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Abstract— Robotic exploration requires adaptively selecting
navigation goals that result in the rapid discovery and mapping
of an unknown world. In many real-world environments, subtle
structural cues can provide insight about the unexplored world,
which may be exploited by a decision maker to improve the
speed of exploration. In sparse subterranean tunnel networks,
these cues come in the form of topological features, such as
loops or dead-ends, that are often common across similar envi-
ronments. We propose a method for learning these topological
features using techniques borrowed from topological image
segmentation and image inpainting to learn from a database of
worlds. These world predictions then inform a frontier-based
exploration policy. Our simulated experiments with a set of
real-world mine environments and a database of procedurally-
generated artificial tunnel networks demonstrate a substantial
increase in the rate of area explored compared to techniques
that do not attempt to predict and exploit topological features
of the unexplored world.

I. INTRODUCTION

Robots are increasingly being tasked with exploring un-
known worlds to provide rapid situational awareness to end
users. A vitally important domain for robotic exploration
is subterranean environments [1], [2], [3], [4], including
mining tunnels, urban underground facilities, and natural
caves, as exemplified by the ongoing DARPA Subterranean
Challenge [5]. Communication is particularly difficult in
these environments, which makes it essential for robots to
act autonomously. However, the typically unknown, complex
and sparse structure of underground tunnel networks impedes
the ability to make fruitful online decisions. We propose
methods for predicting topological features of partially-
known tunnel networks to improve the effectiveness of
exploration strategies.

At the core of robotic exploration tasks is a decision
making problem where a robot is required to adaptively plan
navigation goals. Typical approaches involve maintaining
a list of frontiers, where these frontiers define boundaries
between open and unknown space, and the decision to be
made at each time step is which frontier to explore next.
Without any knowledge of the unknown environment, the
best one can do is distance-based selection, such as selecting
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Fig. 1. An example set of realistic subterranean tunnel networks from our
procedurally generated dataset. These environments contain structure in the
form of topological features (loops and connected passages). Our proposed
method predicts the presence of these features in unexplored space to inform
frontier selection strategies for robotic exploration.

the closest frontier [6], and hope that these decisions lead to
valuable regions.

However, even in unknown worlds, there is often knowl-
edge available regarding the typical structure of environ-
ments similar to the current environment of interest. This
is particularly evident in human-populated environments,
such as buildings and cities, which exhibit common features
between environments that can be exploited for improved
robotic decision making [7], [8], [9], [10], [11]. Subterranean
environments are often less structured, due to, for example,
complex interactions between ventilation requirements [12]
and non-uniform distributions of mineral deposits [13]. How-
ever, we hypothesise that subtle structural cues do exist
in these environments and can be exploited for improved
exploration efficiency.

A key differentiating characteristic of subterranean envi-
ronments is the relatively large proportion of inaccessible
areas and resulting sparse topology. Prediction methods
that focus on ‘completing’ holes in the known world [10]
are thus not appropriate for tunnel networks. Instead, it is
advantageous to reason over topological features, such as the
connectivity and relationships between loops and dead-ends,
as evident in the example environments of Fig. 1. Knowing
or estimating these structural features is instrumental to
effective decision making. To achieve this, we investigate and
extend recently proposed topological loss functions designed
for learning topological features of images [14], [15].

In this paper, we propose a new method for robotic
exploration of sparse tunnel networks that aims to learn
and exploit subtle structural cues present in these types of
environments. Our core contribution is a novel world predic-



tion technique that predicts the unknown environment. This
technique uses a U-Net architecture [16] and a novel loss
function that combines pixel-to-pixel and topological feature
matching via persistent homology [14], the Hungarian as-
signment method [17] and image inpainting features [18].
Our primary motivation for these predictions is to leverage
this information to inform robotic exploration algorithms; we
incorporate this information into a frontier selection policy
to rapidly explore the most promising regions of the world.
We have released our code publicly on our repository1.

We present results for simulated experiments where our
network is trained with a library of procedurally-generated
realistic tunnel networks that exhibit random topological
structures. Using this learned model, we show a robot can
successfully leverage these predictions to effectively explore
four real-world mines, including three used in the DARPA
Subterranean Challenge [5], as well as a large database of
artificial mine networks. Our key findings indicate that our
proposed method of combining topological predictions with
frontier selection improves the exploration efficiency over
standard methods that do not attempt to explicitly learn
topological features. Additionally, our results demonstrate
that models learned from our artificial dataset of tunnel
networks successfully transfer to real-world environments.
Overall, our proposed methodology has the potential to
substantially increase the information discovery efficiency of
robotic exploration systems in practice.

II. RELATED WORK

Exploration of an unknown environment is one of the most
prominent robotic information gathering problems found in
the literature. The seminal work of Yamauchi [6] introduced
the concept of frontiers, which describes boundaries between
open and unknown space. Frontier-based exploration strate-
gies then typically involve selecting the next frontier accord-
ing to a distance-based measure, such as closest-first [6]
and related variants [19]. Information-theoretic approaches
additionally reason over the expected observation value at
candidate frontier viewpoints by, for example, evaluating
the sensor area coverage or Shannon information gain for
the map [20], [21], [22], [23]. However, these approaches
typically only greedily reason over the information value
of single observations at frontier locations; in tunnels of
consistent width, all single observations may provide similar
information gain. What these methods fail to capture is the
information provided by subsequent observations as a result
of moving to specific regions.

Predicting the value of future observations beyond the
current frontiers requires making further assumptions about
the unknown. Fortunately, in many real world environments,
there is inherent structure available to be exploited for
decision making. These structural features may be difficult
to predict, but even weak predictions help guide exploration
strategies. Promising methods have been proposed for clut-
tered and well-structured environments, such as matching

1https://github.com/manishsaroya/map_inpainting

the known world to a given database of building maps [7],
[11], imitating the actions of agents in a similar known
world [24], and CNN-based prediction methods for frontier
selection [10]. Related algorithms that exploit predictions
have also been proposed for navigating to a known [9]
or unknown [25] goal, or set of goals [26]. As argued
above, tunnel networks and partially-structured subterranean
environments are topologically different to the environments
considered in these studies, thus requiring new prediction
techniques.

Convolutional neural networks (CNNs) and related vari-
ants are widely used for image processing problems such as
object segmentation and classification [27]. While most of
this large body of work has focused on analysing complete
images, there has been recent work in the problem of
predicting or ‘completing’ partially-known images, known as
image inpainting, which is analogous to the world prediction
problem we consider here. The inpainting technique by
Liu et al. [18] features a variant of the popular U-Net
architecture [16] with pixel masking, which directly inspired
our approach, albeit for a different problem domain. Closely
related techniques have been proposed for robotics prob-
lems [10], [28]; unlike our work, [10] focuses on filling holes
in a mostly-known world and [28] considers predictions of
ocean models for marine monitoring.

Standard CNNs with location-specific loss functions, such
as pixel-wise cross entropy, are appropriate for many prob-
lems; however, they generally fail to capture the topological
structure of a scene. For our application, topological informa-
tion, such as the connectivity and relationship between loops
and deadends, is vital for computing accurate paths across
known and unknown space. To achieve this, we borrow
recent ideas for learning topological features of images.
More specifically, Brüel-Gabrielsson et al. [15] presented a
topology-based regulariser for denoising, and Hu et al. [14]
generalised this approach by learning topological features
from ground truth segmentations of similar images, and
applied it to medical image processing. We employ the loss
function in [14] with a modified feature matching technique
as a component of our world prediction method.

III. PROBLEM FORMULATION

We address the problem of exploring an unknown envi-
ronment by a mobile robot. We are particularly interested
in exploring environments that feature sparsely connected
corridors, such as subterranean tunnel networks. The aim is
to select navigation decisions that maximise the fraction of
the unknown environment that is visited by the robot within
a given mission time.

The environment is represented by a navigation graph G
with vertices V and edges E . We assume the vertices V
are formulated as a uniformly-spaced grid of locations over
a rectangular area. Each vertex v ∈ V is either OPEN or
CLOSED, where OPEN implies the location specified by v
is open space and to be visited by the robot, and CLOSED
implies a location is unreachable by the robot. Edges are
connected as a 4-connected grid, with an edge e ∈ E between



neighbouring vertices vi, vj ∈ V existing if and only if both
vi and vj are OPEN.

At time t = 0, a robot starts at a predefined location
specified by a vertex s(0) = v0 ∈ V . The robot follows
a path along connected edges in the graph, such that at each
timestep t ∈ (1, 2, ..., T ), the robot is located at a vertex
s(t) ∈ V with each such vertex being OPEN. Each single
edge traversal takes 1 timestep to navigate. The robot has a
maximum mission time denoted T .

The graph G is initially unknown to the robot, but is
revealed as it explores the world. At time t, the known
environment is denoted Gt, where Gt has the same vertices
as G, except the vertices with unknown traversability are
labeled UNKNOWN. When the robot is located at a vertex v,
the robot observes each of the 4 adjacent vertices as being
either OPEN or CLOSED, and this information is incorporated
into the known graph Gt.

Given these environment, motion, and observation models,
the problem we aim to solve is stated as follows. At each
timestep t ∈ (1, 2, ..., T ) with the robot located at s(t), move
the robot to an adjacent OPEN vertex s(t + 1), such that
the number of unique vertices visited during the mission is
maximised.

IV. ONLINE EXPLORATION LEVERAGING
TOPOLOGICAL WORLD PREDICTIONS

We propose a decision-making algorithm for online graph
exploration involving frontier selection that is informed by
value predictions of unexplored space. These value predic-
tions are achieved using a novel world prediction method that
uses topological features to infer the structure of unexplored
space using a U-Net architecture.

The key steps of the proposed approach are enumerated
as follows:

1) In an offline phase, train a neural network with a
database of example world maps while using a loss
function that measures the prediction error of topolog-
ical features.

2) When performing online exploration, iteratively:
a) Update an environment map by incorporating obser-

vations from the current location.
b) Predict the unknown parts of the environment by

inputting the currently explored environment map
into the trained neural network.

c) Estimate the exploration value of each frontier.
d) Select the best frontier, and plan and execute a path

over the known graph to the selected frontier.
These steps are described further as follows, beginning by
describing the proposed world prediction model, then the
frontier exploration strategy that leverages these predictions.

A. World prediction with topological CNNs

We propose a novel world prediction method that esti-
mates the unknown parts of the environment graph G. Our
primary motivation for these predictions is to leverage this
information in robotic exploration algorithms (discussed later
in Sec. IV-B). For robotic exploration, the predictions do not

(a) Example world prediction. (b) Homology persistence diagram.

Fig. 2. Example homology persistence diagram (see Sec. IV-A.1). Varying
a prediction threshold between 0 and 1 (pixel intensity) results in the birth
and death of 0 and 1-dimensional topological structures: connected passages
and loops, respectively. Strong topological features persist over a wide range
of pixel intensities, while weaker ones exist over a more limited range. The
three main loops in the world (see (a)) persist across nearly all threshold
levels; therefore, there exists three 1-dim features with (birth, death) near
(0, 1), shown as three red dots in the top-left of (b).

necessarily need to be perfect point-to-point matches to the
ground truth, but rather should provide a meaningful estimate
of the connectivity of the unknown parts of the world. Thus,
central to our prediction method is a CNN loss function that
incorporates topological features of the world and spatial
features inspired by image inpainting techniques.

1) Topological loss: The intuition beyond the topological
loss function is to match topological structures between a
predicted environment graph Gpred and the ground truth
environment graph G. The 0-dimensional structures of graph
G are defined as connected components, the 1-dimensional
structures are loops, and higher dimensional structures are
not applicable in our case. We compute these structures using
the library in [15], which is based on persistent homology
theory [29].

In image processing contexts, one approach to matching
these structures between pairs of greyscale images would
be to threshold the pixels at a fixed intensity and match
topological structures on the resultant images. However, this
approach yields loss functions that are not continuous or
differentiable, making them ill-suited for learning algorithms
such as neural networks. Instead, we employ the theory of
persistent homology to track topological structures over a
spectrum of intensity thresholds.

In particular, we generate persistent homology dia-
grams [29], which consist of the birth and death of every
topological structure in a greyscale image. The birth of a
structure is defined as the lowest threshold level of an image
where this structure exists; similarly, the death is defined
as the highest threshold where this structure exists. By
definition, a structure is guaranteed to exist for all thresholds
between its birth and death.

An example persistent homology diagram is presented in
Fig. 2. Three clear 1-dim structures (loops) are present in
this greyscale world prediction (Fig. 2a), along with several
noisy structures. Each dot in Fig. 2b represents the birth
and death of a single structure in the image. The further a
structure is from the birth = death line, the more persistent



Fig. 3. U-Net architecture for an image size of 32×32 pixels. The down-
sampling layers (left) aims to capture spatial context and the upsampling
layers (right) accurately localise these features.

that structure is in the image.
Correspondences of structures in a pair of images are

computed by first computing correspondence costs as the
Euclidean distance between the (birth, death) coordinate
of each structure in one image with the (birth, death)
coordinates in the other image. The 0-dim structures can
only correspond with other 0-dim structures, and similarly
for the 1-dim structures. Correspondence is achieved using
the Hungarian assignment method [17], which connects
mutually exclusive pairs of structures such that the sum
of correspondence costs is minimised. Structures that are
not assigned a corresponding structure are penalised with
a cost equal to the distance to the birth = death line,
i.e. birth−death

2 , which encourages such structures to be re-
moved. We empirically observed that this approach produces
more intuitive correspondences than the nearest-neighbour
approach presented in [14].

Finally, given these correspondences, we define the topo-
logical loss Ltoploss as the resulting sum of correspondence
costs plus the penalties for structures that do not have a
correspondence.

2) Inpainting loss: The topological loss function defined
above encourages the existence of matching topological
structures, but does not consider the size or spatial relation-
ships between these structures in the environment. To address
these issues, we also employ a set of spatial loss functions
that have been shown to be useful for image inpainting [18].
We briefly describe these loss functions as follows; full
details are provided in [18, Sec. 3.3].

In particular, we use location-specific losses to improve
per-pixel accuracy of predictions, defined as the pixel-wise
L1 loss for masked (Lmask) and non-masked (L¬mask)
pixels, as used in [14], [18]. In our context, the masked and
non-masked regions define explored regions and unknown
regions of interest, respectively, as defined later in Sec. IV-
B.1. The purpose of Lmask is to heavily penalise changes to
the known pixels of the image.

TABLE I
Layer parameters for the U-Net architecture illustrated in Fig. 3, for an

environment graph of size 32×32.

Type Kernel Stride Input dimensions Output dimensions

down 7 2 32×32×3 16×16×64
down 5 2 16×16×64 8×8×128
down 5 2 8×8×128 4×4×256
down 3 2 4×4×256 2×2×512
up 3 1 4×4×(256+512) 4×4×256
up 3 1 8×8×(256+128) 8×8×128
up 3 1 16×16×(128+64) 16×16×64
up 3 1 32×32×(64+3) 32×32×3

However, using pixel-wise loss alone is often a poor learn-
ing signal since it does not capture contextual knowledge;
thus we also use style (Lstyle) and perceptual (Lperceptual)
loss functions, which encourage the matching of local spatial
features. Lstyle and Lperceptual project the pair of images
into the feature space of the VGG-16 network then compute
distances between the images in this space. The VGG-16
network, which we use without modification, is a widely-
used ImageNet-pretrained network for image classification
tasks [30].

Finally, we also use the total variation (smoothing) loss
Ltv , which encourages continuity between neighbouring
pixels [18].

3) Combined loss function: Our loss function Ltotal com-
bines the topological, style and perceptual losses as

Ltotal = 0.8Ltoploss + 150Lmask + 10.5L¬mask

+ 0.05Lperceptual + 120Lstyle + 2Ltv. (1)

This is based on the loss function proposed in [18], except
with the additional Ltoploss term, and minor adjustments to
the weightings based on our preliminary empirical results.

4) U-Net architecture: To make predictions of the world,
the combined loss function defined in (1) is used to train
a CNN from a database of example worlds. More specif-
ically, we use a CNN with a U-Net architecture, which
has been shown to outperform other CNN architectures in
terms of speed and generalisability for image processing con-
texts [16]. The U-Net architecture consists of a contraction
path for capturing spatial context followed by an expansion
path for precise localisation of features.

We select the parameters of the U-Net architecture layers
in a similar, but reduced, way to what has been proposed
for image inpainting [18]. More specifically, we define the
relevant parameters as presented in Fig. 3 and Table I. We
replicate pixel values across the 3 colour channels since our
graphs correspond to greyscale images (see Sec. IV-B.1).
The greyscale output predictions are then thresholded to be
suitable for path planning.

B. Exploration strategy

In this section, we detail our proposed exploration strategy.
The key steps are to input the currently known environment
graph Gt and an associated mask into the world prediction



(a) Edgar Experimental Mine, CO (b) NIOSH Safety Research Mine, PA (c) NIOSH Experimental Mine, PA (d) Chilean Mine [31]

Fig. 4. The four real-world mine networks used in the experiments, which have been manually snapped to suitable grids while preserving the actual
topological structure. The mine entrance and robot start location is shown as a red dot.

model proposed above; then, the predictions are used to
estimate the value of each frontier, defined as a decaying
sum of unexplored OPEN vertices that are reachable from
each frontier. We define these concepts further as follows.

1) Explored map and mask generation: To generate a
prediction Gpred of the unknown world, the currently known
environment graph Gt is converted to an image such that
each vertex corresponds to a pixel in an image. All OPEN
vertices are given a pixel value of 1, and CLOSED and
UNKNOWN vertices are given 0. The prediction network
also takes as input a mask that describes which vertices
in the world are known. All OPEN and CLOSED vertices
in the known graph Gt are included in the mask. We note
that, by this definition, frontiers (OPEN vertices that have
at least 1 adjacent UNKNOWN vertex) are included in the
mask. Additionally, to concentrate on predicting the regions
of primary interest to the current decision, we also add to
the mask all UNKNOWN vertices beyond a specified number
of vertices distance away from current frontiers. Due to the
Lmask loss in Eqn. (1), predictions are heavily penalized if
they are made in the masked region; this is to incentivize
prediction in the unmasked area of interest.

2) Frontier selection policy and path planning: Explo-
ration is performed by maintaining a set U of frontiers u,
with u ∈ U ⊂ V , where each frontier u is an OPEN vertex
that has at least 1 adjacent UNKNOWN vertex. First, the
shortest path distance over the known graph Gt from the
current position s(t) to each vertex u is computed, denoted
as d(s(t)→ u).

Second, the information value I(u) of each frontier u is
estimated by reasoning over the number of OPEN vertices
reachable from u that exist in the unexplored regions of the
world. This value is computed as a weighted sum of predicted
vertices, with the weights decreasing as a function of path
distance from u. More specifically,

I(u) =
∑

v∈Vpred

1

d(u→ v)
, (2)

where Vpred is the set of predicted OPEN vertices v in the
unexplored regions of the world, according to the world
predictions, and d(u → v) is the shortest path distance
over the union of the known graph Gt and predicted graph

Gpred. We emphasise that here we use path distance rather
than Euclidean distance so that the predicted topological
information is taken into account in these value estimates.

The current goal frontier u∗ is selected as the frontier u
that maximises the value divided by the distance, i.e.,

u∗ = argmax
u∈U

I(u)

d(s(t)→ u)
. (3)

The intuition behind this policy is to select frontiers that are
both nearby the current location and are predicted to lead
towards unexplored OPEN vertices. Selecting nearby frontiers
greedily minimises the amount of time spent backtracking
over already-explored vertices, which is a desirable strategy
when the problem is formulated as visiting as many vertices
as possible in a given time T .

Finally, the action taken by the robot at time t is chosen
as the next vertex along the shortest path in the known
graph Gt from s(t) to u∗. The robot cycles between making
an observation, making a new prediction of the unexplored
regions based on the observations, selecting a frontier by
following the policy in (3), and moving to the next vertex.
This cycle continues until the mission time T is exceeded or
the entire world is explored.

V. EXPERIMENTAL RESULTS

We present a set of simulated experimental results that
demonstrate the behaviour and viability of our proposed ap-
proach. We begin by describing our method for procedurally
generating a library of random worlds that aim to represent a
distribution of tunnel-like environments, such as mines and
natural caves. The model learned from this library is then
used to make world predictions during exploration of both
a database of 100 artificial tunnels and four real-world mine
networks. Our experimental results demonstrate the benefits
of predicting topological features for robotic exploration.

A. Real-world tunnel networks

We perform experiments on the maps of four real-world
mines illustrated in Fig. 4. The first three mines were recently
used in the ongoing DARPA Subterranean Challenge [5]:
the Edgar Experimental Mine2 in Idaho Springs, CO, and

2https://mining.mines.edu/edgar-experimental-mine/



time 0 time 27 time 74 time 167

prediction-
informed

exploration

17% 39% 80% 99%

closest
first

17% 37% 62% 99%

Fig. 5. Example trajectories when for the Edgar Experimental Mine when using our proposed method and the closest first method. Robot (blue) navigates
from the start (red) at bottom centre. At each timestep, the robot decides which frontier (orange) to navigate to next. For the top row, the areas predicted
to be open are shown in green. These lie within the unmasked area of interest (shaded). The percentage of the environment explored is shown underneath.

the NIOSH Safety Research Mine and NIOSH Experimen-
tal Mine3 both in Bruceton, PA. The fourth environment,
referred to as the Chilean Mine, is located near Santiago,
Chile, and is being used for ongoing robotics research [31].
The original maps of these four mines were converted into a
format suitable for our world prediction method by manually
snapping the ground-truth maps to a 24×24 grid while pre-
serving the topological features of the environments. These
four environments have realistic and varied topologies that
are representative of underground mines.

B. Procedural generation of mine-like environments

Our proposed world prediction method learns a model
from a given database of environment graphs. For these
experiments, we developed a procedural method for gener-
ating a database of realistic random environment graphs that
contain inherent structure that may be learned. We emphasise
that our proposed method is not limited to this dataset, and
if datasets of tunnel networks are available then these could
be used instead. The following experiments test on both
artificial and real-world tunnel networks, which demonstrate
the models learned from our procedurally-generated dataset
transfer to the real-world environments introduced above.

An example set of generated maps is illustrated earlier
in Fig. 1. Our generation procedure begins by selecting
a random set of 40 vertices as keypoints. The keypoints
are drawn from a random Gaussian mixture model (GMM)
with 5 mixture components at uniform-random locations and
variance of 5 units. This GMM model results in non-uniform

3https://bitbucket.org/subtchallenge/tunnel_
ground_truth/src/master/

clusters of keypoints, which may represent, for example,
a subterranean tunnel network for mining a non-uniform
distribution of minerals. This non-uniformity results in subtle
structures in the environments that may be learned by a
prediction model. The start location of the robot is also
marked as a keypoint. The keypoints are randomly sorted
with the start location appearing first. For each keypoint, a
random number (1 with probability 0.4, 2 with probability
0.6) of closest keypoints that appear earlier in the sorted list
are selected. The vertices along the shortest paths between
and including these pairs of vertices are labeled as OPEN. All
other vertices are CLOSED. The result of this procedure is a
set of world maps that feature a large variation of random
topological features, as illustrated in Fig. 1.

C. Experimental Setup

In our experiments, we compare five strategies:
(a) our proposed method with the complete loss function in

Eqn. (1),
(b) an oracle planner that uses the same frontier selection

strategy but has access to the ground truth map instead
of predicted maps,

(c) our method except without the topological loss Ltoploss,
but still including the other terms of (1),

(d) our method except with only the pixel-wise losses Lmask

and L¬mask, and
(e) a standard closest-first strategy that does not consider

environment predictions.
All methods were tested on a set of 100 random environ-
ments of size 24×24. The closest 10% to 20% of each
map was initially revealed to the robot in all cases so that



(a) Edgar Experimental Mine, CO (b) NIOSH Safety Research Mine, PA

(c) NIOSH Experimental Mine, PA (d) Chilean Mine [31]

Fig. 6. Comparison between the exploration strategies on the four real-world mines depicted in Fig. 4.

some information was available to make predictions. Each
decision took on the order of milliseconds of computation
time to compute and does not require GPU. In all cases,
the prediction network models were trained with 40,000
procedurally generated maps, with each method training for
400 epochs and taking approximately 12 hours on a standard
desktop computer with an Nvidia GeForce GTX 1080 GPU.

D. Results

1) Illustrated example: In Fig. 5, we illustrate exam-
ple exploration trajectories through the Edgar Experimen-
tal Mine. When performing exploration with our proposed
method, reasonable predictions of the ground truth world
are achieved at all time steps; although the predictions are
not a perfect pixel-to-pixel match, it correctly identifies the
regions of high value. This drives our prediction-informed
exploration strategy towards the high-value regions in the
top part of the world first. On the other hand, the closest-
first strategy arbitrarily picks between frontiers adjacent to
the current location; in this case the robot begins explor-
ing towards the dead-ends in the lower left, which results
in backtracking early on and therefore poorer exploration
performance.

2) Exploration of real-world mines: We performed exper-
iments with the four real-world mine environments illustrated
earlier in Fig. 4. The results for each individual mine are
presented in Fig. 6. In all four mines, our proposed approach

outperformed all of the comparison methods and was com-
petitive with the oracle solution. In particular, our prediction-
informed strategy explored 60% of each mine faster than the
closest-first strategy by a factor of 30% for the Edgar Mine,
11% for Safety Research Mine, 16% for Experimental Mine,
and 28% for the Chilean Mine. These results show that our
method results in more effective exploration since it focuses
on exploring the predicted high-value regions first. Our
proposed method also outperformed the comparison methods
that did not use our full prediction model; these differences
were less substantial, but this result still demonstrates the
benefit of using our combined loss function that includes the
topological features in conjunction with the spatial features.
In most cases, the time to full completion is similar between
all of the methods since the prediction-informed methods
often skipped less valuable regions early on that need to
be navigated to later if full coverage is desired. We note
that the oracle strategy performed relatively poorly on the
Experimental Mine since the exploration heuristic favours
taking the robot towards the dead-end on the right-side of
the tunnel network (see Fig. 4c) early in the mission due to
the concentration of tunnels in the top right.

3) Testing on procedurally-generated database: For fur-
ther validation, we also performed experiments on 100
procedurally-generated environments. An average of 172
timesteps was required to complete a full coverage, which



was consistent across the algorithms. However, the value of
exploiting environment predictions is more evident earlier in
the mission, where the prediction-informed strategies were
able to target the most promising areas of the world first.
On average, our proposed method took 27% fewer timesteps
to explore the first third of the environment, and 10%
fewer timesteps to explore the first half, compared to the
closest-first method. The oracle, which had access to the
ground truth map, clearly outperformed all methods, which
reinforces the hypothesis that having access to accurate
predictions can be exploited by exploration strategies.

VI. CONCLUSIONS

We have presented a new exploration strategy that lever-
ages a novel world prediction model designed for subter-
ranean environments. The key findings of our results show
our approach yields a substantially faster time to complete
a partial coverage of the unexplored world. In future work,
we are interested in generalising the approach for different
problems, such as non-uniform coverage objectives and
motion costs, or larger and 3D environments. Other learning
methods for prediction would also be worth pursuing, such
as extracting probabilistic inferences from CNNs [28] and
learning directly in the space of topological maps rather than
image space [8]. We would also like to explore using datasets
of real tunnel networks for training our model, if made
available, or consider other methods for procedural world
generation that exhibit different topological characteristics.
We are currently investigating ways of incorporating our pro-
posed world prediction method into communication deploy-
ment strategies [32]. Multi-robot generalisations would also
be interesting, where the proposed world prediction model
could inform generalised frontier selection strategies [23],
[26], [33], [34].
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