3D pointcloud with
dimensions range, bearing, elevation. To generate meshes
from pixel based estimates we use the standard Matlab
trimesh function. The results can be seen in Figs. 5g-5o.
Across all three shapes, the space carving method is unable



(a) Sphere target (b) Cube target (c) Cylinder target

(d) Sphere image (e) Cube image (f) Cylinder image

(g) Reconstruction
of sphere [7]

(h) Reconstruction
of cube [7]

(i) Reconstruction
of cylinder [7]

(j) Reconstruction
of sphere (zero)

(k) Reconstruction
of cube (zero)

(l) Reconstruction
of cylinder (zero)

(m) Reconstruction
of sphere (ours)

(n) Reconstruction
of cube (ours)

(o) Reconstruction
of cylinder (ours)

Fig. 5: The synthetic sonar targets (a)-(c), their respective synthetic sonar
images(d)-(f), and the reconstructed meshes(g)-(o) from a small subset of
images. For Figs. 5g-5o, the ground truth meshes are blue and the predicted
meshes are red. The predicted mesh in Fig. 5k is small, but is in the upper
right corner of the image. In these experiments, only part of the ground
truth objects are seen and thus the predicted meshes should only cover one
part of the object. For the sphere and cube, our method is uniquely able
to capture the shape of the object being imaged. The CNN confuses the
cylinder for a cube and thus predicts a vertical plane. Best viewed in color.

to see the entire object, and thus there is a lot of ambiguity
in the region behind the object (which is un-observable from
a limited number of views). Predzero is only able to predict
planar meshes and thus for the sphere and cube especially,
the resulting reconstructions bear no resemblance to the
ground truth shape. For the cylinder, some views may have
been at different z-coordinates and thus the mesh produced
by Predzero was built over planes of varying height.

Our method does well on the sphere and cube estimation,
producing meshes that lie on the ground truth surface. For the
cylinder, we see results that agree with the elevation angle
prediction results previously mentioned. Due to the similarity
of the cube and cylinder in image space, the CNN most likely
predicts the cylinder to be a cube and thus predicts a vertical
plane.

TABLE II: Synthetic Reconstruction RMSE Results (m)

Sphere Cube Cylinder
Space carving method [7] 1.09 1.05 0.815

Predrandom 0.115 0.160 0.070
CNN (ours) 0.022 0.020 0.068

To compare each method quantitatively, we use the Root
Mean Square Error (RMSE) between the two point clouds.
To compute point correspondences we use a nearest-neighbor
search and then compute the error between the matched
points. Because we have the ground truth object pose, we do
not apply any affine transformation to any point cloud in this
section. Our results can be seen in Table II. As can be seen in
Figs. 5j-5l, Predzero only is able to produce planar estima-
tions and does not generate accurate estimations. Therefore,
we do not include it in the quantitative comparisons.

Intuitively, because our method can predict the shapes
of the sphere and cube well, it scores best on that object.
The space carving method is unable to see the object from
many viewpoints, and thus a large amount of ambiguity in its
estimation remains. For the cylinder, the results agree with
the qualitative analysis, with our method likely confusing the
cylinder for the cube and thus producing a planar object.
C. Performance on real data

Finally, we demonstrate that our self-supervised method of
training produces more accurate 3D reconstructions than just
training on synthetic data or doing space carving. We first
describe the dataset generated. Then, we describe how fine
tuning on real data not only allows our method to predict
the next frame better, but also generate more accurate 3D
reconstructions than competing methods.

1) Real dataset: For this experiment we use underwater
sonar imagery captured in Yaquina Bay, Newport, OR. We
constructed concrete sonar targets to be imaged for dataset
generation (Figs. 6a-6b). The sphere has radius 19 cm, the
cylinder radius 5 cm and height 10 cm, and the cube side
length of 29 cm. To capture the images, we drove around the
objects at varying poses and ranges (on the order of 2-5 m)
and captured images with different maximum ranges.

A human expert first hand-labels captured images as high
or low-quality, and we use the high-quality images in our
dataset. An automatic method, such as our previous work
using a CNN, could be incorporated in the future [12].
We then resize images to 304x128 pixels and normalize
according to Eq. 5. The final dataset contained 4,667 images
with a 40% /30% /30% split for concrete spheres, cylinders,
and cubes respectively. Real image examples can be seen in
Figs. 6d-6e.

For training and final testing, we break up the dataset into
70% for training, 15% for validation and 15% for test. To
ensure independence between validation and testing, the test
set contains data from a separate deployment (same day) as
the training and validation data.

During training on real data, we investigated the effects
of the training schedule (what epochs to train with real or
synthetic data). We found that training for 15 epochs of
synthetic data was enough to start pre-training, and then



(a) Real sphere target (b) Real cube target (c) Real cylinder target

(d) Real sphere image (e) Real cube image (f) Real cylinder image

(g) Reconstruction of
sphere Aykin [7]

(h) Reconstruction of
cube Aykin [7]

(i) Reconstruction of
cylinder Aykin [7]

(j) Reconstruction of
sphere (ourssyn)

(k) Reconstruction of
cube (ourssyn)

(l) Reconstruction of
cylinder (ourssyn)

(m) Reconstruction of
sphere (oursreal)

(n) Reconstruction of
cube (oursreal)

(o) Reconstruction of
cylinder (oursreal)

Fig. 6: The real sonar targets (a)-(c), their respective sonar images (d)-(f),
and the reconstructed meshes using Aykin [7] (g)-(i), our model without real
training (j)-(l) and with real training (m)-(o). For the meshes, ground truth
is in blue and estimated meshes are in red. Because we only see part of
the object, our estimated reconstructions are over only a part of the ground
truth object. For the sphere and cube our model is able to capture the shape
of the object given only a limited number of views. Best viewed in color.

alternated between 5 epochs of real training and 2 epochs
of synthetic training for the remainder of the process (total
of 120 epochs). To choose the best model for performance
on real data, we complete a parameter sweep over the
parameters listed previously in Section III-C for synthetic
data, as well as the step size (temporal difference between I2
and I ′2) and the training schedule. We chose the final model
based on evaluation of the photometric loss on real validation
data. The final model had all of the same parameters as the
synthetic model (Fig. 3a) except for the filter size, which was
3x3 for this case. The step size found to perform the best on
validation data was 15 frames. The network was then trained
using an initial learning rate of 1E-05 which halved every 50
epochs, the Adam optimizer, and a batch size of 9. Training
was done using the procedure described in Section III-D.

TABLE III: Evaluation of predicting the next frame

Photometric loss (unitless)
Predrandom 1.92
Predzero 2.01

CNN (oursreal) 1.80

TABLE IV: 3D reconstruction accuracy on real data

RMSE (cm)
Sphere Cube Cylinder

Space carving [7] 14.8±0.25 17.96±0.18 42.2±0.42
CNN (ourssyn) 3.57±0.23 3.26±0.10 6.53±0.91
CNN (oursreal) 3.14±0.29∗ 3.09±0.23∗ 6.64±0.87

* = Statistically significant with p-value <0.05

2) Evaluating next frame prediction: We first tested our
architecture’s ability to predict the next frame. We compare
with the same two baselines as before: Predrandom and
Predzero. Intuitively, as we learn to produce elevation maps
more accurately, from both synthetic and real data, our ability
to predict the next frame improves. Table III shows our
results. As shown in Eq. 4, we scale the photometric loss
to be roughly the same as the synthetic loss; consequently
the photometric loss is unitless.

3) Real 3D reconstruction results: Finally, we demon-
strate that our CNN-based approaches produce more accurate
reconstructions than competing methods and training on real
data produces better 3D reconstruction estimates. For each
shape we generate reconstructions from 10 random subsets of
2 images. Because we do not know the ground truth location
of the real object, point clouds are first hand-aligned to a
ground truth model using a rigid transform. Then Iterative
Closest Point is run, and finally the RMSE is computed using
the MATLAB pcregrigid library.

In addition to the space carving baseline [7] from before,
we also wanted to examine the benefit of fine tuning the
network by training with real data. Thus, we compare our
method only trained on synthetic data (ourssyn) to our
method trained on synthetic data and then fine tuned with
real images (oursreal).

We present the mean and standard deviations from the
10 subsets for each shape in Table IV. For each shape,
we run a t-test to compute the statistical significance of
a difference existing between the means of ourssyn and
oursreal. Our CNN approaches reduce the ambiguity given
only a limited number of views when compared to the space
carving baseline. Fine-tuning with real data produces more
accurate meshes than just training with synthetic data for
the sphere and cube because the network can adjust to the
difference between real and synthetic data. For the cylinder,
both CNN methods predict a vertical plane, suggesting
that the confusion between the cube and cylinder from the
synthetic training remains.

Qualitative reconstruction results are shown in Fig. 6.
Similar to the synthetic case, our CNN-based approaches
allow us to capture the shape of the sphere and cube much
more accurately than the space carving baseline. For the
cylinder, our results mirror the synthetic case where the
CNNs likely get confused between the cylinder and cube



and produce more planar surfaces than the cylinders being
imaged.

There are interesting qualitative differences between
ourssyn and oursreal. For the sphere, oursreal better cap-
tures the curved shape of the sphere. While estimating the
cube surface, ourssyn produces a variety of surface shapes.
Shown here is what would be expected from training on
the synthetic data: a vertical surface. Interestingly, oursreal
produces many “corner” shaped objects shown in Fig. 6n.
This makes sense because many of the real images of the
cube, including Fig. 6e, are of the corner of the cube. This is
indicated by the horizontal band in the middle of the image,
where no reflections come back to the sensor.

V. CONCLUSION

In this work we propose a novel CNN architecture for pro-
ducing dense 3D reconstructions. We utilize large amounts
of synthetic data, where ground truth information is known,
to pre-train the network. To train on real data we present
a self-supervised training method which utilizes the physics
of the sonar sensor to enable training without ground truth
information. We show by fine tuning, the network adjusts to
the real data and produce more accurate 3D reconstructions.

Our results suggest that if objects are different enough in
image space (e.g. the cube and sphere) that the network can
generate accurate reconstructions. When objects look similar
in image space (e.g. the cube and cylinder) the network
struggles more in its estimation. Future work could include
incorporating multiple images into the estimation to better
distinguish between objects of similar appearance in image
space.

It would also be beneficial to test our approach in appli-
cations where the object is farther away from the sensor.
We anticipate similar elevation angle errors. However, due
to the increased range, actual cm accuracy and resulting
reconstruction accuracy may decrease.
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