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Performing autonomous robotic tasks in the field, such as ocean monitoring and
aerial surveillance, requires planning and executing paths in dynamic environments. In
these uncertain and changing environments, it is not uncommon to see a large difference
between the path planned by the robotic vehicle and the path that the robotic vehicle
realizes while executing that path. This difference can decrease the performance of the
robotic system by introducing additional risk or forcing the vehicle to miss important
survey areas. Existing systems do not consider large-scale disturbances, do not con-
sider the differences between the planning and control models, and do not incorporate
new information about disturbances found online during planning and execution. To ad-
dress these shortcomings, this thesis provides algorithms that incorporate disturbances
directly into planning, reason about the robot’s low-level controller, and utilize informa-

tion gathered during execution about both disturbances and the robot’s dynamics. The



impact of these improvements is a reduction in risk and improvement of the quality of
robotic information collection.

This thesis provides three contributions to help reduce this difference between planned
and executed trajectories. First, we introduce a stochastic optimization framework which
utilizes an action-space path representation to remove the need for expensive reachabil-
ity calculations. This action-space formulation allows for a more natural representation
of the effects of disturbances on vehicles with low actuation, and the stochastic opti-
mization technique allows the mapping of a state-space based reward function to the
action-space while being efficient enough to be used in a sequential allocation frame-
work for planning for multiple vehicles. We demonstrate the computational efficiency of
this algorithm against other state-of-the-art planners in a simulated ocean environment
of the Gulf of Mexico.

Second, we present a novel algorithm, Energy-Efficient Stochastic Trajectory Op-
timization (EESTO), which allows vehicles with moderate levels of actuation to plan
energy-efficient trajectories thorough strong and uncertain disturbances. In addition to
this algorithm, we introduce a framework which can utilize the efficiency of EESTO to
account for information gathered online about the disturbances that the vehicle is mov-
ing through. We demonstrate the capabilities of the algorithm and framework in both a
simulated ocean environment off the coast of California near the Channel Island as well
as on hardware on a lake near Eugene, Oregon.

Lastly, we present a framework for increasing the realizability of planned paths for
high-actuation vehicles, which allows the robotic system to reason about the capabilities

of the on-board low-level controller. By incorporating the capabilities of the low-level



controller into execution and planning, this framework is able to increase the realizabil-
ity of the planned information gathering path. We demonstrate the capabilities of this
framework through extensive simulation trials and on hardware on a lake near Corvallis,

Oregon.



©Copyright by Dylan A. Jones
August 25, 2020
All Rights Reserved



Realizable Path Planning and Execution for Robotic Systems

by
Dylan A. Jones

A DISSERTATION
submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of

Doctor of Philosophy

Presented August 25, 2020
Commencement June 2021



Doctor of Philosophy dissertation of Dylan A. Jones presented on August 25, 2020.

APPROVED:

Major Professor, representing Robotics

Associate Dean for Graduate Programs in the College of Engineering

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Dylan A. Jones, Author



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor Geoffrey Hollinger for all the
help, support, and guidance he has given me over the time of my dissertation. I would
also like to thank the members of my committee: Drs. Bill Smart, Kagan Tumer, and
Ross Hatton for their feedback throughout my time at Oregon State.

Next, I have to thank the many members of the Robotics Decision Making Labora-
tory who have helped me in my time here. Specifically, thanks are especially needed
for Seth McCammon and Bob DeBortoli, without whom there would be many more
spelling errors throughout my work.

No dissertation is made without a village, and as such I would like to thank all the
members, past and present, of the Oregon State Robotics Program for their support and
insightful conversations.

I would like to acknowledge the many different agencies and organizations who
have funded and assisted with this research: the Office of Naval Research (N00014-14-
1-0509, N00014-17-1-2581), Department of Energy (DE-EE-0006816), USDA/NIFA
(2014-67021-22174), the Naval Research Lab, and collaborators from Washington State
University and the Naval Research Lab.

Lastly, I would like to thank all the friends and family not covered previously for
helping keep me sane through these past five years. Special thanks to my parents, Cliff

and Karen Jones, and my sister Lily are also in order.



TABLE OF CONTENTS

1 Introduction

2 Background

2.1 Planning . . . . . ... e e
2.1.1 Search . . . .. . .
2.1.2 Optimization . . . . . . . . . .. e
213 Sampling . . . .. ..

2.2 Control . . ..o s
22.1 Classical . . . . . . . . . .
222 Learning . . . . . . ... e e

23 FeldRobotics . . . . . . ... L
2.3.1 Disturbance Planning . . . . . . .. ... ... ...
2.3.2 Information Gathering . . . ... ... ... ... .. ...,
2.3.3 Energy-Efficient Planning . . . . . . ... ... ... ......

2.4 Comparison of Related Work . . . . . . .. ... ... .. ... .....

3 Action Space Representation for Low Actuation Vehicles
3.1 Problem Formulation . . . .. ... ... ... ... ... ... ....
3.2 Stochastic Gradient Ascent Algorithm . . . . . . ... ... ... ....

3.3 Benchmark Algorithms . . . . . . ... ... ... ... .. ...
3.3.1 Monte Carlo Tree Search . . . . .. ... ... ... .. ....

3.4 SGA SimulationResults . . . . . . . . . . ... ...

3.5 Conclusion . . . . . . . . e

4 Energy-Efficient Stochastic Trajectory Optimization

4.1 EESTO Problem Formulation . . . . . . . . . . . . ... ... ......
4.1.1 CostFunction . . . . . . . . . . . . . . ... ...

42 Replanning . . . . . ..
4.2.1 ReplanningMethod . . . . . ... ... ... ... ...
4.2.2 Path Comparison Metrics . . . . . . ... ... ... ......

4.3 EESTO SimulationResults . . . . .. ... ... .. ... ........
4.3.1 EESTO Without Replanning . . . . . ... ... .. ......
4.3.2 EESTO With Replanning . . . . ... ... ... ........

g
o3
—_ a

10

11
12
14
16

21
22
24

25
26
27
28

29

32
33
36

39
40

42
51



TABLE OF CONTENTS (Continued)

Page

433 EESTOFieldTrials . . . . . ... ... ... ... ....... 73

44 Conclusion . . . . . .. e 77

5 Reinforcement Learning for Integrating Control and Planning 79
5.1 Problem Formulation . . . . ... ... ... ... ............ 80
5.1.1 PathTracking . . . . . ... ... .. ... ... . ... .... 81

5.1.2 Path Expectation . ... ... ... ............... 83

5.2 Realizable Information Gathering Methods . . . . . . . .. ... ... .. 84
5.2.1 Waypoint Judging Policy . . . .. ... ............. 86

5.2.2 Realization Aware Optimization . . . . .. ... ... ... .. 93

5.3 WIJPand RAOResults . . . . ... ... ... ... ... .. ..., 95
5.3.1 SimulationResults . . . ... ... ... ... ... ... .. 96

5.32 WJPand RAO FieldResults . . . . .. ... ... ... .... 111

54 Conclusion . . . . ... L 120

6 Conclusion and Discussion 121
6.1 Future Work . . . . . . . . . . 124
6.1.1 Efficient Approximations of Uncertainty . . . . . . . ... ... 124

6.1.2 Online Learning During Execution . . . . . . . ... ... ... 125

6.1.3 Multi-Robot Realizability . . . . . . ... ... ... ...... 125

Bibliography 126



Figure
1.1

1.2

2.1

3.1

3.2

33

LIST OF FIGURES

A planned (red) and realized (blue) path from a deployment of our Lutra
Prop autonomous boat from Platypus LLC at Ireland Lake in Corvallis,
OR (Lat: 44.563, Lon: -123.249). The vehicle’s path starts in the upper
left (green circle) and it travels towards the bottom right (yellow square).
Notice that there is a large difference between the path that was planned
and the realized path that the robot actually executed, especially on the
tight turns of the last half of theplan. . . . . . . ... ... .. ... ..

Our contribution relative to previous work on the axes of the knowledge
of environmental disturbances and the strength of the system’s actuation
versus those disturbances. Previous work has focused on the upper right
and left of this space. The contributions within this thesis have moved
previous work further left and down in this space across all levels of
relative actuation strength. . . . . . .. ... oL oL

A representation of where previous work has focused (upper left and
right) and where this thesis fits into the existing work. Chapters in this
thesisareinbold. . . . . ... ... . oo oo

Representative information field over the Gulf of Mexico where brighter
colors indicate more information. The inset shows a zoomed in view of
one of the four designated test regions used in the results. Two vehicles’
paths are illustrated in the inset. The vehicle on the left (yellow) is able
to utilize the ocean currents to move from a location of low information
to one of high information. In contrast, the vehicle on the right (red)
starts in a region of high information but is unable to stay there due to
the limited control authority introduced by the ocean currents. . . . . .

Percent improvement demonstrated by SGA with respect to all compar-
ison algorithms. We are able to offer a large improvement over the sim-
ple baselines. MCTS is able to perform comparably to our algorithm,
however it requires approximately 5.2x the computation. See Figure 3.3
for a more detailed look at the results for the final three methods. . . . .

Percent improvement demonstrated by SGA over the three best per-
forming comparison algorithms from Figure 3.2. SGA is able to im-
prove over greedy depth selection (8.63%), Random Policy (21.58%)
and MCTS (1.50%). . . . . . . ... .



Figure
34

3.5

4.1

4.2

4.3

4.4

LIST OF FIGURES (Continued)

Computational time taken by the MCTS and SGA. Note that SGA takes
68.09 second on average while MCTS takes 354.21 seconds which rep-
resents a 5.2 fold increase. . . . . . .. ... ..o

Paths from MCTS and SGA for one deployment in Region 1 from Figure
4.2. MCTS is in green and x’s and SGA 1is in magenta and o’s. Lighter
indicates more information and vehicles start close to the center of the
figure. SGA is able to utilize the ocean currents to find the information
at the end of the path (left side of the figure) while MCTS is unable to
find this path using its random rollouts. . . . . . . . .. .. .. ... ..

Shown above is the synthetic environment with paths starting at the blue
star and ending at the red square. Shown below is the energy used by the
paths produced by the three planning methods across 100 runs. EESTO
is more computationally efficient than A*-based methods, meaning that
multiple instance of EESTO can be run and the most energy-efficient
path selected. This gives EESTO a high probability of planning a more
energy-efficient path than A* in the same amount of time. . . . . . . . .

Paths planned by EESTO using historical ocean current data from Jan-
uary 21, 2013. Red paths are the solutions found at the end of each
iteration. The final path is represented in blue. The path starts at the
blue star and ends at thered square. . . . . . ... ... ........

Energy cost using different replanning methods. The projected, com-
bined and sampling method are able to improve the mean energy cost
by 3.57, 6.43 and 8.57 percent respectively. Additionally, projected,
combined and sampling are able to reduce the maximum outlier by over
25 percent. Note that both the Forecast and Nowcast methods do not
replan and represent planning with no additional information (Forecast)
and perfect information (Nowcast). . . . . . . . ... ... ... ....

Paths planned using the replanning framework starting at the blue star
and ending at the red square. The green path is planned on the forecast
(1.74 MJ). The red path is planned on the nowcast (0.54 MJ). The two
purple paths are the replanned paths with the darker purple path being
the final path (0.86 MJ). . . . . . . . . . . . . ... ... ...



LIST OF FIGURES (Continued)

Figure

4.5 Representative planned paths on Kirk Lake starting from the blue circle
(top) and ending at the red square (bottom). While the oracle method has
access to the wind map seen in (a), the replanning method starts without
any estimate of the wind and builds this map as it executes the path. No-
tice that the naive method plans through the strong winds (white arrows)
above the end point while our proposed methods come at the goal from
the left where the wind is weaker. . . . . ... ... ... ....... 75

g
o3
a

5.1 Our proposed path independent state representation, = = (deur, Oeur, dnewts Onext, 9),
where the current state and heading are the black circle and arrow re-
spectively and d..,. is the distance to the current goal, 6., is the differ-
ence in heading to the current goal, d,,.,; is the distance to the next goal,

Ot 1s the difference in heading to the next goal, and 0 is the turning
velocity. . . . . .. 87

5.2 Our proposed four different cost functions for evaluating the value of a
state-action pair which computes the distance between the red and green
paths. In the EntirePath cost function each state-action pair receives the
same score. In the FuturePath cost function the rollout from the state-
action pair is compared to the “perfect” path from that state. In the
PastPath cost function we compare the desired path to the rollout from
that state-action pair combined with the “perfect” past up to that point.

In the FuturePastPath we compare the full rollout to the “perfect” future
plus the “perfect” past calculated in the previous two cost functions. . . 90

5.3 Representative paths from the training and testing set which start at G1
(Breen). . . . . e 98

5.4 Average Fréchet distance of all 20 policies on the training set across
all 500,000 training epochs. FuturePath, PastPath and FuturePastPath
were all able to learn policies on the training set to reduced the average
distance by 32.35, 37.18, and 31.09 percent respectively over the default
while the EntirePath cost function was unable to learn to outperform the
default. . . . . . . . . L 99



Figure
5.5

5.6

5.7

5.8

LIST OF FIGURES (Continued)

Average Fréchet distance of all 20 policies on the testing set across all
500,000 training epochs. FuturePath, PastPath and FuturePastPath were
all able to learn policies on the training set to reduced the average dis-
tance by 44.55, 42.27, and 25.91 percent respectively over the default.
The FuturePath is able to learn a policy that out performs the default in
2,000 epochs while it takes the PastPath 25,000 epochs and FuturePast-
Path 70,000 epochs. . . . . . ... L o 101

Average Fréchet distance of 20 policies trained using three different pol-
icy training algorithms. On the training set the proposed method is able
to outperform both Q-Learning and Monte Carlo significantly while also
converging quickly. Q-Learning quickly converges to the default policy
while Monte Carlo is eventually able to approach the performance of
the default policy but has a very wide standard deviation in performance. 103

Average Fréchet distance of 20 policies trained using three different pol-
icy training algorithms. On the testing set the proposed method out-
performs all methods after approximately 1000 epochs. One interest-
ing difference between the test and training set is that the Q-Learning
method quickly converges to the default policy on both while the pro-
posed method is able to learn to outperform it. While the Monte Carlo
policies are able to approach the performance of the default on the train-
ing set, they are unable to generalize that performance to the testing set. 104

Mean and minimum Fréchet distance from all 20 trained policies across
all 25 waypoint configurations in the test set. The FuturePath (FP) and
PastPath (PP) are able to achieve similar average performance as that of
the best performing default radius while having a lower average min-
imum value. Another interesting note is the difference in comparable
performance between the average mean and minimum performance of
the FuturePastPath (FPP) which indicates that when it is able to compute
a well performing policy it is able to refine that policy. . . .. ... .. 106



Figure
5.9

5.10

5.11

5.12

5.13

LIST OF FIGURES (Continued)

Average Fréchet distance of policies trained on the six different envi-
ronments compared against each other on those same six environments.
As expected the default has the highest average Fréchet distance on all
environments. One interesting thing to note is that changing the ve-
hicle model seems to have a much larger effect on the performance
than changing the disturbance levels. The other interesting thing to note
here is that training at lower disturbances seems to have a lower average
Fréchet distance, but it is not a significant difference. . . . . . .. . ..

Average Fréchet distance of policies trained on the six different training
environments. 20 different policies were trained for each training en-
vironment and were tested over 25 different worlds. The policy based
methods all fail gracefully as the level of disturbance rises from 0O to
100 percent of the actuation level of the robotic vehicle. However, the
default waypoint controller very quickly fails when the level of distur-
bance passes 20 percent of total actuation. . . . . . ... ... ... ..

Violin plot of the percent difference in information gathered between the
planned and actual information gathered. Using the Baseline the vehicle
is almost never able to gather the expect amount of information. Using
only the WJP, the vehicle on average collects close to the expected infor-
mation but has a wide standard deviation. Using only RAO results in a
much better performance than just the baseline but it struggles due to the
limitations of the waypoint radius controller. Using RAO + WJP results
in the best performance and the system is capable of quite accurately
gathering the planned amount of information. . . . . . ... ... ...

All distance results from field deployment across the three different goal
configurations. On average the policy offered a reduction of Fréchet
distance of 35.42, 21.41, and 7.30 percent over the default across the
three goal configurations. Note that there are only two trials for the
default on the Information path due to battery constraints. . . . . . . .

Representative paths taken by the vehicle during field trials starting at
W, and ending at W,. It can be observed that through intelligently
choosing when to change to the next goal the policy is able to reduce
overshoot on sharp turns and is able to avoid the behavior seen in the
information path of looping back to achieve a waypoint. . . . . . . . ..

g
o3
a

109



Figure

LIST OF FIGURES (Continued)

5.14 Three field trial performance metrics. First, using both the policy and

5.15

optimization is able to significantly reduce the average Fréchet distance.
On average both using RAO and RAO + WIJP are able to gather the most
amount of information. Lastly, using both RAO + WIJP has the smallest
percent difference in information gathered from the expected. . . . . . .

Representative paths taken by the vehicle during field trials for the four
different system configurations. When using both the Waypoint Judging
Policy and the Realization Aware Optimization, the system is able to on
average track the planned path the best and gather the planned amount
of information. . . . . ... ... L L



Table
3.1

4.1
4.2
4.3

5.1

5.2
5.3

54
5.5

LIST OF TABLES

Page
Percent Improvement by SGA versus competing algorithms . . . . . . . 49
Calculation Times . . . . . . . . . . . .. o 68
Average wind speed and direction for field trials . . . . . .. ... ... 76
Voltage drop and percent improvement for field trials. . . . . . . . . .. 77

Average percent of planned information gathered during execution for
30 random worlds in simulation. An average percent of information
of zero would mean that the system gathered the expected amount of
information, while a negative percent means the system gathered less
than expected and a positive percent means it gathered more than expected. 112

Average Fréchet distance (in meters) from field deployment. . . . . . . 114

Average Fréchet distance between the planned path and executed paths
on Platypus Lutraboat . . . . . ... ... ... ... ... ..., 117

Average information gathered during execution . . . . . . ... .. .. 118

Average percent of the planned information gathered . . . . . . .. .. 120



LIST OF ALGORITHMS

Algorithm Page
Stochastic Gradient Ascent (SGA) . . . . . . .. .. ... ... .... 37
Replanning Framework for Energy-Efficient Trajectories . . . . . . . . 62
Policy Training Algorithm . . . . .. .. ... ... ... ....... 92
Rollout Algorithm . . . . . . .. .. ... ... ... .......... 92

Realization Aware Optimization (RAO) . . .. .. .. ... ... ... 94



Chapter 1: Introduction

There is currently a sizable gap between the performance of robots seen in factory [66],
warehouse [113], and research [87] environments and the performance seen in practice
in uncontrolled environments, such as marine [40] or aerial [2] domains. On factory
floors and in warehouse workspaces, the environment is engineered to remove distur-
bances (e.g. by ensuring that relevant objects are always in the same place or installing
fiducials on the floor to ensure localization). Research labs are also typically well con-
trolled and instrumented environments where the criterion for robustness of execution
is lower than that required for every day applications [90]. In contrast, unstructured
field robotics environments do not allow for engineering the environments to simplify
the robot’s task because the required equipment is expensive and the environments are
extensive and dynamic [106]. Instead, in field robotics applications, the robot’s plan and
execution must account for uncontrolled disturbances, such as ocean currents or wind
gusts, which are not known with precision, and the robot must learn and adapt to these
disturbances online. Additionally, field robots customarily have to deal with the restric-
tions their controllers and actuation abilities place on what these robots can achieve,
which again is lessened in controlled environments through engineering solutions, such
as over-actuation.

These factors lead to a large gap in performance by current state-of-the-art algo-

rithms between these two classes of environments. One noticeable difference can be



seen in the divergence commonly seen between the path planned and the path executed
by robots in field robotic applications. When flying aerial vehicles [47] or piloting ma-
rine vehicles [114], it is common for the vehicle to execute a substantially different
trajectory than the one specified by the operator (see Figure 1.1). In controlled environ-
ments the practitioner is able to engineer the environment to minimize this difference.
However, in uncontrolled environments, this kind of solution is not possible and instead,
the robot must account for these uncontrolled aspects of the environment both during
path planning and path execution. We term this problem of minimizing the difference
between the robotic vehicles planned path and the one it realizes during execution the
Realizable Path Planning and Execution Problem.

Realizable path planning and execution is especially important in problems where
the objective is not just to achieve a set of goal states, but also to optimize some objective
along the path. Consider a problem where a robot must deploy a set of sensors to
a number of locations in the environment. If the only requirement on the system is
that the sensors are deployed to the desired location, it does not matter how the robot
achieves those locations. However, once additional constraints are added to the problem,
such as minimizing fuel cost during deployment or avoiding obstacles, then the path the
robot takes to achieve these goal states becomes important. Additionally, when the robot
plans a path to optimize these objectives (e.g. minimize fuel usage) and there is a large
difference between the path planned and the path realized, the robot may not be able to
achieve the desired objective (e.g. it will run out of fuel before deploying all sensors)
or will result in a performance that is significantly different from the expected (e.g.

information gathering tasks).



B Planned

B Realized

20 meters

—

Figure 1.1: A planned (red) and realized (blue) path from a deployment of our Lu-
tra Prop autonomous boat from Platypus LLC at Ireland Lake in Corvallis, OR (Lat:
44.563, Lon: -123.249). The vehicle’s path starts in the upper left (green circle) and it
travels towards the bottom right (yellow square). Notice that there is a large difference
between the path that was planned and the realized path that the robot actually executed,
especially on the tight turns of the last half of the plan.




We have identified three major issues that cause this disconnect between planned

and realized paths:

1. During the planning process, robotic systems typically ignore environmental dis-
turbances and assume that the low-level controller is sufficient to handle them.
Built into this premise is the assumption that the robotic system is capable of ac-
tuation that is stronger than that of the disturbances. Yet, in many applications for
which we would like to utilize robotic systems, such as marine monitoring [97] or
aerial surveillance [83], the disturbances (ocean currents or wind gusts) are equal
to or stronger than the actuation capabilities of the system. This can cause situa-
tions where the robot cannot execute its intended path and instead ends up in an

undesired state.

2. Typically, field robotics deployments are in dynamic environments where it is
unrealistic to assume that the system will have full knowledge of the obstacles,
disturbances, and the robot’s systems dynamics. Dealing with all of these uncer-
tainties is difficult as it requires reasoning over a belief about the robotic system’s
states [10] as well as potentially reasoning over possible environments and dis-
turbances [58], all of which introduce a significant computational load. However,
robots are physically present in the environment and can gather information about
these uncertainties in the environment. Many existing planning frameworks do
not utilize this ability in a computationally efficient manner or fail altogether to

consider this additional information.

3. Often the dynamics of robotic systems are highly non-linear, and many simplify-



ing assumptions on the system’s motion are made during planning. One typical
assumption is to make straight-line connections between states using graph search
[49] or sampling-based [48] planning algorithms. Another common approach is
to linearize the non-linear dynamics of the vehicle around a reference point [17].
These assumptions about the robot’s system dynamics cause planners to output
unrealistic paths for the robotic vehicles to execute and can require additional
computation afterward to smooth the path. Additionally, trajectory smoothing
can cause the trajectory to deviate from the original goals of the planner (e.g.

information gain or energy efficiency).

Taking these issues into consideration, we can visualize the capabilities of robotic
systems based on two major axes as shown in Figure 1.2. On the x-axis is the knowl-
edge of the environmental disturbances that the system has, while on the y-axis is the
relative actuation strength the system has relative to the environmental disturbances,
which we have divided into three groups. In low relative actuation domains, the robot’s
actuation (u,.) is dominated by the environmental disturbances (u.), so u, < u.. In
moderate relative actuation domains, the robot’s actuation is approximately equal to the
environmental disturbances, so u, ~ u.. In high relative actuation domains, the robot’s
actuation is much stronger than the environmental disturbances, so u, > u.. Previous
work (discussed in detail in Chapter 2) has primarily focused in two regions. First, the
body of literature on planning has primarily focused on the upper right of this diagram
where disturbances are well known and relative strength of actuation is strong. Second,
the body of literature on control has mainly focused on reactive control strategies where

the disturbances are not known and relative actuation strength is high.



High

A

Moderate Control Contribution 2

Low

Contribution 1

Actuation Strength vs. Disturbances

None Partial Known
Knowledge of Disturbances

Figure 1.2: Our contribution relative to previous work on the axes of the knowledge
of environmental disturbances and the strength of the system’s actuation versus those
disturbances. Previous work has focused on the upper right and left of this space. The
contributions within this thesis have moved previous work further left and down in this
space across all levels of relative actuation strength.



The research proposed here seeks to improve the ability of robotic systems to fully
realize their planned paths by accounting for these three separations between the theory

and the practice of using robotic systems. This leads us to our thesis statement:

Algorithms that reason about large-scale environmental disturbances
and uncertain vehicle dynamics, while also incorporating new infor-
mation about the environment gathered during execution, can improve
the realizability of robotic path planning.
In this thesis we propose three primary contributions towards this thesis statement as

follows:

1. A stochastic optimization algorithm that utilizes an action-space planning rep-
resentation for low-actuation vehicles in known disturbances with a state-space
based reward function. By planning in the action-space of these low-actuation
vehicles, we can ensure that they realize the planned path. This primarily ad-
dresses the the first major issue discussed above by more explicitly incorporating

disturbances into planning.

2. An algorithm, Energy-Efficient Stochastic Trajectory Optimization, which allows
for moderate-actuation vehicles to exploit environmental disturbances for energy-
efficient plans. Additionally, we introduce a framework for intelligently incor-
porating information gathered about these disturbances during execution. By
accounting for disturbances and incorporating knowledge of disturbances back
into the plans, this algorithm is able to increase the realizability of the planned

path. This addresses the first and second major issue discussed above by rea-



soning about the effects of the disturbances and adapting the plan online to the

disturbances measured.

3. A framework for increasing the realizability of planned paths for high actuation
vehicles which allows the robotic system to reason about the capabilities of the
on-board low-level controller. By incorporating the capabilities of the low-level
controller into execution and planning, this framework is able to increase the re-
alizability of the planned information gathering path. This addresses the first and
third major issues by folding back in the knowledge of the low-level controller

into the planning and accounting for the goals of the planner during execution.

Thesis Roadmap

In Chapter 2 we provide a background for motion planning, control, and field robotics
to provide context for the contributions of this thesis.

In Chapter 3 we introduce a stochastic optimization algorithm for planning for mul-
tiple low-actuation robots in strong disturbances for an information gathering task. We
demonstrate how an action-space representation of the state allows for an efficient in-
corporation of disturbances and that this optimization framework is computationally
efficient.

In Chapter 4 we introduce our Energy-Efficient Stochastic Trajectory Optimization
algorithm, which incorporates reasoning about environmental disturbances for moderate-
actuation vehicles. Additionally, we introduce a framework which takes advantage of
the computational efficiency of this optimization method to incorporate information

gathered about the environment during execution for replanning of paths.



In Chapter 5 we introduce our framework for allowing a robotic system with high-
actuation to reason about the capabilities of its low-level controller. By utilizing a rein-
forcement learning based approach the system is able to learn a policy capable of reduc-
ing the distance between the planned and realized path. Additionally, using a stochastic
optimization algorithm, the framework is capable of increasing the realizability of the
planned path.

In Chapter 6 we summarize the contributions of this thesis and re-emphasise the

major theme and provide potential future research directions
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Chapter 2: Background

As presented in the introduction, the bodies of literature in planning and controls have
looked at different aspects of the realizable path planning and execution problem. The
planning literature (Section 2.1) has mostly focused on vehicles where the disturbances
are well known (or can be ignored) and on vehicles with moderate to high relative levels
of actuation. This prior work can be broadly grouped into three major approaches:
search, optimization, and sampling. Search-based planners (Section 2.1.1) were some
of the first planning algorithms and rely on splitting the environment into a large number
of discrete states and searching through the resulting graph formed by connecting those
states. Optimization techniques (Section 2.1.2) rely on formulating the problem as either
a maximization or minimization problem on the path. Sampling-based planners (Section
2.1.3) seek to find a path by probabilistically building a graph over the environment and
then planning through that graph.

On the other hand, the controls literature (Section 2.2) has focused on domains
where the disturbances are not well known and the relative actuation is high. Classi-
cal approaches (Section 2.2.1) have typically framed the problem as an optimization
problem based upon the Bellman Equation [41]. Recently, there has been interest in
using learning-based approaches (Section 2.2.2) in control.

In this chapter we will also provide a background on field robotics and the applica-

tions (Section 2.3) we will be considering in this dissertation. One common application
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for field robots is the Informative Path Planning Problem [93] (Section 2.3.2) where the
goal is compute a path through the environments that gathers the most information. An-
other important task for field robotics is energy-efficient planning [77] (Section 2.3.3)
where the goal is to compute a path from the start to the goal which minimizes the

amount of energy the robot consumes.

2.1 Planning

A typical motion planning problem consists of five major elements [49]. The first is a
state, which encodes information about the robot such as its position and orientation in
space or the configuration of its arms. These states can be represented either continu-
ously or discretely. Second, planning has at the very least an implicit representation of
time, which indicates the order in which actions are to be performed. Third, planning
has actions, which represent how the robot can change its state. Additionally, more
complicated planning problems also deal with actions performed by the environment
(disturbances) which change the state of the robot without the robot taking an action.
Fourth, planning has initial and goal states, which informs the planner where the robot
begins and where the robot desires to end. Lastly, there is a criterion, which informs
how the robot is to plan. Generally there are two major different criterion considered,
feasibility and optimality. Feasibility tells the planner to ensure achieving the goal state,
regardless of efficiency. Feasibility is a binary function of the path, either it is feasible
or not consider criterion based on some constraints either on the state transitions (such

as turning constraints) or on the states themselves (such as no collision constraints). Op-
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timality tells the planner to achieve the goal state with respect to some underlying cost
or reward function. One note to make here is that when using a cost function the planner
typically attempts to minimize cost, while when using a reward function the planner
typically attempts to maximize reward.

Another way to describe planning algorithms is as complete and optimal [98]. An
algorithm is called complete if, when at least one feasible path exists, the algorithm will
return a feasible path. One caveat here is that this feasibility requirement is tied to the
assumption made by the planning algorithm. One of the clearest examples of this is that
of discrete planners, which partition the environment into cells, and are only resolution
complete, meaning that these algorithms only return feasible paths which respect the
resolution of the cells used. An algorithm is considered optimal when it returns the path

which is optimal with respect to the specified cost function.

2.1.1 Search

The classic example of a search algorithms is the graph search algorithm A* [25] and
its descendants such as Dynamic A* (D*) [98], which was designed to work in partially
known environments, and Anytime Repairing A* (ARA*) [55], which was designed to
give A* anytime properties and would continue to improve the solution as computation
time was extended. While there has been a large amount of success using these algo-
rithms, these algorithms tend to suffer from the curse of dimensionality [9], meaning that
as the number of dimension increases linearly, the number of states increases exponen-

tially. Additionally, due to the discretization of the state-space, many times these graph
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search algorithms need to make assumptions either about the environment or the robot
that do not hold in increasingly complex environments, such as restricting movement to
grid squares.

Some of the first attempts to remove these unrealistic assumption on motion used the
idea of a lattice graph [76], which is a graph built over the space using a set of kinody-
namically feasible motion primitives. This framework was used successfully as the lo-
cal planner for Stanley [107], the robotic car from Stanford that won the DARPA Grand
Challenge. In Stanley, the motion primitives were tailored around the speed and so al-
lowed Stanley to plan high speed maneuvers. Recent work using lattice planning has
looked at methods for using lattices constructed in one environment to plan in another
because constructing these lattices is computationally expensive. In [85], the authors
look at using a state lattice constructed in a regular grid to plan in a curved deformed
environment. This allows the robot to reuse lattices, rather than needing to re-create
one for every different environment. In [67], the authors leveraged local optimization
of lattice actions to improve the underlying lattice graph. To keep this method compu-
tationally feasible, the authors developed a learning method which learns what areas of
the lattice to refine.

Another discrete approach is the maneuver automaton, introduced in [21]. The au-
thors construct a state machine which encodes actions and their transitions. The authors
then plan over this state machine, choosing maneuvers and the amount of time spent
executing them as well as the transitions between these maneuvers. However, properly
designing this set of maneuvers is non-trivial and has a large effect on the solution qual-

ity. In [88], this idea is expanded by using controllable linear modes, which are more



14

expressive than maneuvers. The authors formulate this planning problem as a mixed
integer linear program which limits the length of the path that it can consider.

Existing search based planning methods fail to adequately solve the realizable path
planning and execution problem because the discritization that they impose to be compu-
tationally efficient enough typically place too many restrictions on the robot. Addition-
ally, when vehicles have low to medium relative levels of actuation the needed checks on
the connections between states can significantly increase the computation time. Lastly,
these methods tend to not naturally allow for the incorporation of disturbances and so

make reasoning over them difficult.

2.1.2  Optimization

Another approach to motion planning is to use optimization-based planning methods.
These methods work by taking an initial solution to the planning problem generated by
a naive planner and iteratively improving these solutions to determine the best solution.
There are both deterministic and stochastic methods for path optimization. In [116], the
authors introduce Covariant Hamiltonian Optimization for Motion Planning (CHOMP),
which calculates the analytical gradient of a cost function based upon smoothness and
obstacle cost functions to iteratively improve a path. In [89], the authors present an al-
gorithm called TrajOpt, which uses sequential convex optimization and a novel collision
checking formulation to reduce the number of iterations the algorithm requires to con-
verge. In [65], trajectories are represented as a Gaussian Process, and a gradient-based

optimization technique is used to optimize the path. One of the biggest issues with these
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planning methods is that they are highly susceptible to finding local optima instead of
the global optimum of the cost function. The first stochastic optimization techniques
attempted to solve this problem by either using random restarts (i.e. reinitializing the
problem) or using a large number of initial solutions (particle swarms) to make the algo-
rithm less sensitive to these local optima. CHOMP uses random restarts in an attempt to
move the solution out of the basin of attraction that it starts in to attempt to find a more
cost efficient solution.

Particle swarm algorithm keep a population of solutions and refines this population
by improving each solution, which allows the algorithm to explore the space of solu-
tions. In [112], the authors use a particle swarm optimization algorithm to plan energy
efficient paths in ocean currents for autonomous underwater vehicles (AUVs). This par-
ticle swarm formulation allows the planner to search many different basins of attraction
which are present in the highly non-linear cost function of energy usage by the AUV
in ocean currents. Recent work [102], has used shooting methods in combination with
random restarts and a trajectory database to efficiently calculate motions for humanoid
robots. Shooting methods work by taking an initial condition and plan and simulating
it forward using a simulator to find the final configuration. These methods suffer from
needing many calculations to find an acceptable solution. The authors in [102] use a pre-
computed trajectory database to speed up this search by providing the shooting method
with high quality starting trajectories.

Another approach to stochastic optimization motion planning is to use sampling to
estimate the gradient of a non-differentiable cost function. Borrowing from the stochas-

tic optimal control literature [105], the authors in [36] present Stochastic Optimization
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for Motion Planning (STOMP). STOMP calculates trajectories by starting with an initial
trajectory guess and iteratively updating this trajectory. These updates are calculated by
sampling trajectories around the current trajectory and using these samples to approxi-
mate the gradient of the cost function, which can then be used to update the path. One
advantage of STOMP is that the paths produced by the algorithm are smooth and so
are more easily executed by the robot. STOMP was originally designed to be used for
a humanoid robot in grasping tasks trying to minimize torque. STOMP has also been
used in the marine domain [23], where it was used to update local coverage plans when
obstacles differed from their initially mapped positions. In this case, the method was ini-
tialized with the originally planned path and [23] utilized the smooth updates offered by
STOMP to keep the calculated solution smooth, which is important for their application
of providing high quality coverage plans.

Optimization-based planning methods offer an interesting avenue for realizable path
planning. However, existing methods are incapable of fully considering the effects of

disturbances on the robot due to the restrictions on the cost functions they can consider.

2.1.3 Sampling

There are two main algorithms which utilize sampling techniques: Probabilistic Road
Maps (PRM) [39] and Rapidly-exploring Random Trees (RRT) [51]. Both these al-
gorithms use sampling to build an underlying data structure that is then used during
planning.

PRMs build a graph over the environment which a standard graph-search based plan-
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ner can then plan over. To do this, the PRM algorithm samples a number of states from
the free space and then attempts to find collision free connections between these states
using a number of connection criterion depending on implementation. Some common
connection criteria are k-nearest neighbors and connecting to all neighbors within some
radius r [64]. One of the most difficult and computationally expensive steps in con-
structing a PRM graph is determining the feasibility of these connections. This is due
to the difficulty in performing collision checks along the entirety of the path and poten-
tially considering dynamic constraints on the robot’s motion. There have been a number
of extensions to this basic PRM formulation. In [7], the authors introduce Lazy PRM
which attempts to speed up computation by only checking for collision on edge connec-
tions when that edge is included in the solution. The authors in [92] propose an updated
sampling technique that biases samples to be near obstacles. By doing this the authors
attempt to alleviate the problem of finding narrow passageways. In [50], the authors
in part examine the relationship between sampling strategies and solution quality. The
authors find that using more informed sampling techniques produces shorter solutions
faster. Another interesting extension to PRM was introduced in [37], where the authors
introduced PRM*. The main contribution was analytically deriving an optimal connec-
tion radius, *, which is based upon the number of samples already in the graph and the
dimensionality of the problem. This allows PRM* to intelligently consider connections
and minimize the number of expensive connect states computations. One problem that
PRMs face is that building this underlying map can be expensive and requires a map of
the environment to be known a priori. This can be a problem when the environment is

uncertain and the robot may require a large amount of replanning. Additionally, the path
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returned by searching on a PRM may be suboptimal.

RRTs [48] build a tree structure that is rooted at the starting state and explore the
environment until the goal state is found. Then the robot executes the plan by traversing
the branch of the tree which leads the robot from the start state to the goal state. To build
this tree structure, the RRT algorithm samples a state randomly from the environment or
configuration space, finds the nearest state currently in the tree to that sample and then
grows the tree from the nearest node in the tree in the direction of that sample using a
predefined steering function. Traditionally the steering function used has been to grow
the tree in a straight line, which suffers from problems when trying to connect near
obstacles and does not accurately reflect how the robot will move.

In [103], the authors develop a steering function which utilizes obstacle information
to help grow the tree through narrow passages. More complicated steering functions that
attempt to more accurately reflect the dynamics of the robot have been considered. In
[73], the authors propose a non-holonomic distance function that considers constraints
on the vehicles motion. They also introduce a steering function using this cost func-
tion for a unicycle-type vehicle. In [72], the authors use an optimal controller to locally
extend the tree built by the RRT algorithm. However, this is based only on a wheeled
robot and makes the assumption that the velocity throughout the extension is decaying,
which limits its usefulness when considering a string of high speed maneuvers. An-
other approach introduced in [110] solves this problem by assuming controllable linear
dynamics and then solving the two-point boundary value problem. The assumptions
introduced by linearizing the dynamics limits the systems for which this method can be

used and, as noted by the authors, imposes limits in some cases on the radius of con-
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nection that can be considered. Additionally, this connection method is computationally
expensive when the system cannot use a derived special case closed form solution and
must instead use a numerical approximation algorithm.

Similarly to PRMs, there has been work looking at different sampling strategies for
RRTs. In [109], the authors present a number of different methods, such as biasing sam-
ples towards the goal state, that help to improve the performance of the RRT algorithm.
This was done to help increase the computational efficiency of the algorithm. While
RRTs provide fast single query searches, many times the found path is sub-optimal and
contains many sharp motion transitions.

In [37], the authors expand the RRT algorithm to RRT*, which is an asymptotically
optimal algorithm, meaning that as the number of samples goes to infinity the solution
converges to the optimal solution. To extend RRT to RRT*, the authors developed an
edge rewiring technique that recomputes state connections in the tree as new samples
are added. Additionally, RRT* is a probabilistically complete algorithm, meaning that
as the number of samples goes to infinity the algorithm will find a solution if one exists.
The authors in [68] introduce RRT*-Smart, which helps to improve the convergence
rate of RRT* by biasing the sampling towards the first solution that is found. By doing
this, the authors are able to increase the computational efficiency of RRT*. While RRT*
has been used in a number of robotics research applications, in practice its use has been
limited as the number of samples needed to significantly improve the solutions is quite
high.

This is similar to recent work in Monte Carlo Tree Search (MCTS), which uses

intelligent sampling to quickly explore a large amount of the state-space. In [4], the
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authors present Decentralized MCTS (Dec-MCTS) which is used to plan for multiple
robots in an active perception problem. In Dec-MCTS, the robots keep a probability
distribution over the plans of other robots. This distribution helps to simplify planning
and offers a principled way to deal with uncertainty about other robots.

Another approach to uncertainty planning was introduced in [10], where the authors
introduce Rapidly-exploring Random Belief Trees (RRBT). RRBT works very similarly
to RRTs discussed above, however it introduces the idea of comparing partial paths that
arrive at nodes which account for the uncertainty in the state of the robot. The authors
then compare partial paths that lead to the node and impose an ordering based upon
the uncertainty. By doing this, the authors are able to plan a path where the robot is
more certain about its location and so able to avoid collision. In [57], the authors extend
upon RRT* to develop Chance Constraint RRT* (CC-RRT*) which checks probabilistic
feasibility using chance constraints. Another approach explored in [95] constructs an
underlying PRM graph of the space with uncertainty on the edge weights. The authors
present Risk-Aware Graph Search (RAGS) which plans an initial path and then con-
tinues to update that path as edge weights are discovered. This approach demonstrates
the importance of replanning when dealing with uncertainty, as it allows the robot to
account for newly gathered information during execution. In [13], the authors present
Online RRT* (ORRT*), which dynamically adds samples and rewires the tree during
execution. This allows the planner to account for uncertainty by efficiently replanning
when unexpected obstacles are discovered.

The common assumption made by these works is that these disturbances will be

small compared to the actuation of the vehicle. There has been some limited work using
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RRTs with large environmental disturbances. In [81], the authors use an RRT-based
method to plan paths for ocean gliders in ocean currents. The authors introduce a steer
function which accounts for the ocean currents when expanding the tree. However, the
ocean currents introduce a bias into the tree growth, which causes the planner to perform
poorly when the optimal paths are against this bias introduced by the ocean currents. In
[101], the authors introduce an RRT-based algorithm which uses a reconnection scheme
to help deal with dynamic constraints. The authors continually prune the tree back after
a feasible trajectory is found and use this to both speed up replanning and bias tree
growth around existing solutions.

Sampling-based planners are a powerful set of algorithms for solving planning prob-
lems. However, most of the work using these planners assumes simple steering func-
tions. Even when more computationally expensive steering functions are used these
planners ignore large-scale disturbances. Lastly, incorporating disturbances into these

frameworks can cause unforeseen problems, such as those seen in [81].

2.2 Control

A simple way to think about a control system is that it is a system that takes in an input
and converts that input into a desired output to achieve a desired performance [70].
A control system can be evaluated on a number of different performance metrics but
some common metrics are transient response (the system’s performance as it approaches
the solution), steady-state response (the system’s performance as it attempts to hold a

state), stability (does the system eventually settle down to near the desired state), and
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robustness (how does performance change as the parameters change). Classical controls
methods are reviewed in 2.2.1. Recently there has been interest in using learning-based

control methods [20], which are discussed in 2.2.2.

2.2.1 Classical

In [104], the author introduces the algorithm LQR-Trees, which use linear quadratic
regulator (LQR) controllers to compute locally valid controllers, and combines them
into non-linear combinations which can cover the space of the trajectory and be used
in planning. This work borrows from the sampling-based motion planning community
by growing a tree of states and controllers by using sampling to add nodes to the tree
and then designing the local linear controller around that state if it is required. In [59],
the authors introduce a related idea of planning with a funnel library. These funnels
represent an outer limit on the area reached during execution of the trajectory and are
calculated using sum-of-squares programming. By stringing these funnels together, the
authors can compute both a trajectory which respects the dynamics of the vehicle and a
region around the trajectory within which the robot will stay.

Another common controls approach is to use Model Predictive Control (MPC) [12],
which utilizes a predictive model and objective function to compute a control law. MPC
methods forward simulate the system with the planned controls to calculate the future
controls that will be needed. This offers an advantage over controllers which do not con-
sider the future by analyzing the impact controls executed now will have on the needed

control signals in the future. Additionally by optimizing the set of controls the robot
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will use, MPC methods are able to plan paths which respect the kinodynamic constraint
of the robot. In [19], the authors use MPC to stabilize a ROV in ocean disturbances in
a station-keeping task. This work illustrate one of the major drawbacks to these MPC
formulations. The approach is only able to plan over a time horizon of 0.8 seconds,
which is quite limited when trying to plan longer term plans for the robot. One way to
increase this time horizon is to consider a more limited set of actions and make more
assumptions on the vehicles motion. This approach is taken in [29], where the authors
use MPC to compute paths for AUVs in strong and uncertain ocean currents. The con-
trols are discretized into 16 different thrust directions and 24 different depths. Using this
discretization the authors are able to utilize an A* solver which allows them to consider
long term path through the ocean. While their method is able to offer improvements in
path realization by these vehicles in simulation, the authors still make assumptions on
the vehicles motion, namely that depth transition can happen instantaneously, which is
not realizable in the physical world. Another method of speeding up calculations is to
use a learned model for vehicle dynamics. The authors in [111] present an MPC based
method which uses a neural-network based model of the vehicle dynamics alongside
a reinforcement learning based control strategy on an aggressively driving model car.
While this provides strong results, it does require an amount of learning on the real sys-
tem, something which may not always be available. Additionally while they are able to
consider further ahead, the time horizon is still limited to approximately 2.5 seconds.
Classical control solutions are a powerful set of tools for realizable path planning.
However, these methods are unable to plan over long enough horizons for full realizable

path planning and are not suitable for exploiting large-scale disturbances for vehicles
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with low or medium relative levels of actuation.

2.2.2 Learning

There has recently been a great interest in using data-driven learning methods for robot
control. In [53], the authors developed a technique using deep neural networks and re-
inforcement learning to train a robot to perform manipulation tasks. The authors trained
the robot to map raw images directly to desired motor torques. Similarly in [54], the
authors utilized training examples directly from a number of robots to train a policy for
grasping tasks. In [56], the authors demonstrate a deep learning method for continuous
actions in 20 different simulated physics tasks. In [115], the authors propose a method
for learning stacking and pushing actions directly from camera images. However, in this
and similar domains the environmental disturbances are much smaller than are typically
experienced in field robotics. In [54], the authors developed a deep neural network ap-
proach for robotic grasping that was able to achieve effective real time control while
also successfully grasping novel objects. However, like many deep networks, their sys-
tem required a large amount of training data, approximately 800,000 grasp attempts on
real robots. This is not feasible for field robotics, especially across a large number of
potential disturbances. [111] demonstrated a learning-based dynamics model within an
information theoretic MPC scheme for handling complex cost functions and nonlinear
dynamics. However, the authors’ method depends upon executing and learning in the
same environment and is not easily generalizable. [71] similarly develop a path tracking

method which uses a Gaussian Process (GP) to model disturbances and is trained from



25

previous path executions. This GP model can then be used by a nonlinear MPC algo-
rithm to accurately track a desired path. However, again the state of the robot is defined
in global coordinates and the disturbances that the algorithm is modeling are dependent
on the desired path, requiring the path to be executed multiple times for reliable path
tracking.

Additionally, many learning methods have only been applied in simulation and
though there is some work on transferring work from simulation to the real world [86],
it is limited and presents a number of unique challenges. Another approach to tackle this
sim-to-real gap is presented in [74], where the authors use both the common technique
of domain randomization during training, as well as an imitation learning based scheme
to help increase the performance of the real system. However, this technique requires a
large number of samples from the real system, which is not always feasible for a field
robotic system. When these systems fail it is often quite hard to understand why and
as such, present difficulties in utilizing these system. Lastly, many of these systems do
not consider problem with large amounts of noise in the motion models (either through

disturbances or noisy vehicle dynamics).

2.3 Field Robotics

There has been significant interest in using robots for a number of field robotics appli-
cations [106]. There have been many varied applications for field robotics but in this
dissertation we will mainly focus on three thrusts. First, in 2.3.1 we will talk about work

in planning for disturbances. Next, we will discuss the Information Gathering Problem
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in 2.3.2. Last, energy-efficient path planning is discussed in 2.3.3.

2.3.1 Disturbance Planning

To address the problem of planning achievable paths in disturbances, [96] creates a con-
trollability map over the ocean environment. However, they use this controllability map
to plan trajectories for patrolling tasks and do not account for the situation where the
agent may want to enter a region of low controllability if the direction of controllability
is favorable. Additionally, the authors in [96] utilize an A* based path planner, which
is ill-suited to many problems as it is quite difficult to design an informative heuristic
for many field robotic tasks. In [63], the authors describe a high-level controller de-
sign for spreading and attracting Lagrangian drifters. However, they only consider final
destinations and do not account for path dependent rewards such as information.

In [111], the authors introduce an information theoretic solution method for model
predictive path integral (MPPI) control. To calculate updates to the control, the authors
use a large number of samples to approximate the KL-Divergence between the current
control distribution and an optimal control distribution, which is used to derive an iter-
ative control update law. In this chapter, we use sampling to approximate a gradient,
which allows our method to use a comparatively smaller number of samples. In [38],
the authors propose a framework for robotic operations in adversarial forces. Through
a waypoint augmentation algorithm, the authors are able to improve the path tracking
performance for an autonomous boat subject to wind and current disturbances. How-

ever, this system only considers a single waypoint in the future and can result in large
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deviations at sharp turns.

2.3.2 Information Gathering

The Informative Path Planning problem [93] is a heavily researched problem in robotics
and is classified as a NP-Hard problem [27]. Some of the major challenges in this
problem are that it requires searching over the space of all possible paths and that the
reward function is nonconvex in all but the simplest of domains. To cope with these
difficulties, a number of different solutions have been proposed.

One paradigm has been to approach this problem as a sequential decision making
problem. Researchers proposed algorithms such as Greedy, Recursive Greedy [93], and
Branch and Bound [6] which iteratively add new local actions to the path. Because
the Informative Planning Problem has a path dependent reward structure, this requires
either a large number of path evaluations or strong assumptions about the structure of
the information field. Additionally, these methods require discritization of the environ-
ment, which restricts the range of solutions they can consider. Other solution methods
utilize sampling-based methods to effectively explore this large search space, such as
Rapidly-exploring Information Gathering [27], Monte Carlo Tree Search (MCTS) [69]
[5], and Bayesian Optimization [61]. Again, these methods require a large number of
path evaluations and in their current formulation consider deterministic paths. Account-
ing for the uncertainty in path execution would be potentially computationally expensive
as estimating the distribution of paths can be quite difficult and these sampling methods

typically need a large number of samples to compute their plan.
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Another approach to the information gathering problem is to frame it as an optimiza-
tion problem where a preexisting or naive trajectory is refined. Optimization techniques
can be much more efficient than sampling based methods, but require additional as-
sumptions about the problem. In [15], the authors formulated the problem as a Sequen-
tial Quadratic Programming problem which requires them to treat each measurement as
independent. This does not allow for path dependent rewards, which is a key structure
in the information gathering problem. The authors in [79] utilize an evolutionary al-
gorithm to optimize the robot’s path. While evolutionary algorithms allow for a wide
range of different objective functions, these methods are computationally expensive and
do not scale well. In [34], the authors utilize Stochastic Gradient Ascent (SGA) to plan
informative paths for a team of robots but do not consider the realizability of the paths.

Our proposed method uses a similar structure to [34] to optimize the information
gathering path for realizable information gain. While other existing methods could use
a similar structure to that presented here, the SGA formulation we use here is relatively
sample efficient. This allows the method to effectively use the information from these

samples to calculate the most informative path.

2.3.3 Energy-Efficient Planning

Previous research on planning energy-efficient paths in ocean currents has focused pri-
marily in two directions. A number of different works, such as [52], [29] and [46], have
used A*-based algorithms to plan energy-efficient paths due to the limited availability

of coarse data and the relative tractability of discrete approaches. However, the neces-



29

sary discretization limits the paths that the planner can find and can produce infeasible
transitions for the vehicle to perform. In [81], a RRT-based method is used to com-
pute energy-efficient paths. Due to the bias in tree growth due to the ocean currents,
the method was not always able to outperform A* based methods and final path quality
could fluctuate widely. Other work has examined different optimization methods. In
[44], a gradient optimization based method is used to plan energy-efficient paths in an
estuary environment. To calculate these gradient updates, the authors assume a smooth
water current distribution in addition to a smooth path cost function, which cannot al-
ways be assumed. In [112], a particle swarm optimization approach is used to find
energy-efficient paths. This approach is computationally expensive and not suited for
real-time planning. In [99], a level-set expansion based method is employed given a
desired start and end position for the vehicle. This strategy requires both full knowledge
of the flow field and high computation, restrictions that make it unsuitable for real-time
planning in uncertain ocean currents. In our work we account for the uncertainty present
in ocean current forecasts by replanning throughout the trajectory as more information
about the ocean current environment is gathered, rather than assuming that ocean cur-

rents are known perfectly.

2.4 Comparison of Related Work

Now that we have gone through the background work in planning, control, and field
robotics we can place this dissertation in more context. In Figure 2.1, we can see the

same two axes from the introduction (Figure 1.2; relative actuation strength and knowl-



30

edge of disturbances, with related work filled in and the chapters in bold. As we can see,
previous work has focused on the upper right and left of these axes. In Chapter 3, we
provide new algorithms for planning for low relative actuation vehicles in known distur-
bances, which are computationally efficient enough to consider being used in partially
known disturbances domains. Chapter 4 helps to bridge the gap between the work in
planning and control by presenting algorithms which allow moderate relative actuation
vehicles planning in partially known disturbances. Finally, in Chapter 5 we leverage
solutions from both planning and control to provide a new algorithm and framework for
realizable path planning with high relative actuation strength and partially known dis-
turbances. One aspect here to note is that the lower left of this diagram is still left blank.
This domain is especially difficult because knowing very little about the disturbances
and having a low relative actuation strength greatly limits the impact of any choice the
robotic vehicle could make. We leave this challenging region of the problem domain as

an avenue for future work.
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Figure 2.1: A representation of where previous work has focused (upper left and right)
and where this thesis fits into the existing work. Chapters in this thesis are in bold.
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Chapter 3: Action Space Representation for Low Actuation Vehicles

In this chapter we present a method for realizable path planning for low actuation ve-
hicles in known disturbances. Rather than planning in the state-space of the vehicle,
this method utilizes a novel action sequence path representation. This path formulation
allows for a more natural representation of disturbances into the planning problem and
removes the need for expensive reachability calculations that previous work had to per-
form for realizable path planning. Specifically, our proposed technique bridges the gap
between previous work in information gathering and previous work considering limits
to control authority. Versions of this work have been previously published in [35] and
are under review in [45].

We present a stochastic optimization algorithm for information gathering that:

e Allows for different levels of control authority by using a novel action sequence

path representation

e Approximates the gradient of the path dependent state space reward function with

respect to the action sequence path using random roll-outs

e Uses a Sequential Greedy Allocation scheme that allows the algorithm to be scal-

able for multi-vehicle implementations

We validate this algorithm on data from a Navy Coastal Ocean Model (NCOM) of

the Gulf of Mexico, where the dataset is constructed similarly to [30] and can be seen
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in Figure 3.1. This data set includes ocean currents, which affect the control author-
ity of the vehicles, and ocean temperatures, which we use to construct an information
function. We assume that there is some desired temperature that could correlate with
an oceanographic process of interest, such as algae blooms, and assign each location an
amount of information corresponding to how close it is to that desired temperature such
asin [11].

For this chapter it may be helpful to review the background on optimization (Sec-
tion 2.1.2) and sampling (Section 2.1.3) based planning and on information gathering

(Section 2.3.2).

3.1 Problem Formulation

We seek to find the set of feasible paths for a team of vehicles which maximizes a given
reward function. This is formulated as the following optimization problem:

X* = max R(X), st.Vx; € X, x; € U, (3.1)
XeQ

X = {X17X27“' 7Xn}7

where x; is the path of an individual agent, X is a set of paths, R(X) is a user de-
fined reward function, 2 is the set of all paths, W is the set of all feasible paths, and
n 1s the number of agents being considered. In previous work, such as [96] and [63],
these paths were specified through a set of state-space coordinates defined by latitude-

longitude-depth coordinates. However, optimizing the state-space coordinates directly
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Figure 3.1: Representative information field over the Gulf of Mexico where brighter
colors indicate more information. The inset shows a zoomed in view of one of the four
designated test regions used in the results. Two vehicles’ paths are illustrated in the
inset. The vehicle on the left (yellow) is able to utilize the ocean currents to move from
a location of low information to one of high information. In contrast, the vehicle on the
right (red) starts in a region of high information but is unable to stay there due to the
limited control authority introduced by the ocean currents.
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requires nontrivial calculations to ensure that the trajectory is feasible due to control
limits compared to environmental disturbances. We choose to plan over sequences of
actions available to the vehicle, which removes the need to perform these feasibility cal-
culations. Instead, we assume that we have a function ® : A,z — X where A is a set
of action sequences and x is a defined state-space starting location. This redefines our
optimization problem as:

A" = max R(®(A, xy)), (3.2)

where we are trying to find the optimal set of action sequences in A, the set of all possible
action sequences.

We define an individual action sequence as:

a= {(dl7tlavl)7 (d27t27v2)a Ty (dmatmavm)}y

where (d;, t;, v;) defines a single action of diving to depth d;, thrusting at velocity v;, and
maintaining that depth and thrust for an amount of time ¢;. We assume that the agents
have the ability to achieve and maintain a range of depths and provide a limited amount
thrust. Using this definition, A = {a;,a,,--- ,a,}.

We use a generalized autonomous underwater vehicle (AUV) model to demonstrate
our algorithm, but our formulation is general and a number of different sets of actions,
a, can be used in the action sequence, a. We make two assumptions about the actions
that can be included in the actions sequence. First, we assume that the action can be
represented by a function f : xy,a — x1, which maps actions to states with a defined

on a range:
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a€X= |3, q],

where o defines an upper bound and 3 defines a lower bound. This means that the
action can be represented as a continuous real number which can be used to map from
one location to another. Second, we assume that it is simple to check both that a € A
and that x; is a valid state for the vehicle.

In this chapter, we are interested in information gathering tasks defined by an infor-
mation function, R(X) = I(X), which maps a set of state-space paths to an amount of
information gathered by the team of agents. Again, we can transform this into our action

sequence representation as /(P (A, xg)).

3.2 Stochastic Gradient Ascent Algorithm

We use the Stochastic Gradient Ascent (SGA) algorithm, shown in Algorithm I, to ap-
proximate A* by iteratively updating an initial guess. The first step is to initialize the set
A using a simple default policy. Next, we optimize the action sequences using a sequen-
tial greedy allocation method by optimizing one vehicle while holding all others fixed.
This was shown in [28] to produce high-quality results in similar domains. For each ve-
hicle, we iteratively improve the action sequence by calculating a number of perturbed
sequences, scoring them, and then doing a weighted recombination of the perturbations
to estimate the gradient which is used to update the sequence for the next iteration.

We will now go through each of the subroutines:

o get_perturbed_paths: We calculate the set of perturbations, £, in the following
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Algorithm 1 Stochastic Gradient Ascent (SGA)

1: Initialize A
2: for all a; in A do > Loop through vehicles

3:

4
5:
6:
7
8
9

c+ 0
for ¢ < num_its do
O, E <+ get_perturbed_paths(a;)
S < get_scores(O, A)
A < estimate_grad(S, F)
a, < a;, + Axnc)
c—c+1

way:
E:€17627'” y €Ky

~ ~

€k = {(dAl?tAthl)a (dAQ7tA27UA2)7 e 7(dm7tm7UAm)}7

d; = N(0,04), t; = N(0,0,), 6; = N(0, 0,,),

where K is the desired number of perturbed sequences and individual waypoint
perturbations eé = (dAj, t}, v;) are sampled from zero-mean normal distributions

with standard deviations o4, 0y and o, respectively.

We then calculate the set of perturbed sequences, O, as:
0= 0170%”' 70K7

Hk :ai+ek,

where 6, is perturbed action sequence k& produced by adding perturbation vector

€. to a;.
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e get_scores: We calculate the score of each individual action of all perturbed action
sequences in © using a method inspired from difference learning, presented in
[1]. This calculation approximates the contribution of action Hi by estimating
how much it improves over the existing solution. The score, sy, ;, is the score of

action j of 6, and is calculated as:

Skj = I(A) - I(A)v

where A is A except a; is replaced with ), and A is A with a; replaced with 6, but
action Qi replaced by af . By doing this, we also enable our gradient calculation
to be more efficient by containing information specifically about the improvement
offered by the waypoint, rather than containing a large amount of noise about the

environment and other waypoints.

e estimate_grad: To calculate the gradient we need to convert the scores into costs
by taking the inverse, which gives a cost matrix C' = % We then use the following
calculation to approximate the gradient:

| X

Aj = e Z w(@i) * ei,

k=1

ijmin Cj
; —h (k)
w(ei) —e makafmm C"k ,

where the function w(-) is a weighting function and A, is gradient at action j in

the action sequence. The variable h serves as a weighting term and is set equal
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to 10 in this work. The max and min functions are taken over all K perturbed
sequences at action j. This compares the cost of the action under consideration to
that of all other actions at the same point in the path. By scaling the weighting by
the maximum and minimum seen in that iteration, the algorithm is able to more
accurately account for large improvements offered by a small number of samples.
Additionally, during implementation we include the original path as one of the
samples which helps stabilize the algorithm and allows for the gradient calculation
to account for the existing solution and scale the contribution of each individual

waypoint based upon how much the waypoint improves over the existing solution.

Using the calculated A; values, we can compute A as {A;, Ay, --- , A, }. Using
this A, we can then update the sequence using 7(c) which serves as a learning rate,
which can be a function of the iteration number and in this work is calculated as 7(c) =

0.99¢.

3.3 Benchmark Algorithms

We now discuss the various algorithms we benchmark against our SGA algorithm. We
assume an action sequence consists of seven actions, each of which lasts for a duration of
24 hours, which, unless otherwise noted, randomly selects a velocity which is executed

for the duration of the mission. Below we list our five benchmark algorithms.

e Const Depth: The first default policy is to have all vehicles maintain the same
constant depth for the duration of the mission. In this work, we have the vehicle

maintain a constant depth of zero (i.e. floating on the surface).
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o Diff Depth: The second default policy is to equally distribute the vehicles through-
out the water column. By doing this, the vehicles hope to find different ocean
currents which will cause them to spread out. In this work, we have the vehicles

spread out every 20 meters in the depth column from zero to 180 meters.

e Greedy Depth: The third default policy is iteratively choosing a constant depth
and thrust for a new vehicle as it is added to the team that maximizes the amount
of information gathered by the team. To do this, we discretize the possible depths
and thrusts and then forward simulate the team with the new vehicle at all these
possible depths and thrusts. We then select the depth and thrust that maximizes

the information gathered.

e Rand Policy: The final default policy is a uniform random policy. Each action
is chosen randomly, with the vehicle choosing from a discrete set of depths and

thrusting in one of the four cardinal directions.

e Monte Carlo Tree Search (MCTS): MCTS is a natural extension of the Rand
Policy, iteratively improving the policy over time. This state-of-the-art approach

1s outlined below.

3.3.1 Monte Carlo Tree Search

Instead of approximately solving the optimization problem by solving for the best action
sequences, consider instead the task of finding a stochastic policy, which maps states

in the ocean to distributions over control actions to maximize the total reward. This



41

is similar to finding policies for Markov Decision Processes but has a different reward
structure. Techniques for solving MDPs that rely upon value functions, such as dynamic
programming [80] or reinforcement learning approaches [100], are not suitable. We
instead focus on techniques based on Monte Carlo rollouts to evaluate the efficacy of a
given policy.

One technique to find the best rollout is to start with a random stochastic policy,
and, over many crude Monte Carlo rollouts, store the rollout with the highest reward.
However, the optimal reward is a low probability event, and it will take prohibitively
many rollouts to find a decent solution. Monte Carlo Tree Search (MCTS), on the other
hand, combines multi-armed bandit techniques with graph based search to efficiently
guide Monte Carlo rollouts to maximize expected reward, and is often used in playing
adversarial games such as Go [16]. MCTS is readily extensible to MDP-like problems
[42, 8]. When implementing MCTS, we use Upper Confidence Bound (UCB1) for the

selection procedure [42], shown here:

a® = argmax (&j +C ln(n)>,

acA
where a* is the selected action, A are all possible actions from a state, @, is the average
reward from action a;, C' is a weighting parameter, n is the number of times this state
has been visited, and n; is the number of times action a; has been selected. We also use
a graph-based structure to store search nodes to save on memory requirements [8]. Use
of UCBI as a selection algorithm requires that rewards be upper bounded by a constant,

which is unknown. The algorithm stores the maximum reward discovered and scales all
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rewards by this constant at each selection phase. However, the selection algorithm still
requires experimental tuning of the parameter C' which establishes tradeoffs between
exploration and exploitation.

One can generate a discrete stochastic ocean motion model by selecting a discrete
set of actions (depth and thrust velocities) and dividing the ocean into rectangular cells.
Placing particles evenly spaced in each cell, one can track the motion of the particles
according to the control action and ocean dynamics approximating the discrete transition
probabilities of the system. While discrete rollouts may not be feasible trajectories,
they approximate the continuous system’s performance well enough, and the discrete
stochastic policies can be used to control the continuous system, generating feasible

paths.

3.4 SGA Simulation Results

To evaluate the performance of SGA, we used a NCOM model of the Gulf of Mexico.
This model gives an ocean current forecast at a two kilometer resolution, every three
hours for a week (168 hours) as a vector field of ocean currents. In this work, we
assume that the vehicle can maintain its depth and so assume that the vertical current
is zero. Additionally, we assume that the vehicle can provide a maximum thrust of 0.1
meters per second. This NCOM model also contains ocean temperature predictions at
the same 2 km resolution. We use this temperature to generate a simulated information
field over the ocean (see Figure 4.2) which can correlate with ocean phenomena such as

algae blooms. To do this we assume that there is some desired temperature 7; and use



43

the equation:

e~w(T=T0) if T > T,
I(z) =

e~on(Mo=1) if T < Ty
where a,, is a scale factor for the positive case and a,, is a scale factor for the negative
case. We calculate Ty, a,, and a, so that 20 percent of the information lies above a
threshold b, which was selected to be 0.5.

To generate starting regions for the vehicles we split the gulf into seven different
regions, three degrees of latitude and longitude on a side. Three of these regions were
used for parameter tuning, and four were used for testing our algorithms. The four
regions used for testing are shown in Figure 4.2. In each of these regions we selected a
square roughly 20 kilometers a side in the center as the possible starting location area.

From the 3 regions used for parameter tuning, we selected the maximum number of
iterations as 50, a o5 = 100 (represented in meters), o; = 5 (represented in hours), and
a 0, = 0.02 (represented in meters per second). Additionally, we found the number of
noisy paths K = 20 to provide good results. A relatively small number of noisy paths
gives better results by allowing the information from more informative paths to more
significantly influence the gradient. Due to the randomness inherent in the gradient
estimations of the information function, we optimized each action sequence five times
and selected the highest scoring action sequence from those.

For tuning MCTS exploration/exploitation parameter C', we tested various values
of C' € [1073,10"] over 21 logarithmically spaced points in the training dataset. Note

that MCTS’s performance is sensitive to selection of C' and the best vs. worst perfor-
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mance varied by 20% over the parameter space. Setting C' = 0.025 yielded the best
performance and was used in testing.

To test the multi-vehicle coordination aspect of the algorithm, we used teams of size
10. Inside the ~20km square starting regions we generate four different locations with
two locations containing four vehicles each and two locations containing one vehicle
each. This was done to ensure that there was ample opportunity for the vehicles to
interact while allowing the vehicles to start slightly dispersed. When all the vehicles
started from the same location, there was not enough time over the week deployment to
see diversity in paths.

The results from our tests can be seen in Figures 3.2 and 3.3 and Table 3.1. These
show the percent improvement offered by SGA with respect to the other methods. Un-
surprisingly, a default policy of having all vehicles stay at the same depth performs
poorly, especially when some vehicles are started at the same location. Our optimized
solution is able to offer a 104% improvement on average and can offer much larger
improvements in environments with larger differences in ocean current magnitudes and
directions.

A default policy of equally distributing the vehicles through the water column per-
forms reasonably well. During testing, it was observed that this policy allows the ve-
hicles to spread out spatially reasonably well but did not allow the team to prioritize
information rich sections of the ocean. Our optimized solution offered an average of
61.00% improvement over equally distributing the vehicles.

A greedy depth selection method is effective at gathering information in these en-

vironments. However, our approach is still able to offer an average improvement of
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Figure 3.2: Percent improvement demonstrated by SGA with respect to all comparison
algorithms. We are able to offer a large improvement over the simple baselines. MCTS
is able to perform comparably to our algorithm, however it requires approximately 5.2x
the computation. See Figure 3.3 for a more detailed look at the results for the final three
methods.
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Figure 3.3: Percent improvement demonstrated by SGA over the three best performing
comparison algorithms from Figure 3.2. SGA is able to improve over greedy depth
selection (8.63%), Random Policy (21.58%) and MCTS (1.50%).
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8.63% over this greedy selection method. SGA is able to intelligently consider inter-
actions between different actions within the sequence. This would be difficult for the
greedy planner to consider as the problem grows exponentially in the number of looka-
head steps. While greedy depth selection is able to compute these plans very quickly
(on the order of a second), there is a significant financial trade-off for any performance
improvement. Daily deployment costs from a crewed surface ship can be upward of
$30,000 dollars (see [84]) while a minute of cloud computing time costs less than $1.
Even if there is only one day of deployment for a 30 day mission using an autonomous
vehicle, the amortized cost is still $1000 per day for the mission. Put another way, to
gather the same amount of information required for a mission, 10 vehicles using the
proposed approach gather the same amount of information on average that about 10.9
vehicles gather using the greedy method. The effective deployment costs of each mis-
sion therefore increases on average by 9% ($90 per day) which dramatically outweighs
the additional 1-2 minutes of compute time ($1-$2).

Using a random policy results in surprisingly good performance. The random policy
has an advantage over some of the other simple policies by being able to choose a
different depth at each action. However, this selection is not made in an intelligent way.
Thus, the greedy depth selection, despite being only able to select a single depth for
a vehicle, outperforms the random policy. Our optimized solution is able to offer an
average of 21.58% improvement.

The comparison method most competitive with SGA is MCTS, where we are only
able to offer a 1.5% improvement. However, this is done with an average computational

time of 68.09 seconds in comparison with the 354.21 seconds average computational
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time required by MCTS, which can be seen in Figure 3.4. This represents a 5.2-fold
increase in computational time required by MCTS in comparison with SGA. Future
work will look at the effects of parallelizing the sampling process has on computational
time.

Additionally, this computational reduction represents a significant savings for tradi-
tional vehicle operations where surface times are typically minimized to reduce the risk
of collision with shipping [75]. From [3], we can see that a typical surfacing interval
for a data-intensive task is approximately 15 minutes. As such, the planning time for
MCTS represents approximately 33 percent increase in surface time while SGA repre-
sents approximately a 7 percent increase in surfacing time.

An example of the paths found by MCTS (green, x’s) and SGA (magenta, 0’s) is
shown in Figure 3.5. SGA is able to plan trajectories which collect information from
the small field seen at the end of the path at approximately 21.85 latitude and 265.85
longitude while MCTS has trouble finding this extra information through its random
rollouts. The vehicles are able to intelligently balance between spreading out to find
information and grouping up to exploit high information regions.

One interesting observation from our testing is that this percent improvement is
highly environment dependent. In two environments (1 and 4), SGA offers around the
expected 1.5% improvement. However, in environment 2, SGA offers about a 10% im-
provement over MCTS, while in environment 3, MCTS offers a 3% improvement over
the optimizer. Future work will look more at identifying what features of these environ-

ments lead to these disparities and what situations each method is better suited for.



49

Computational Time
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Figure 3.4: Computational time taken by the MCTS and SGA. Note that SGA takes
68.09 second on average while MCTS takes 354.21 seconds which represents a 5.2 fold
increase.

Table 3.1: Percent Improvement by SGA versus competing algorithms

Const Depth  Diff Depth  Greedy Depth Rand Policy MCTS
104.10 61.00 8.63 21.58 1.50




50

Region 1 - Gulf of Mexico
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Figure 3.5: Paths from MCTS and SGA for one deployment in Region 1 from Figure
4.2. MCTS is in green and x’s and SGA is in magenta and o’s. Lighter indicates more
information and vehicles start close to the center of the figure. SGA is able to utilize
the ocean currents to find the information at the end of the path (left side of the figure)
while MCTS is unable to find this path using its random rollouts.
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3.5 Conclusion

In this chapter we showed that by using a novel action sequence representation and our
SGA algorithm, we are able to improve upon a greedy baseline. We also compared to
a computationally intensive Monte Carlo Tree Search Method, which performs compa-
rably with SGA, but requires 5.2x the amount of computation on average. By approx-
imating the gradient with random rollouts we were able to efficiently search the space
and quickly improve the path. We presented results for a NCOM model, which closely
approximates what the vehicle would experience in the ocean.

When a robot’s motion is dominated by the environmental disturbances, planning in
the action-space of the robot allows for a very natural representation of disturbances into
the problem and therefore more realizable paths. However, when vehicles have a larger
amount of actuation relative to the environmental disturbances, the actions space might
be prohibitively large in both size and number of actions to allow for computationally
efficient realizable path planning. In the next chapter we will discuss our contributions
developing algorithms for vehicles with moderate relative levels of actuation planning
in strong disturbances.

Another key assumption made in this chapter was that the disturbances were fully
known. While there are a number of high quality ocean prediction models, these do not
always exists for all disturbances and even in environments where these high quality
model exists, these models can contain significant errors. One advantage that robots
have is that they are physically present in the environment, and as such they can gather

information about the environment during execution. In the next chapter we will dis-
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cuss our contributions developing replanning frameworks to account for partially known

disturbances.
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Chapter 4: Energy-Efficient Stochastic Trajectory Optimization

In this chapter we present a realizable path planning algorithm, Energy-Efficient Stochas-
tic Trajectory Optimization (EESTO), which allows moderate actuation vehicles to plan
energy-efficient paths in strong disturbances. We do this by removing assumptions on
the temporal spacing of waypoints in previous planning techniques, which allows for a
larger range of cost functions to be considered and the effects of disturbances to be ac-
counted for. Additionally, in contrast to the previous chapter, the environmental distur-
bance predictions are not assumed to be correct and we present a method for dynamically
replanning path during execution. This method is able to leverage the computational ef-
ficiency of EESTO to generate plans online as information about the environment is
gathered through execution allowing the robot to plan more realizable paths. Versions
of this work have been published in [32] and [33].

In this work we generalize previous trajectory optimization techniques, such as
STOMP [36], to perform energy-efficient path planning. Our algorithm, Energy-Efficient
Stochastic Trajectory Optimization (EESTO), removes the assumption that the trajectory
waypoints are equally spaced in time. Removing this assumption allows the algorithm
to use a variety of different cost functions and improves upon the state of the art in
energy-efficient ocean current path planning.

We show that naively replanning by always executing the newly planned path causes

the vehicle to execute higher energy cost paths. We introduce five path comparison
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metrics, three of which can be leveraged to plan paths more energy-efficient than those
generated from simply planning on the forecasted ocean currents.

For this chapter, it may be helpful to review the background on search (Section 2.1.1)
and optimization (Section 2.1.2) based planning as well as energy efficient planning

(Section 2.3.3).

4.1 EESTO Problem Formulation

EESTO builds upon previous trajectory optimization algorithms, such as STOMP [36],
and follows the notation used there. We define our motion planning problem as finding

a path from a given starting location to a desired goal location. The trajectory 0 is

discretized into N waypoints, 6., ...,0x. EESTO then seeks to iteratively optimize the
equation
N 1. .
0* = minE 0, +-0"RO |, 4.1
i ; a(6:) + 3 ] (.1)

where 0 represents a noisy trajectory with mean @ and variance o, q(él) is a state de-
pendent cost function, R is a matrix where R = ATA, and A is a constant finite differ-
encing matrix such that § = A@. The results of this definition of R is that the second
term in (4.1) approximates the sum of squared accelerations and represents the control
costs needed to perform the trajectory.

In previous work [36] the matrix A is constant because the step size considered
in the finite differencing is kept constant. However, in our work we generalize this

formulation to allow the step size to change, removing the assumption that the waypoints
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are equally spaced in time. To do this, we decompose matrix A into a constant center
finite differencing matrix, D, and a varying matrix, T, which is the step sizes and is

updated every iteration. This decomposition is

/20
A=TD=| 0 1/t

Each iteration, ¢; is updated to the average of the travel times from the waypoints 8;_; to
0, and from 0, to 0, ;. We generalize the normal waypoint formulation used in STOMP
to accommodate this extra information. To do this, we augment each waypoint with the
corresponding travel time, ¢;, which is the travel time to the next waypoint, 6, 1. In the
2D case, with 8; = (x;, y;) originally, this gives 8; = (z;, y;, t;). It is important to note
that the temporal component, ¢; is already incorporated into R, and so when calculating
the second term of (4.1), 6TR, only the spatial dimensions are used.

The optimization problem presented in (4.1) is solved by approximating the gradi-
ent of the cost function q(él) with a weighted combination of K explored noisy paths
in the same manner as [36] where a more detailed description is contained. These noisy
paths are generated by adding sampled perturbations ¢ to the current path estimate so
that noisy path 0, = 0 + ¢;. These perturbations are sampled from a zero-mean nor-
mal distribution ¢, = N (0, R™!). We sample from R~ so that perturbations produce

smooth deformations; however doing so introduces a large computational overhead each

iteration due to the expensive matrix inversion calculation not present in previous work.



56

EESTO calculates this inversion in a computationally tractable way by factoring R™!

as:

R!'=(ATA)' =D Y(T* D7)~ % (4.2)

Both D! and (DT)~! can be precomputed, and T? is a diagonal matrix whose inverse
can be quickly calculated. This step is fundamentally different from the factorization
of R found in the publicly available implementation of STOMP, since in EESTO we
are forced to recalculate R™! every iteration to account for the temporal variation of
waypoints. We rely on our factorization to compute this inversion efficiently. In contrast,
STOMP’s Lower-Upper (LU) factorization of R is used to speed up rollout calculations,
and is not strictly necessary to the functionality of the algorithm.

To sample the deformations to the travel time between waypoints, a similar strat-
egy is employed. We sample these deformations, €;, from N (0, T~1). After scaling
these perturbations with a user selected scaling factor, which is equivalent to choice of
a step size in gradient descent methods, the time perturbations are added to the spacial

perturbations ¢, so that e}c = (e, €)-

4.1.1 Cost Function

By removing the assumption that waypoints are equally spaced in time, EESTO can per-
form optimization over a range of cost functions. In this work we define a cost function
that seeks to perform energy-efficient planning. Our cost function balances travel time
and energy expenditure by rewarding both energy-efficient paths and traveling at speeds

close to or greater than the vehicle’s maximum velocity by riding the ocean currents.



57

These two goals often oppose each other, as traveling faster generally requires more
energy. Both are included into the cost function so that the trade-off between these two

factors can be explicitly acknowledged and defined. The cost function is defined as:

q(9,) = woCe(Oi) + wle(OZ) + C’O(Hi), (43)

where C, is the energy cost, C; is the speed cost, C,, is the obstacle cost, and wy, w; are

weighting factors between the different terms of the cost function.

4.1.1.1 Energy Cost

To calculate the energy cost of a single waypoint, we compute the difference in energy
expenditure between the path through 6; from 6, to 0,1, E,;;,, and the direct path
from 6,_; to 8,1 which bypasses 6;, E;thout- This formulation is inspired by difference

learning [1] from the multi-agent literature. The energy cost is calculated as

Ce(0i> = eXp(Ewith(gi) - Ewithaut<0i>)- (44)

The energy expenditure of these path segments is calculated in the same manner as in
[112], where the drag force is assumed to dominate the inertial forces. As such, the

energy expenditure is

E = ¢V, 4.5)
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where ¢, is the vehicles drag coefficient, V. is the required velocity for the motors to

provide, and ¢ is the travel time for the relevant section of the path.

4.1.1.2 Speed Cost

Using just the energy cost, the vehicle will seek to float with the ocean current to the goal
rather than attempting to reach the goal destination promptly. To penalize this behavior

we define a speed cost function:

0, if V, < V00 and

‘/abs > Vmax
Cs(0;) = ; (4.6)

eXp(Vmax - V;")a lf ‘/;" S Vmaa:

l + (‘/r - vmax)Fu lf ‘/7' > Vmaac

\

where V.., 1s the maximum velocity the motors can provide, Vs is the absolute veloc-
ity that the vehicle is traveling, and [ is an arbitrarily large number selected to introduce
a step cost when the motors are required to provide a speed that they cannot achieve. In
this work, [ was set to 1000.

This formulation encourages the vehicle to travel close to its maximum speed and to
utilize the ocean currents to propel the vehicle forward. We use a speed-based cost func-
tion, as opposed to a travel-time based one, for two reasons. First, since the waypoints
are not evenly spaced temporally, travel time is a less meaningful metric for comparing

two waypoints, as it will tend to select the closer one. Second, a speed-based metric can
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explicitly penalize paths which require the vehicle to travel at speeds greater than the

motors can attain, even with assistance from disturbances.

4.1.1.3 Obstacle Cost

Our obstacle cost formulation is a simplified form of the normal signed distance function
used in previous work [36] [112]. Due to the open nature of most ocean environments,
the obstacles’ cost is simplified from a function of distance inside the obstacle to just a

step cost. As such, C, is calculated as:

0, if6; € Xfree
Co(0;) = , 4.7)

B7 if 02 ¢ Xf'ree

where ¢, represents the free space of the environment, and B is some arbitrarily large

number selected to introduce a large step cost when inside an obstacle.

4.2 Replanning

One of the major challenges of working in underwater environments is the high level
of uncertainty present. While there are many systems that provide estimates of ocean
currents [91], these ocean current estimations are both approximate and tend to be quite
coarse. To manage this uncertainty, we have developed a replanning method that learns
about the world as a trajectory is executed and replans more energy-efficient paths using

this information. It is important to note that we do not plan paths to deliberately gather
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additional information about the environment. Our replanning framework uses only the
information the vehicle encounters as it executes its planned trajectory. Extending this
into the domain of informative path planning [94] is beyond the scope of this work
presented in this chapter but does present an interesting avenue for future work.

We assume that there is a true function, f(x), which gives the difference between
the forecast disturbance, F'D(x), and the true disturbance, T'D(x), at a location x € R?
(i,e. f(x) = TD(x) — FD(x)). We approximate f(x) using a zero-mean Gaussian
Process (GP):

f(x) ~ GP(0, k(x,x)),

where £ is the squared exponential radial basis kernel. This kernel was chosen because it
captures the expected correlation behavior. The hyperparameters for this function were
calculated offline prior to execution on a different ROMS data set and not retrained dur-
ing path execution. We use a GP because it can handle noisy observations and provides
both smooth approximations of the underlying function as well as variance estimates. A
more detailed discussion of GPs is beyond the scope of this work but interested readers

are directed to [82].

4.2.1 Replanning Method

Our replanning method operates by regularly replanning new potential paths and com-

paring these paths with the existing path. When a new path is planned, the equation:

P[EC(6,.) < EC(6.,)] > A 4.8)
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is evaluated, where £C(-) is a function that calculates the energy cost of a path, 6, is
the replanned path, 6., is the existing path, and X is a user selected threshold for the
comparison. If this probability is greater than )\, then the vehicle begins to execute the
newly planned path; if not, then the vehicle continues to execute the existing plan.

The replanning method we developed can be seen in Algorithm 2. An initial path,
6., 1s planned on the forecast of the disturbances (in this application a vector field
of ocean currents) which represents the best path from the existing information. Then,
while the vehicle has not reached the end of the path, the following steps are performed.
First, the vehicle moves to the next waypoint and adds the difference between the actual
measured disturbance and the forecast disturbance along the executed path to the data
set being modeled by the GP.

Next, with this new information about the world, the vehicle replans a path on the
forecast with the predictions from the GP regression added to it. Lastly, we want to
compute (4.8) for this newly planned path. However, (4.8) is difficult to compute ana-
lytically because the variance of the energy cost passes through a number of complex
functions for which there are no analytical solutions. Thus, we developed a number of

metrics to approximate the comparison which are detailed below.
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Algorithm 2 Replanning Framework for Energy-Efficient Trajectories

1: .y < EESTO(forecast)

2: while —end(0.,,,) do

3: Move_to_next_waypoint(6.,,.)

4: disturbance <— M easure_Disturbances()
5: dif ferences.add(location, disturbance)
6

7

8

9

GP < GP.model(dif ferences)
estimate <— Model_Disturbances( forecast, GP)
0,. < EESTO(estimate)
. if P[EC(6,.) < EC(6.;)] > A then
10: 0.urr < 0,

4.2.2 Path Comparison Metrics

4.2.2.1 Always Accept

The first and simplest metric of path comparison is to always assume that the newly
generated path will be more efficient than the old path. In this metric whenever a new
path is generated it is also accepted. This is equivalent to assuming that P[EC(0,.) <
EC(0.4+)] = 1. This metric suffers from two distinct problems. First, the planning
method being used, EESTO, is a stochastic planning method and as such has the possi-
bility of producing a poor path. Second, the information is noisy and causes the algo-
rithm to replan on the noise rather than the true difference function the vehicle is trying

to approximate.
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4.2.2.2 Difference

A second, and more informed comparison metric, is to accept a new path only if it is
sufficiently different from the currently accepted trajectory. The intuition behind this
comparison metric is that similar paths will have similar energy costs, and switching to
a newly planned path will be more energy-efficient only if a sufficiently different path
is found. In this work, the difference between two trajectories is calculated by taking
the maximum Hellinger Distance (HD) [78] between the ocean current distributions at
corresponding waypoints in each trajectory and comparing this calculated maximum
difference to a user specified threshold, which corresponds to A above. In this work, a
relatively small threshold of A = .05 was found to give the best results. The Hellinger
Distance was selected because it is a commonly used measurement for the distance
between two distributions and provides a bounded metric on the distance between two
probability distributions. This is equivalent to assuming that P[EC(60,.) < EC(0,,)] x
HD(8,,0e.).

4.2.2.3 Projected

One simple approximation of the probability P[EC(6,.) < EC(f.,)] is to compare
the projected energy cost that each path will require. Each path’s projected energy cost
is calculated on the estimated disturbances found by adding the outputs from the GP
regression to the forecast to give an approximation of the energy cost of ,.. and 0.,. If
0. has a lower projected energy cost, it replaces 6.,. This reflects the assumption that

P > \is true if EC(0,.) > EC(0,.,) and false otherwise. This metric can fail for two
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different reasons. First, the projected energy can be inaccurate when the uncertainty on
the ocean currents is high. Second, because this metric only compares the energy cost,
it can accept a new path that is similar to the old path and incur an increase in energy

cost due to frequent shifting.

4.2.2.4 Combined

The combined metric uses a heuristic to approximate the probability that one path is
more energy-efficient than another. If the newly planned path satisfies conditions for
both the difference and projected comparison metrics, the newly planned path replaces
the current path. The projected energy approximates the mean of the energy cost distri-
bution while the difference is used to approximate the distance between the two distri-
butions. In this metric A is selected in the same manner as in the two combined methods.
The projected energy cost of the new path must be less than the energy cost of the exist-
ing path and the calculated difference between the ocean currents along the two paths is

greater than the A value above.

4.2.2.5 Sampled

The last metric approximates the energy distributions by performing rollouts on sampled
disturbance environments created by drawing samples from the GP and adding those
sampled outputs to the forecast. In this work we found that performing 100 rollouts

gave a good trade-off between approximating the distribution and computation time.
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We make the simplifying assumption that the expected cost of the existing and replanned
paths (EC.,, EC,.., respectively) are normal distributions with calculated mean, x, and
variance, 0. Rather than computing P[EC,. < EC,,], we instead compute P[(EC,. —
EC.;) < 0]. Using this formulation, the z-score can be used as our decision threshold,
which in this work corresponded to accepting a new path if a z-score of -1 or lower was

computed.

4.3 EESTO Simulation Results

Results for both our trajectory optimization algorithm, EESTO, and the proposed replan-
ning framework are presented in this section. In all instances of the EESTO algorithm

we use K = 30 noisy paths. Note that EESTO scales linearly with K.

4.3.1 EESTO Without Replanning

We tested EESTO in both a synthetic ocean environment and one built from historical
ROMS ocean current data taken from [14], which provides a large ocean current dataset
for the Southern California coast. The synthetic ocean current environment can be seen
in Fig. 4.1 (a). The ocean current velocities range from 0 m /s at (5,5) to 1 m/s along
the edges, representing half of the vehicle’s maximum speed of 2 m/s. Figure 4.1 (b)
shows the results for 100 runs for both EESTO and STOMP as well as the energy cost for
the path produced by a simple A* search with energy as the travel cost [52], [29], [46].

We compare to A* as representative of these discrete approaches to show the advantage
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Figure 4.1: Shown above is the synthetic environment with paths starting at the blue star
and ending at the red square. Shown below is the energy used by the paths produced by
the three planning methods across 100 runs. EESTO is more computationally efficient
than A*-based methods, meaning that multiple instance of EESTO can be run and the
most energy-efficient path selected. This gives EESTO a high probability of planning a
more energy-efficient path than A* in the same amount of time.
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EESTO offers by allowing a tractable was of operating in continuous environments.

There are a number of observations to make from this test. First, while the approx-
imated energy costs for A* and EESTO are quite close, the paths produced by EESTO
(seen in Fig. 4.1 (a) starting at the blue star and ending at the red square) do not re-
quire sharp changes in direction. Due to finding smooth deformations that respect the
kinematics of the vehicle, EESTO is able to produce paths that more accurately repre-
sent those that can be executed on an AUV. EESTO also produces more energy-efficient
paths than STOMP using the same cost functions because EESTO can vary the time be-
tween waypoints giving it more freedom in the optimization. We note that increasing /'
does not significantly affect these results. While it can provide additional information,
this additional information does not significantly improve the gradient estimate.

Second, the two A* paths are at different levels of discretization, and thus produce
slightly different paths. As in other environments, A* is only optimal to its spatial
resolution, but the added discretization of time amplifies this resolution dependence.
Lastly, as can be seen in Table 4.1, EESTO’s average run time is substantially lower
than the time required for A*. This allows for multiple instances of the algorithm to be
run and the lowest energy path selected when initially planning, making EESTO more
likely to find a path that is lower energy than the one produced by A*.

To validate these results in a more realistic environment, EESTO was also used to
plan a path through historical ocean current data from ROMS [14]. A 30 kilometer path
was planned off the coast of California near the Channel Islands. The path evolution and
the final path found can be seen in Fig. 4.2. The path in Fig. 4.2 represents an example

path around the island produced by EESTO. The algorithm is able to both avoid the
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Table 4.1: Calculation Times

Calculation Time (sec)

EESTO 0.77
STOMP 0.2
A* 50x50 3.54
A*200x200 348.33

island and correctly identify that the vehicle can leverage the stronger currents north of

the island to use less energy when traveling than if it was to travel south of the island.

4.3.2 EESTO With Replanning

To test the replanning framework, we used a historical ROMS ocean current dataset from
February 2016 [14]. We used a ROMS forecast as the forecast ocean current dataset and
the corresponding ROMS nowcast as our simulated ground truth ocean current dataset.
Results from 100 runs can be seen in Fig. 4.3. Our five replanning methods were
compared with the best path from 20 runs of EESTO on both the nowcast and forecast
which do not replan and represent planning with no additional information (forecast)
and planning with perfect information (nowcast). This was done to remove some of the
randomness from the results and allows planning on the forecast and nowcast to plan
in a comparable amount of time to the replanning methods, which replan at every step
along the trajectory.

As can be seen in Fig. 4.3, not all the replanning metrics end up helping the vehi-
cle. The always accept and difference metrics preformed worse than planning on the

forecast, giving an increase in mean energy cost of 50.00% and 55.88%, respectively.
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Figure 4.2: Paths planned by EESTO using historical ocean current data from January
21, 2013. Red paths are the solutions found at the end of each iteration. The final path
is represented in blue. The path starts at the blue star and ends at the red square.
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Figure 4.3: Energy cost using different replanning methods. The projected, combined
and sampling method are able to improve the mean energy cost by 3.57, 6.43 and 8.57
percent respectively. Additionally, projected, combined and sampling are able to reduce
the maximum outlier by over 25 percent. Note that both the Forecast and Nowcast
methods do not replan and represent planning with no additional information (Forecast)
and perfect information (Nowcast).
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Figure 4.4: Paths planned using the replanning framework starting at the blue star and
ending at the red square. The green path is planned on the forecast (1.74 MJ). The red
path is planned on the nowcast (0.54 MJ). The two purple paths are the replanned paths
with the darker purple path being the final path (0.86 MJ).
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In the case of always accept the naive assumption that more information produces more
energy-efficient paths turns out to be false. The planner is instead planning on the noise
in the estimates and accepts largely different paths at each step. This introduces a large
energy cost as the vehicle changes back and forth between these different paths. In the
case of the difference metric the fact that a path is different does not always correspond
to the path being more energy-efficient due to the lack of information about distant
ocean currents and the stochastic nature of the algorithm. Additionally, both metrics
change paths more times than the other metrics which, as expected, leads to an increase
in energy cost.

The final three replanning metrics do improve upon planning on the forecast. The
projected metric gives a 21.57% improvement in the mean energy cost over planning on
the forecast. This is the largest improvement, which switches and accepts new paths on
average 0.42 more times than the combined metric and 0.58 more times than the sam-
pling metric. This switching behavior is optimistic about the ocean current estimations
and results in a larger variance on the energy cost.

Using the combined metric, the replanning framework is able to obtain a 16.67% im-
provement over planning on the forecast. The combined metric is able to reduce the de-
viation of the projected metric and performs comparably to the sampling metric, which
gives a 18.63% improvement in mean energy cost over planning on the forecast. While
the sampling metric gives a more accurate calculation of P[EC(0,.) < EC(8u)], it
does so at an increased computational cost due to the large number of trajectory roll-
outs required to approximate the energy cost distribution. When comparing paths, the

sampling metric took 2.81 seconds on average to perform this calculation while the
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combined metric took 0.05 seconds on average.

All three of the final metrics also improve over planning on the forecast by decreas-
ing the worst case cost. The maximum cost of planning on the forecast was 2.73 MJ,
which is over twice the forecast mean cost and could be potentially disastrous for a ve-
hicle running out of battery in the ocean. All three final metrics have a maximal cost
below 2 MJ and give 54.21%, 50.55% and 48.72% reduction in maximum energy cost
for the projected, combined and sampling metrics, respectively.

Figure 4.4 shows what a typical execution of this framework looks like. The vehicle
initially is executing the green path but accepts a new path (pink) at the second waypoint.
After executing that path for four waypoints the framework again accepts a new path
(purple) and executes that path to the end. The red path shown represents planning if
the current field is perfectly known. The path planned on the forecast took 1.74 MJ, the
path planned with perfect information took 0.54 MJ and the replanned path took 0.86

MJ.

4.3.3 EESTO Field Trials

To further validate our simulated performance, we conducted a series of field trials to
verify our algorithm on an autonomous vehicle. As an analog to ocean currents, we
planned paths for an autonomous boat across the windy surface of a lake. These winds
can significantly affect the ability of autonomous boats to travel efficiently by creating
strong surface currents.

We preformed a series of field trials with the Lutra Prop autonomous boat from
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Platypus LLC equipped with a Lithium-ion Polymer (LiPo) battery. The Lutra has a
number of environmental monitoring sensors and has a maximum speed of approxi-
mately 4.7 m/s. Note that the average wind magnitude, as seen in Table 4.2, is ap-
proximately 65% of the vehicle’s maximum speed. The Lutra system also has ROS
integration, WiFi connectivity for connection to a base station, GPS, and basic waypoint
following using the provided controller. In addition to the normal environment sensor
suite, a Decagon Devices DS-2 sonic anemometer was mounted to the Lutra to allow
the system to measure the winds across the surface of the lake. A Getac laptop running
Ubuntu 14.04 with an Intel 17-4600M CPU @ 2.90GHz and 8 GB of RAM served as
the base station where calculations were performed. These tests were preformed at West
Kirk Park in Eugene, OR (Lat: 44.12, Lon: -123.30), (Figure 4.5).

We compared three different path planning methods. First, we considered a naive
method which ignores the wind and plans straight line paths from the start to the goal,
which is the planning method currently used in practice. Second, we consider a re-
planning method which plans using EESTO and starts with no knowledge of the wind
and starts by assuming zero wind on the surface. This method builds a GP and replans
during execution using the combined method from above to compare paths. Lastly, a
more accurate estimate of the wind was gathered across the surface of the lake and then
EESTO planned paths using this information which simulates planning with full knowl-
edge (oracle) and serves as an approximation of the ideal performance. We compare to
the naive method to illustrate the benefits of accounting for wind disturbances in plan-
ning. The comparison to the oracle method serves to show that the replanning method

is able to perform competitively with a method given near-perfect information.
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Figure 4.5: Representative planned paths on Kirk Lake starting from the blue circle
(top) and ending at the red square (bottom). While the oracle method has access to the
wind map seen in (a), the replanning method starts without any estimate of the wind and
builds this map as it executes the path. Notice that the naive method plans through the
strong winds (white arrows) above the end point while our proposed methods come at
the goal from the left where the wind is weaker.
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Table 4.2: Average wind speed and direction for field trials

Average Wind  Average Wind
Magnitude (m/s) Direction (deg)

Naive 3.07 324.23
Replanning 2.96 335.65
Oracle 3.01 315.86

To evaluate the energy expenditure of the vehicle on different paths, we measured
the voltage level of the vehicle’s batteries before and after execution. While in general
a measure of voltage drop does not provide an accurate measure of energy expenditure
for a LiPo battery due to non-linearities at either end of the discharge curve, the relation
is roughly linear in the middle of the discharge curve [43]. As such, tests were only per-
formed on batteries that were measured to be in the middle of their discharge curve. In
this case the voltage drop directly correlates with the energy used. To remove variations
caused by slight changes in the wind speed and direction and to ensure a measurable
voltage drop, each method was executed five times. As can be seen in Table 4.2, the
difference in average wind speed was a maximum of 3%, and the difference in wind
direction was a maximum of 6%. Both are relatively small and thus unlikely to affect
the conclusions drawn.

Results can be seen in Table 4.3 and Figure 4.5. When compared with the naive
method, replanning starting with no information is able to produce a reduction in energy
used by 13%, and planning with prior knowledge produces a 20% reduction in energy
usage. Both the replanning and oracle methods plan paths that pass through the lighter

winds to the left of the goal rather than approaching it from above where the wind is
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Table 4.3: Voltage drop and percent improvement for field trials.

Total Voltage  Average Voltage Percent

Drop (5 Trials) Drop Improvement
Naive 1.5 0.3 ~
Replanning 1.3 0.26 13.3
Oracle 1.2 0.24 20.0

stronger (Figure 4.5). These results shows that our algorithm is robust enough for use
in field environments and can work when limited amounts of information about the

environment exist.

4.4 Conclusion

We have presented a generalized trajectory optimization algorithm which, by allowing
the travel time between waypoints to vary, can consider a much larger set of cost func-
tions. In this dissertation this increased capability was applied to the problem of finding
energy-efficient paths through ocean current fields. The algorithm is validated in both
simulated and real world scenarios, where it produced both more energy-efficient and
more feasible paths in a computationally efficient method. Additionally, we presented
a framework for replanning to account for the uncertainty present in the disturbances.
Five different path comparison metrics were compared, and results were presented on
historical ocean current data. We showed that always replanning does not produce more
energy-efficient paths, but strategically accepting new paths based upon gathered infor-
mation can improve energy efficiency when the disturbances are uncertain. Finally, we

presented the results for field trials. From these trials we showed that our algorithm is
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capable of planning in environments with limited amounts of data about the environ-
mental disturbances.

In this and the previous chapter, we have assumed that the interactions between a
robot’s plan and the low-level controller are negligible, which has been a reasonable
assumption given the length of these paths and the relative amount of actuation these
vehicles have. However, when considering vehicle with high relative actuation or vehi-
cles performing much shorter paths, this interaction must be accounted for in realizable
path planning and execution. In the next chapter, we present a waypoint judging pol-
icy method which reasons about this interaction between the planner and the low-level
controller during execution. Additionally, we present a realization aware optimization
framework which utilizes our previous work in stochastic optimization to account for the

path that the robotic vehicle will realize using its onboard controller during planning.
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Chapter 5: Reinforcement Learning for Integrating Control and Planning

In the previous two chapters, we assumed that the low-level controller onboard the
robotic vehicle was sufficient to realize the planned path and that the difference be-
tween the planned path and executed path was small. However, this assumption does
not always, or even typically, hold. In this chapter, we propose two methods for help-
ing to reduce the distance between the planned and executed path and demonstrate their
applicability to the information gathering problem. The two major contributions of this

chapter are:

1. A Waypoint Judging Policy (WJP) which maps an egocentric polar state-space to
decisions about whether to consider a waypoint achieved or not. By intelligently
considering which waypoint to achieve, this policy allows an autonomous robot
to more accurately track its planned path. This policy is computed using an off-
policy Reinforcement Learning (RL) based framework with Upper Confidence
Bound (UCB) exploration strategy which is shown to compute a policy which is

better able to track the planned path than baseline training methods in this domain.

2. A Realization Aware Optimization (RAO) which considers the actual amount of
information that the robot will gather during execution. By using stochastic opti-
mization and Monte Carlo (MC) simulations, this framework is able to estimate

the gradient of the actual information gathered by the robot and produce paths
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where the amount of information gathered is closer to that reported at planning

time.

In addition to these contributions, we also present results from a series of field trials
at a lake in Corvallis, Oregon which demonstrate the ability of the learned policy to
easily transfer from simulation to the real world with no training on the vehicle and
of RAO alongside the WIP to improve the realizability of the planned paths for the
information gathering task. Versions of this work are under review in [31].

For this chapter it may be helpful to review the background on optimization (Section
2.1.2) based planning as well as classical (Section 2.2.1) and learning based (Section

2.2.2) control and on information gathering (Section 2.3.2).

5.1 Problem Formulation

In this chapter, we start by considering the standard Informative Path Planning problem
as presented in [93]. We seek to find the optimal path for a robotic vehicle, which

satisfies the following equation:

P* = argmax{I(P)} s.t. C(P) < B, (5.1)
Ped

where P is a path defined as a series of waypoints (zg, 71, ..., z,) € R% The optimal
path, P*, is the path from the space of all possible paths & which maximizes the infor-
mation function /(P) and respects the cost constraint that the cost of the path, C(P),

does not exceed the mission budget, 5. Any number of different cost functions can be
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used, such as energy, time, or distance travelled. In this chapter we consider budgets
on the path travelled by the robotic vehicle, as we assume that the robotic vehicle will
be travelling at a near constant speed. It is worth noting that the proposed methods are
agnostic to the particulars of the cost function used, and it is straightforward to extend
to other alternatives.

In reality, the path realized by the robotic vehicle will be different from the optimal
planned path. We denote this realized path as P. As such, the common assumption
that P = P* does not hold for most field robotic applications. This can lead to a large
discrepancies between the amount of information the robotic vehicle planned to gather
and the amount of information the robotic vehicle actually gathered especially in budget
limited missions. Below we will discuss the two non-exclusive formulations which we

will use to attempt to solve this problem.

5.1.1 Path Tracking

First, and perhaps most obviously, one formulation to minimize the distance between
the planned and executed path is to explicitly compute a policy which provides goals for
the low-level controller to reduce the distance between the planned and executed paths.

This can be formulated as the following expectation minimization problem:

7" = argmin E (dist(P*, W(P*))> : (5.2)

mell
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where P* is the optimal path as calculated above, II is the set of all possible policies
mapping the desired path to a realized path, 7(P*) is the path that the robotic vehicle
will realize given a desired path, and the function dist(-, -) is a distance metric between
paths, such as the Hausdorff or Fréchet distance [26]. This formulation of 7 is fairly
general and reflects the fact that in many field robotics applications, the control of the
robotic vehicle is treated as a black-box. In this work we consider controllers in the
form of a waypoint controller, but the methods presented here are general enough to be
used by other popular controllers, such as a Pure Pursuit controller.

While the true distance between the planned path and realized path can only be
known after execution, during planning and execution we can estimate 7(P*) through
forward simulation. It is for this reason that we take the expectation of the distance over a
distribution of possible paths. The robotic vehicle realizes path 7(P*) = {zg, x1,..., 27}

where 1z is the starting location and

Ty = f(xtfbutflaw) Vit> 07 (53)

U = P(l’ta gt),

where f(-) encodes the dynamics of the vehicle when moving from a state x; under
control u; and subject to disturbances w. These disturbances are assumed to be drawn
from a normal distribution with mean p and standard deviation o. The control action at
time ¢, u,, is calculated from a policy p(-) which is induced by the onboard controller
of the vehicle, which is assumed to be known or at least well approximated. Again, the

form of controller we are considering is one where the control is calculated using the
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current state, z;, and a goal position, g;, which is typically a point along the desired path.

We can formalize this as a Markov decision process (MDP), which is given by the
tuple M = (S, A, P,, R,). The state, S, of the system is typically represented as a
vector, x, of positions and velocities. However this restricts the policy learned to only
apply to a single goal configuration. In Section 5.2, we will discuss in detail our state-
space representation to overcome this restriction. The actions, A, that the system can
take are providing goal points to the low-level controller. The transition probabilities
between states, P,, are unknown, but we can approximate the true dynamics function
f(-) with f(z4_1,u_1,w) — x,, which can serve to provide rollouts.

One of the more difficult aspects of this problem is to design an appropriate reward
function, since the reward for a state depends upon the entire rollout, not just a single
state-action pair, making the reward non-Markovian. As an example, one simple reward
function would be to reward all states in the rollout with the same score based upon the
distance between that rollout and the desired path.

More details on the exact methods used to solve Eq. 5.2 are discussed in Section

5.2.1.

5.1.2 Path Expectation

A second formulation is to instead treat the original problem presented in Eq. 5.1 as
an expectation minimization problem over possible paths. This results in the following
problem:

P* = argmax Ig(V(P,m,w)) s.t. C(P) < B, (5.4

Pecd
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where P*, C'(P), and B are as defined above in Eq. 5.2, I () is the expected information
of a distribution of possible paths, and (P, 7, w) represents the distribution of paths
which the robotic vehicle could realize during execution given path P, policy m, and
disturbances w. As above, in this chapter we assume that w is a normal distribution, but
the method presented here does not depend on this assumption and could be generalized
to other distributions.

The main difficulty in solving Eq. 5.4 is computing the distribution ¥ (P, 7, w) and
the gradient of the information with respect to P. In this chapter, we will seek to solve
this problem using a similar Stochastic Gradient Ascent algorithm as in Chapter 3 due
to its sample efficient approach to approximate hard-to-calculate gradients. We will use
Monte Carlo simulations to approximate ¥V (P, 7, w).

More details on how we use these algorithms to solve Eq. 5.4 are discussed in Sec-

tion 5.2.2.

5.2 Realizable Information Gathering Methods

Solving the information gathering problem in Equation 5.1 is typically a three step pro-

CESS.

1. First, the practitioner will develop a model of the environment that will be used to

construct the information function /().

2. The second step is to then use the desired information gathering algorithm to plan

an information gathering path over the environment.
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3. The third step is to then hand the path off to the robotic vehicle’s controller and

the robotic vehicle will attempt to execute that path to the best of its abilities.

During the second step, existing methods fail to account for the myriad of factors which
can effect the performance of the system, such as environmental disturbances or robotic
vehicle limitations. In this work, we plan while accounting for these factors by using
Monte Carlo simulation within a stochastic optimization framework. Additionally, dur-
ing execution in step three, the robotic vehicle’s controller typically acts in a myopic
way, which can cause it to take sub-optimal actions such as circling waypoints. Our
solution reasons not only about the current waypoint but also the following waypoint to
help improve the realizability of the execution of the planned path.

To solve the minimization problem presented in Eq. 5.2, we developed a Waypoint
Judging Policy (WJP) which utilizes a Reinforcement Learning (RL) based approach,
which is presented below in 5.2.1. This serves as a bridge between the planner and the
robotic vehicle’s controller (between steps two and three) by passing on waypoint goals
to the low-level controller and deciding when to consider the current waypoint achieved.

To solve the maximization problem in Eq. 5.4, we developed a Realization Aware
Optimization (RAO) which leverages a Stochastic Gradient Ascent (SGA) framework,
which is presented below in 5.2.2. This can be thought of as either and additional step
done between the planning of the path and the controller or the waypoint policy receiv-
ing the path or as a part of the planner itself. One thing to note is that utilizing RAO
requires additional information from the environmental modeling step where a model of

the vehicle to be used must be provided.
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5.2.1 Waypoint Judging Policy

As presented above, the minimization problem in Eq. 5.2 can be solved using a RL
approach. This requires implementing the state-space, reward function, policy training

algorithm, and the method for policy representation. Each of these is discussed below.

5.2.1.1 State Space

A typical representation of the state space as a vector of positions and velocities in a
global frame would be quite difficult to transfer between path configurations because the
policy would not be independent of the goal configuration. Instead we propose using a
egocentric polar state space seen in Figure 5.1. In this representation the state is a vector,
X = [dewrs Ocury Anexts Onext 0] composed of the distance to the current goal (d.,,), the
difference in heading to the current goal (6.,,), the distance to the next goal (d,¢.), the
difference in heading to the next goal (6,,..:), and the turning velocity (9). When the
robotic vehicle’s current goal is the final goal, we assign d.,, = dye.r and 6., = Opens.
We use an egocentric representation as it allows for learned policies to be independent
of the goal configuration in the global frame, allowing the policies to be generalized
across a large variety of goal configurations. Additionally, the polar representation more
closely reflects the influential parameters when attempting to execute a path.

A common representation in reinforcement learning is a state-action pair, SO we must
also define the actions that the robotic vehicle can take in a state. Here, we assume that

an ordered list of goals, G = {go, g1, -- ., gn}, is used to define the path that the robotic

vehicle has planned and that the low-level controller for the robotic vehicle is a waypoint
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SO

Figure 5.1:  Our proposed path independent state representation, x =
(dcm,em,dm,enm,é), where the current state and heading are the black circle
and arrow respectively and d,.,, is the distance to the current goal, 6., is the difference
in heading to the current goal, d,.,; is the distance to the next goal, 6,.,; is the
difference in heading to the next goal, and 0 is the turning velocity.

based controller. This leads to a natural choice for the actions: either provide the current

goal, g, to the low-level controller or provide the next goal, g,,11.

5.2.1.2 Cost Function

In this work, the reward signal for training our policy, 7, is derived from the distance be-
tween the planned and executed paths. We found that the Fréchet distance [26] matched
our intuition for the distance between two paths due to the fact that it accounts for both
the ordering, which the Hausdorff distance does not, as well as the location of the points
along the paths. Additionally the Fréchet distance is computationally efficient to calcu-
late in a discrete setting, taking O(pq) where p and ¢ are the number of discrete points

in the two paths being compared [18]. As such, for the remainder of the chapter, when



88

referring to the distance between two paths we use the Fréchet distance.

Simply using the Fréchet distance as the reward signal for training our policies fails
to compute a useful policy (see Section 5.3.1.1 for results). One reason for this is that
assigning the same reward (the Fréchet distance between the executed and desired path)
to all state-action pairs along the path does not properly assign credit among these state-
action pairs. When the policy decides to switch from a waypoint too early, it unfairly
hurts following decisions made by the policy. Another reason for this failure to compute
a useful policy is that this cost function is non-Markovian due to the dependence on both
past and future states.

In addition to this naive cost function, we present three additional cost functions
which attempt to give a clearer signal of the cost of taking an action in a given state and
are inspired by the work in reward shaping [108]. Additionally, these three additional
cost functions attempt to address the non-Markovian aspect of this reward in different

ways. These four cost functions can be seen in Figure 5.2.

1. EntirePath: The EntirePath (EP) cost function is the naive reward function which
computes the score for a state-action pair as the distance between the full rollout
path to the full planned path. As such, every state-action pair in a rollout receives
the same score. The non-Markovian nature of the problem is on full display here

as this cost function depends entirely on the past and future states.

2. FuturePath: The FuturePath (FP) cost function compares the “perfect” future path
to the rollout from the current state. The “perfect” future path is calculated as a

straight line from the current state to the current goal and then follows the planned
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path afterwards. The intuition behind this cost function is that once the robotic ve-
hicle has reached a state, all that matters is what it can do to improve its future
performance, and that its previous actions do not matter. Additionally, this intu-
ition helps to reduce the non-Markovian nature of the problem by removing the
dependence on history for the problem. Thus, the action that this cost updates has
the largest effect on the states used in the cost function calculation as it is able to

exert a slight effect on future actions.

. PastPath: The PastPath (PP) cost function compares the “perfect” past plus future
rollout to the full planned path. The “perfect” past is computed as the planned
path up to the previous goal and then a straight line from the previous goal to
the current state. The goal of this cost function is to not overly penalize a state
for previous bad actions while still reflecting the true distance between the state
and desired path. This cost function is less Markovian in nature than FuturePath
because it still depends on the past states. However, this dependence is lessened

from the EntirePath cost function by comparing to the “perfect” past.

. FuturePastPath: The FuturePastPath (FPP) cost function compares the full rollout
to the two “perfect” sections calculated in the previous two cost functions. This
cost function captures the positives from both FuturePath and PastPath by not
overly penalizing the state due to previous actions but accurately reflecting the
cost of the path that passes through that state. This cost function attempts to lessen
the non-Markovian aspects of the cost function present in PastPath by comparing

to the "perfect” future instead of the desired path.
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Figure 5.2: Our proposed four different cost functions for evaluating the value of a
state-action pair which computes the distance between the red and green paths. In the
EntirePath cost function each state-action pair receives the same score. In the FuturePath
cost function the rollout from the state-action pair is compared to the “perfect” path
from that state. In the PastPath cost function we compare the desired path to the rollout
from that state-action pair combined with the “perfect” past up to that point. In the
FuturePastPath we compare the full rollout to the “perfect” future plus the “perfect”
past calculated in the previous two cost functions.

The non-Markovian nature of these cost functions also requires adjustments to the policy

training procedure and is discussed in more detail in the next section.

5.2.1.3 Policy Training Algorithm

We use a reinforcement learning structure for training our policy as can be seen in Al-
gorithm 3. We initialize a robotic vehicle through specifying the f(-) function which
approximates the true dynamics of the robotic vehicle, as well as dynamic properties
such as maximum speed and turning rate. Additionally, any parameters (e.g. the radius
to consider a waypoint achieved) needed for specifying the low-level controller onboard

the robotic vehicle must be supplied. A world is initialized through specifying the goal



91

configuration as well as the level of the disturbances, w = N (0, o). Then, until an end
condition is met, the algorithm resets the robotic vehicle to its initial position, and gen-
erates a state-action pair rollout using the Rollout function (shown in Algorithm 4) and
current policy. Each state-action pair is then scored according to the chosen cost func-
tion from above. Finally, these scores are used to update the policy for the next iteration
which is described in detail in Section 5.2.1.4. In this work, we use a fixed number of
iterations as our end condition, but other conditions, such as policy convergence, could
be used.

The rollout algorithm shown in Algorithm 4 is straightforward. While the robotic
vehicle has not reached the final goal, we get the state from the robotic vehicle and
then compute the action with the smallest score according to the equation in line 4. This
action selection method is inspired by the Upper Confidence Bound (UCB) [4] and seeks
to balance between exploring actions which have not been taken a large number of times
and taking actions which minimize the cost, using c as a weighting parameter between
these two considerations. After an action is selected the robotic vehicle then takes a
step using that action with the specified f(-) function which takes from the world the
estimate of the disturbance levels. In contrast to classical policy training methods like
Q-Learning and Monte Carlo control [100], the bias towards higher performing actions
in UCB over random sampling helps the algorithm converge to better policies in these

non-Markovian reward domains.
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Algorithm 3 Policy Training Algorithm

1:
2:
3:

SANN AN

Given: Robot, World, 7

while —end_condition do
Robot «— Init Robot(World)
r < Rollout(Robot, World, 7)
s < ScoreRollout(r, World)
7 < UpdatePolicy(s, )

Algorithm 4 Rollout Algorithm

1:
2:
3:

4:

5:

a

Given: Robot, World, 7
while —end_not_reached do
s < Robot.get State()

. acA
a < argmin ., | m.cost(s,a) — c* \/ umPlaged(s.a)

In( > W.numPlayed(s,a)))

rollout.append(s, a)

Robot.step(a, World)
return rollout

5.2.1.4 Policy Representation

We use a nearest neighbor policy representation similar to [60]. Our policy is stored as

a lookup table for state-action pair values. The cost for performing an action at a given

state is the average of the previous 10 scores received from that state-action pair. When

updating this policy through the UpdatePolicy(s, w) method in Algorithm 3, the new

score for the state-action pair is added to the list and the oldest score removed. While

this policy representation is straightforward, as in [62], selective use of discretization in

RL problems can lead to both faster training and better performance. However, utilizing

a more complex policy function approximation method (such as a neural network) is a

possible direction of future work.
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5.2.2 Realization Aware Optimization

While better path tracking is one approach to improve the realizability of information
gathering path, there are still potential problems. Most notably, there is a quite strong
chance that a path will require turns which are sharper than the vehicle can perform, no
matter what policy is controlling the vehicle. As such, during the construction of the path
the realizability needs to be accounted for as well. To do this, we propose Realization
Aware Optimization (RAO) algorithm. At a high-level, RAO operates by estimating the
gradient by sampling perturbations and recombining them using a weighting based upon
the objective function. Psuedocode for the RAO algorithm is presented in Algorithm 5
RAO requires an initial path, P, and an information objective function I(-), which
computes the path dependent reward for executing the P in the environment. Then RAO
iterates through each of the waypoints in P, and for each x; € P a set of K perturbations
is generated. Each perturbation is generated by drawing from a distribution D. This
distribution, D, can take on many different forms but is typically a zero-mean normal

distribution. In this work we define D as a multivariate normal distribution:

with zero-mean and covariance matrix defined by o, and o, which are the variation in
the = and y directions respectively. Note that here we have defined the perturbations
as independent, but this is not required. On each iteration through P, we consider the

vertices in a random order to avoid undesirable effects of a particular ordering of the
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path.

After the set of perturbations, €, is generated, each of these perturbations needs to
be scored using the information function, /(). Each of the perturbations, ¢; in € is
independently applied to P at the given index to generate perturbed path Py. Each of
these P, is then scored using I (+) to generate a score vector s. This score vector, s, is

then used in conjunction with € to calculate the update to that waypoint as:

where

S —mins

wk = e (maxs—mins)’

is the weighting factor for perturbation ¢, comparing the score for ¢; to the maximum
and minimum scores calculated and h is a weighting factor set to 1 in this work. A

discount factor, ), is used to facilitate convergence.

Algorithm 5 Realization Aware Optimization (RAO)

1: Given: P, I(+), 7, w

2: while — stopping do

3: forp € Pdo

€ <— genPertubations(D, K)

s «— getScores(P, €, p, [(-), T,w)
A +— calcGrad(s, €)

p—p+AXA
return P

AN A

To account for the realizability of these paths, during the computation of the score in

line 5, the policy is passed to the function and a number of Monte Carlo simulations are
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performed. The average score of these simulations is then used as the score for the path.
This allows for the system to more accurately reflect what the expected score for the
path is. Additionally to note is that this means that the algorithm is also not necessarily
expecting the vehicle to follow a straight line path between the waypoints and so when
computing the expected score for this plan, Monte Carlo simulation should be used as
well.

To compute the initial path for RAO, we use a method inspired by Rapidly Exploring
Random Trees (RRT) [51]. The RRT algorithm is used to quickly generate a tree from
which a large number of paths can be constructed using the leaf nodes. The five of
these paths which gather the most amount of information are used to seed the RAO

optimization.

5.3 WIJP and RAO Results

To validate the proposed methods we performed a series of trials both in simulation
and in the field using a Platypus Lutra autonomous boat. Through simulation for the
path tracking policy algorithm we wanted to investigate the ability of each of the cost
functions to compute a policy capable of reducing the distance between the planned and
realized paths, the effectiveness of the different policy training algorithms, and the ro-
bustness of the trained policy across changes to the environment and vehicle model. For
the path optimization framework, in simulation we wanted to look at the framework’s
ability to improve path generated by different information gathering algorithms as well

as the ability of the framework to work with different policies, such as our trained pol-
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icy and a default waypoint control policy, to increase the realizability of the information
gathered. The two field trials demonstrate the capabilities of our framework to work
on real vehicles and demonstrate the benefit of our high-level policy representation in

allowing for easy sim-to-real transfer. These trials are discussed in more detail below.

5.3.1 Simulation Results

For our robotic vehicle model we used a model similar to [24]:

& = vcos(d) + w,

y = vsin(f) + w,
9:u+%,

where v is the vehicle’s velocity and was set to 4%, 6 is the vehicle’s heading, u the com-

manded turning rate limited to be ?“ <u< %, the movement noise w, = N (0, 0.4)%,
and the turning noise w; = N(0, 0.1)%. The default controller for the robotic vehicle
is a waypoint controller that considered a waypoint reached when the vehicle was 0.3 m
from the desired waypoint. These parameters were selected to reflect that capabilities
of our autonomous vehicle used in our field trials in Section 5.3.2. Note that this con-
figuration using the default controller with radius of 0.3 is denoted Default throughout
the following results. For the nearest neighbor policy the state-space was discretized at

0.5 m for d.,,, and d,,.,; and at 0.2 rad for 6..,,,, 0,,c.:, and 0. Additionally, we restrict the

maximum allowed distance for d.,, and d,,..; to be less than 8 m.
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5.3.1.1 Policy Simulations

We performed three different sets of tests for the policy in simulation. These three test

are as follows:

1. Cost Function: The first set of experiments we performed examined the perfor-

mance of the four different cost functions discussed in Section 5.2.1.2.

2. Training Algorithm: The second set of experiments examined the performance of
the UCB training algorithm presented in Algorithm 3 against two other classical

policy training algorithms.

3. Policy Robustness: The last set of simulation experiments we performed exam-
ined the ability of the trained policies to generalize when the robot and environ-

ment changed.

Cost Function Experiments

For our simulated policy training results, we generated two different sets of paths, one
for training and one for testing, examples of which are shown in Figure 5.3. The training
set consisted of two different systematic paths: a lawnmower pattern 30 m in length
and a zig-zag pattern 25.4 m in length. The test set was generated as a set of 25 path
configurations of between 5 and 10 waypoints by semi-randomly choosing a heading
and distance from the previous waypoint. These paths include a number of different
shapes including sharp turns and overlaps and varied in length from approximately 30 m

to 175 m. Each policy was trained for 500,000 epochs. One epoch consists of one
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Figure 5.3: Representative paths from the training and testing set which start at G1
(green).

execution on each goal configuration in the training set. To obtain statistical results, we
trained 20 different policies for each cost function.

Our first experiment examined the ability of each of the four cost functions to learn
a policy capable of decreasing the distance between the planned and executed path. In
Figure 5.4, we compare the learning curves of the four cost functions against the default
policy with a set waypoint radius of 0.3 m at different training epochs. FuturePath,
PastPath and FuturePastPath were all able to learn on the training set in under 1,000

epochs and reduced the average distance by 32.35, 37.18, and 31.09 percent respectively.
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Learning Curve on Training Set
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Figure 5.4: Average Fréchet distance of all 20 policies on the training set across all
500,000 training epochs. FuturePath, PastPath and FuturePastPath were all able to learn
policies on the training set to reduced the average distance by 32.35, 37.18, and 31.09
percent respectively over the default while the EntirePath cost function was unable to
learn to outperform the default.

In contrast, the EntirePath was unable to learn a policy which improved over the default
waypoint radius controller. This matched our intuition that the reward signal from the
EntirePath cost function is too noisy to effectively handle the credit assignment problem
between the state-action pairs which comprise the path.

To determine if the policies being learned on the training set were not overfitting to
features present there and that the state representation allows for the training of policies
which are path independent, we also present the learning curves on the testing set. Note
that we omit displaying the EntirePath cost function, as its inability to learn a policy
on the training set led to policies that also performed poorly on the testing set with an

average distance of 14.18 m. From Figure 5.5 it can be seen that the FuturePath cost
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function is able to learn a generalizable policy the fastest, reducing the average distance
by 21.59 percent after 2,000 epochs and by 44.55 percent after training to completion.
The PastPath cost function is able to significantly outperform the default after 25,000
epochs, offering a reduction of 18.64 percent after 25,000 epochs and 42.27 percent
after training to completion. The FuturePastPath is able to significantly outperform the
default after 70,000 epochs, offering a reduction of 25.91 percent after 70,000 epochs
and 35.45 percent after training to completion. However this does not tell the full story,
as after training to completion the FuturePath and PastPath have a standard deviation
of 0.21 m and 0.35 m respectively, while the FuturePastPath has a standard deviation
of 0.63 m. We suspect that the reason for the larger variance in the performance of the
FuturePastPath is that using both approximations and comparing them to the full rollout
causes the cost signal to be noisier due to the larger number of state-action pairs which
affect the score for a single state-action pair. In general, it appears that the smaller
dependence that a cost function has on other state-action pairs and the more Markovian

the cost function is, the better that the policies that it trained performed.

Training Algorithm Experiments

After identifying the best performing cost function we wanted to compare the perfor-
mance of our policy training algorithm with other classical training algorithms to see if
the UCB exploration policy offered benefits for these non-Markvoian problem domains.
We compared against Q-Learning and Monte Carlo Control [100], which are two clas-

sical policy training methods. Again, the same training procedure as above was taken,
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Figure 5.5: Average Fréchet distance of all 20 policies on the testing set across all
500,000 training epochs. FuturePath, PastPath and FuturePastPath were all able to learn
policies on the training set to reduced the average distance by 44.55, 42.27, and 25.91
percent respectively over the default. The FuturePath is able to learn a policy that out
performs the default in 2,000 epochs while it takes the PastPath 25,000 epochs and
FuturePastPath 70,000 epochs.
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with 20 different policies being trained for each training algorithm. The performance of
the algorithms on the training set can be seen in Figure 5.6 and the performance on the
testing set can be seen in Figure 5.7. There are a number of interesting trends that can
be observed here. First, the proposed UCB training method outperforms the two com-
parison methods both on the training and testing set. Second, it is interesting to note
that Q-Learning converges quickly to the default policies performance but is unable to
learn a better policy than the default. The Monte Carlo algorithm is able to very slowly
converge towards the default policy on the training set, but the learned policy does not
generalize to the testing set. Lastly, it is interesting to note that on the training set UCB
and Q-Learning converge to the default at approximately the same rate, while on the
testing set the UCB converges slower but to a lower average Fréchet distance.

We were also interested in investigating how the performance of the policies trained
on each cost function compared against a number of different waypoint controllers with
different radii. A violin plot of the mean performance of the 20 policies across each
goal configuration in the test set is presented in Figure 5.8. The average distance of
both FuturePath and PastPath are comparable to that of the best default radius, 2.47 m
and 2.5 m respectively to 2.03 m for a 2.5 m radius. However, when looking at the
minimum distance FuturePath has a minimum of 1.65 m and PastPath of 1.58 m while
the 2.5 m radius has a minimum distance of 1.94 m suggesting that when selecting the
best performing policy it can outperform the best performing default radius. Addition-
ally, through our method the policy could automatically be updated and adjusted online
to account for changes in dynamics of environmental disturbances while a fixed radius

controller cannot as easily be changed without human input. Another interesting ob-
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Figure 5.6: Average Fréchet distance of 20 policies trained using three different policy
training algorithms. On the training set the proposed method is able to outperform both
Q-Learning and Monte Carlo significantly while also converging quickly. Q-Learning
quickly converges to the default policy while Monte Carlo is eventually able to approach
the performance of the default policy but has a very wide standard deviation in perfor-
mance.
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Learning Curve on Testing Set
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Figure 5.7: Average Fréchet distance of 20 policies trained using three different policy
training algorithms. On the testing set the proposed method outperforms all methods af-
ter approximately 1000 epochs. One interesting difference between the test and training
set is that the Q-Learning method quickly converges to the default policy on both while
the proposed method is able to learn to outperform it. While the Monte Carlo policies
are able to approach the performance of the default on the training set, they are unable
to generalize that performance to the testing set.
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servation to make from Figure 5.8 is the difference between the average and minimum
distance of FuturePastPath. It appears that while the training signal from that cost func-
tion can be noisy, when it is able to find a good policy it is able to refine that policy
to perform quite well. This suggests an interesting direction for future investigation of
using the FuturePath cost function to quickly learn an acceptable policy and then refine

it using the FuturePastPath cost function.

Policy Robustness Experiments

We also wanted to thoroughly investigate the performance of the different cost func-
tions’ generalizability as well as compare their performance against a large number of
different default radii. The mean performance of all 20 different policies across the 25
different goal configurations from the test set trained using each cost function as well as
that of a number of different default radii is shown in Figure 5.8. As expected, the per-
formance of the FuturePath and PastPath cost functions perform quite similarly and the
FuturePastPath performs slightly worse than both. Additionally the mean performance
of both the FuturePath and PastPath cost function is similar to that of the best performing
default radii. However, the average minimum performance from policies learned on all
three cost functions outperformed those for all radii implying that if the best performing
policy is chosen, it can outperform any set radius.

Lastly, we wanted to investigate the robustness of the trained policies and the ability
of the algorithm to train policies across a number of different environments. We tested

training the policies in five additional environments and then tested the policies trained
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Figure 5.8: Mean and minimum Fréchet distance from all 20 trained policies across all
25 waypoint configurations in the test set. The FuturePath (FP) and PastPath (PP) are
able to achieve similar average performance as that of the best performing default radius
while having a lower average minimum value. Another interesting note is the difference
in comparable performance between the average mean and minimum performance of the
FuturePastPath (FPP) which indicates that when it is able to compute a well performing
policy it is able to refine that policy.



107

in these five environments plus the policies trained in the normal environment across

each of these environments. The additional environments were:

1. No Disturbances: there were no disturbances used during testing (i.e. the world

was deterministic).

2. Low Disturbances: the disturbances were set to movement noise w,, = N (0, 0.2)™

s b

and the turning noise w; = N(0,0.05)".

3. Medium Disturbances: the disturbances were set to movement noise w,, = N (0, 0.6) =

s’

and the turning noise w; = A(0,0.15)"%,

4. High Disturbances: the disturbances were set to movement noise w,, = N (0,0.8)2,

and the turning noise w; = N(0, 0.2)™¢,

5. Different Model: we also attempted changing the boat model so that the top speed
and turning rate was 80 percent of that of the normal boat while holding the dis-

turbance level at that described above.

The results for the training and executing on different environments can be seen
in Figure 5.9. As expected the different policies all outperform the default waypoint
controller. The most interesting trend that can be seen in these graphs is that changing
the vehicle model has a larger effect on the performance than changing the levels of
disturbances. Another interesting trend is that lower levels of disturbance do better, but
when training with no disturbances the performance is worse. This may be because

the deterministic behavior when there are no disturbances causes the policy to not fully
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Figure 5.9: Average Fréchet distance of policies trained on the six different environ-
ments compared against each other on those same six environments. As expected the
default has the highest average Fréchet distance on all environments. One interesting
thing to note is that changing the vehicle model seems to have a much larger effect on
the performance than changing the disturbance levels. The other interesting thing to
note here is that training at lower disturbances seems to have a lower average Fréchet
distance, but it is not a significant difference.

explore the state-space and therefore perform worse when these unknown states are
encountered.

Lastly, we investigated the effects of varying the disturbances from 0 to 100 percent
of the actuation levels. The average Fréchet distance can be seen in Figure 5.10. The
performance of all the policy based methods slowly degrades as the amount of distur-

bances increases while the default waypoint controller starts to fail after the disturbances
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Figure 5.10: Average Fréchet distance of policies trained on the six different training
environments. 20 different policies were trained for each training environment and were
tested over 25 different worlds. The policy based methods all fail gracefully as the level
of disturbance rises from 0 to 100 percent of the actuation level of the robotic vehicle.
However, the default waypoint controller very quickly fails when the level of disturbance
passes 20 percent of total actuation.

get to be 20 percent of the total actuation.

5.3.1.2 Stochastic Optimization Simulations

To test the ability of both RAO and the WJP to improve the realizability of an infor-
mation gathering task, we performed a set of simulated trials. We constructed a set of
30 different random worlds which were generated using a sum-of-Gaussians method to
randomly distribute information hotspots throughout each world. These worlds were

50 m by 50 m and budgets of 100 m were considered. We compared four different
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configurations:

1. Baseline: The baseline represents the state of practice in information gathering.
We used an RRT based stochastic optimization information gathering algorithm
which uses an RRT inspired algorithm to generate a number of paths through an
environment, which are then optimized using SGA [34]. The path is then executed

using a waypoint radius controller.

2. WIJP Only: In this configuration we use the same information gathering algorithm
as the Baseline but instead use the WIJP policy to execute the planned path. The
WIP policy used is the best performing policy calculated using the FuturePath

cost function.

3. RAO Only: In this configuration we use the RAO algorithm to compute the in-
formation gathering path and provide it with the waypoint radius controller as the

policy, which is also used to execute the path.

4. RAO + WIJP: In this final configuration we use both the RAO algorithm to com-
pute the information gathering path with the calculated WJP as the policy and then
use the same policy to execute the path. Again, the WIP policy used is the best

performing policy calculated using the FuturePath cost function.

A violin plot of the percent difference between the planned information gathered
and the actual information gathered can be seen in Figure 5.11 and in Table 5.1. There
are a number of interesting trends to observe from these results. First, the Baseline does

quite poorly at gathering the expected amount of information due to the assumptions it
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is making about the capabilities of the vehicle. On average the Baseline gathers -12.98
percent of the planned information with a standard deviation of 8.72 percent. When
just using the WP, the vehicle is capable of on average gathering -1.75 percent of the
expected information with a standard deviation of 7.75 percent. However, this distribu-
tion seems to have two peaks, corresponding to when deviations from the expected path
result in the execution either gathering more of less information than expected. This is
also reflected in the large standard deviation for this configuration. The third configu-
ration where only RAO is used results in an average of -4.70 percent of the expected
information being gathered with a standard deviation of 4.96 percent. It appears that
when using RAO the system is able to account for a number of the deviations caused
by the waypoint radius controller, but when that controller causes deviations it results
in poor performances. Lastly, using RAO + WIJP results in the best performance with
an average percent difference in information gathered of -0.19 percent with a standard
deviation of 2.20 percent. Here the system is able to quite accurately gather the expected

amount of information.

5.3.2 WIJP and RAO Field Results

We also performed two different field trials to verify the efficacy of the algorithms and
frameworks presented here. The first set of trials was focused on testing the performance
of the RL policies and that the high-level discrete policy representation was able to ease
the sim-to-real transfer. The second set of field trials was testing the entire framework

to ensure that the proposed methods were able to increase the realizability of the infor-
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Table 5.1: Average percent of planned information gathered during execution for 30
random worlds in simulation. An average percent of information of zero would mean
that the system gathered the expected amount of information, while a negative percent
means the system gathered less than expected and a positive percent means it gathered
more than expected.

Average Percent of Expected

Method Information (std)
Baseline -12.98 (8.72)
WIJP Only -1.75 (7.75)
RAO Only -4.70 (4.96)
RAO + WJP -0.19 (2.20)
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Figure 5.11: Violin plot of the percent difference in information gathered between the
planned and actual information gathered. Using the Baseline the vehicle is almost never
able to gather the expect amount of information. Using only the WP, the vehicle on av-
erage collects close to the expected information but has a wide standard deviation. Using
only RAO results in a much better performance than just the baseline but it struggles due
to the limitations of the waypoint radius controller. Using RAO + WJP results in the best
performance and the system is capable of quite accurately gathering the planned amount
of information.
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mation gathered in the field.

The vehicle used was a Lutra Prop autonomous boat from Platypus LCC, which
is equipped with a number of environmental sensors and maximum speed of approxi-
mately 4.7 2. The Lutra system also has ROS integration, WiFi connectivity for connec-
tion to a base station, GPS, and basic waypoint following using the onboard controller
which was the default for the field trials. A Getac laptop running Ubuntu 14.04 with an
Intel 17-4600M CPU @ 2.90GHZ and 8 GB of RAM served as the base station where
policy calculations were performed. These test were performed at Ireland Lake in Cor-

vallis, OR (Lat: 44.563, Lon: -123.249) on two separate days.

5.3.2.1 Policy Field Trials

We performed three different path configurations: (1) systematic lawnmower and (2)
zig-zag paths, as well as a (3) path inspired by an information gathering function. This
information gathering path is modeling a path generated by attempting to follow a depth
contour, which would have a path-dependent reward structure. The waypoints for the
three paths can be seen in Figure 5.13 in dashed red, with a representative path for
the default using the onboard controller shown in dark blue and a representative path
from the policy shown in light blue. The policy used was the best performing policy
trained with the Future cost function and no additional training was performed between
simulation and deployment on the vehicle.

The average performance for the default and policy methods are shown in Table

5.2 and the individual scores for each run can be seen in Figure 5.12. Each path was



114

Table 5.2: Average Fréchet distance (in meters) from field deployment.

Lawnmower Diagonal Information
Default 6.55+ 0.89 5.23+£ 0.32 6.30£ 0.01
Policy 4.234+ 0.33 4.11+ 1.65 584+ 0.22

performed three times by both the default and the policy, except for the default on the
information path where only two trials could be performed due to battery constraints.
The policy offered on average a reduction in Fréchet distance of 35.42, 21.41, and 7.30
percent on the Lawnmower, Diagonal, and Information paths respectively. Qualitatively,
we observed that our policy method was able to correctly choose when to consider
moving onto the next waypoint. Additionally, it was able to avoid the behavior seen on
the Information path in Figure 5.13, where the default had to circle back for a waypoint.
Our trained policy was taken directly from simulation and deployed on a real vehicle
showing that through the state-action representation we are able to successfully and

easily achieve sim-to-real transfer.

5.3.2.2 Optimization Field Results

The second set of field trials investigated the ability of the framework to increase the re-
alizability of the information gained. As such, four different configurations were tested
during this deployment. These four were the same four configurations used in the op-
timization simulations in Section 5.3.1.2, Baseline, WJP Only, RAO Only, and RAO +
WIP.

The different planned paths as well as the executed paths for the three trials can
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Figure 5.12: All distance results from field deployment across the three different goal
configurations. On average the policy offered a reduction of Fréchet distance of 35.42,
21.41, and 7.30 percent over the default across the three goal configurations. Note that
there are only two trials for the default on the Information path due to battery constraints.

be seen in Figure 5.15. The behaviors exhibited by the system in each of these four
scenarios is consistent with those seen in simulation and the previous field trials. As
can be seen in Figure 5.15(a), without the policy helping control the vehicle and the
path not being optimized to reflect the abilities of the system, the vehicle does not track
the first sharp turn well and as such fails to gather the expected amount of informa-
tion. Figure 5.15(b) shows that just using the policy can increase the realizability of
the path and information gathered. However, it does this by cutting off the first sharp
turn, which might have been favorable in this circumstance is not always the best action.
Figure 5.15(c) demonstrates that by using the realizability optimization framework, the
system is able to greatly increase the realizability of the path. Lastly, we can see in
Figure 5.15(d), the system is able to closely realize the expected amount of information.

As can be seen in Figure 5.14 and Table 5.3, the average Fréchet distance is in line
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Figure 5.13: Representative paths taken by the vehicle during field trials starting at Wy
and ending at W,. It can be observed that through intelligently choosing when to change
to the next goal the policy is able to reduce overshoot on sharp turns and is able to avoid
the behavior seen in the information path of looping back to achieve a waypoint.
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Table 5.3: Average Fréchet distance between the planned path and executed paths on
Platypus Lutra boat

Average Fréchet
Distance (std)

Baseline 21.21 (1.61)
WIP Only 7.28 (2.43)
RAO Only 6.96 (2.71)

RAO + WJP 5.54 (0.86)

Method
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Figure 5.14: Three field trial performance metrics. First, using both the policy and op-
timization is able to significantly reduce the average Fréchet distance. On average both
using RAO and RAO + WJP are able to gather the most amount of information. Lastly,
using both RAO + WJP has the smallest percent difference in information gathered from
the expected.

with the results seen above. When not using the policy or the optimization framework
the system has quite a high average Fréchet distance. One interesting thing to note
here is that both the policy and the optimization framework are able to independently
significantly reduce the average Fréchet distance. Unsurprisingly, when using the policy
and the optimization framework, the average Fréchet distance is the smallest.

In Figure 5.14 and Table 5.4 we can see the average information gathered by the

four different configurations. As expected, when not using the policy or the realizability
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Table 5.4: Average information gathered during execution

Method Average Information

Gathered (std)

Baseline 84.53 (4.53)
WIJP Only 103.66 (2.74)
RAO Only 110.84 (2.29)

RAO + WJP 111.19 (3.17)

optimization framework the system gathers significantly less information. When just
adding in the policy the system is able to gather a much larger amount of information
but still fails to gather as much as the methods which use the realizability optimization
framework. When using the optimization framework the system is able to gather more
information as the paths account for the actual abilities of the system.

Lastly, we looked at the average percent of the expected information gathered by
each of the configurations, which can be seen in Figure 5.14. When using the policy and
the optimization framework the system is able to on average only gather a difference of
0.48 percent of the expected information. When using just the optimization framework
the system gathers on average a difference of 5.54 percent of the expected information.
Just using the policy causes the system to gather on average a difference of 2.25 per-
cent of the expected information. One thing to note here thought is that by looking at
Figure 5.15 (b), we can see that some of this is due to the environmental configuration,
and the large average Fréchet distance indicates that in different path configurations this

number could be larger.
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Figure 5.15: Representative paths taken by the vehicle during field trials for the four
different system configurations. When using both the Waypoint Judging Policy and the
Realization Aware Optimization, the system is able to on average track the planned path
the best and gather the planned amount of information.
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Table 5.5: Average percent of the planned information gathered

Average Percent of

Method Information (std)

Baseline -20.30 (4.27)
WIP Only -2.25 (2.58)
RAO Only 5.54 (2.16)

RAO + WJP 0.48 (2.86)

5.4 Conclusion

We have presented a reinforcement learning method that improves the realization of
paths for autonomous vehicles by generating a policy that intelligently chooses goals
for the low-level onboard controller. Through cost function design and state space se-
lection, we are able to learn a policy which reduces the distance between the planned
and realized paths while also easily generalizing to many different path configurations.
Additionally, in field trials we were able to demonstrate successful sim-to-real transfer
and showed that our approach is capable of reducing the distance between planned and
realized paths in real-world field robotics conditions.

This chapter, as well as those before it, have presented a number of different algo-
rithms and frameworks for solving the realizable path planning and execution problem.
While we have taken a number of steps towards providing a solution to this problem,
there are a number of directions for future work. In the next chapter we will provide a

summary of this dissertation, as well as discuss directions for future research.
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Chapter 6: Conclusion and Discussion

This dissertation has provided a number of solutions towards realizable path planning
and execution across different levels of knowledge of the environment and relative lev-
els of actuation. By leveraging stochastic optimization to compute gradients in domains
where gradients are hard to compute due to non-smooth cost functions, we can use
advantageous representations of the planning space to improve the realizability of the
paths planned by robotic vehicles. These advancements help reduce the gap between
the performance of robotic systems in heavily controlled environments with that in un-

controlled environments. The contributions presented in this dissertation are:

e A stochastic optimization algorithm that allows for an action-space representation
while still allowing the reward function to be specified in the state-space. This
representation more naturally allows disturbances to be accounted for when plan-
ning for low actuation vehicles, which in turn allows these planned paths to more

closely match those that would be executed.

e An algorithm, Energy-Efficient Stochastic Trajectory Optimization, which allows
vehicles with moderate actuation to plan energy-efficient paths in disturbances

and more accurately realize the expected amount of energy expended.

o A replanning framework, which allows robotic vehicles to intelligently adapt their

path in response to new information gathered about world during operation, which
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improves realizability during execution.

e A waypoint judging policy, which accounts for the expected disturbances in the
environment, vehicle dynamics, as well as reasoning less myopically than current

methods, all of which help improve realizability during execution.

e A realization aware optimization algorithm that accounts for the policy that the
robotic vehicle will use during execution to improve the realizability of the planned

path.

The remainder of this chapter provides a summary of the previous chapter, synthesizes
this dissertation, and then describes potential avenues for future work.

In Chapter 3 we described a stochastic optimization algorithm for planning for a
team of low-actuation vehicles in an information gathering task. By planning in the
action-space of the vehicles, the algorithm can easily incorporate environmental distur-
bances into the planning process. By using a stochastic optimization framework, we
are able to map gradient information from a state-space reward function to this action-
space to efficiently compute action plans for the team of vehicles. The proposed method
is able to outperform a greedy baseline by 8.63 percent and perform comparably to a
Monte Carlo Tree Search (MCTS) based algorithm. While it performs comparably to
the MCTS solution, MCTS requires 5.2 times the amount of computational time. This
was shown through simulation on a number of realistic environmental models.

In Chapter 4 we presented our algorithm, Energy-Efficient Stochastic Gradient De-
scent (EESTO), which removes the assumption that waypoints are equally spaced in

time from previous techniques by intelligently factoring the varying and non-varying
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aspects of the optimization. Using EESTO, we also present a framework for intelli-
gently replanning when new information about the environment is gathered during ex-
ecution. We are able to show up to a 21.57 percent reduction in energy usage over not
replanning in simulation on a representative real world ocean current data set. Addition-
ally, through field trials we demonstrate a 20 percent reduction in energy usage by an
autonomous boat in wind field and associated surface currents in Eugene, Oregon.

In Chapter 5 we described a waypoint judging policy and associated reinforcement
learning based training algorithm for non-Markovian cost functions. By accounting for
the expected disturbances, the robot model, and reasoning over future goals, the way-
point judging policy is able to decrease the distance between the planned and executed
path by up to 44.55 percent in simulation. By representing this policy at a high-level, we
achieve impressive sim-to-real performance with no additional training on the vehicle,
which was shown through field trials. In addition to this waypoint judging policy, we
presented a realization aware optimization algorithm that used stochastic optimization
to account for the path that the robotic vehicle would actually execute. This algorithm
had on average a -0.19 percent difference in information gathered from the planned path
in comparison to the state-of-practice which had an average of -12.98 percent difference
in information gathered. We also demonstrated the benefits of this realization aware
optimization through field trials in Corvallis, Oregon.

The fundamental goal of this research was to increase the realizability of path plan-
ning and execution for robotic vehicles. By using favorable representations, such as an
action-space planning representation for low actuation vehicles and an egocentric state-

space for waypoint following, disturbances can be naturally incorporated into planning
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and execution. The stochastic optimization methods presented in this dissertation allow
these representations to be used for planning in an efficient manner, which was a major
shortcoming of prior methods. The algorithms and frameworks presented in this dis-
sertation allow for safer and more reliable operation of robotic vehicles in a number of

challenging domains.

6.1 Future Work

While the methods presented here can help to increase the realizability of path planning
and execution, there are a number of potential avenues for future work which we will

now discuss.

6.1.1 Efficient Approximations of Uncertainty

Throughout this work, we have dealt with uncertainty by leveraging Monte Carlo sim-
ulations to construct approximations of the distributions of interest. While these sim-
ulation were relatively computationally efficient when compared to the state-of-the-art,
the amount of computation time might be limiting in other domains. As such, one in-
teresting and promising direction for future work would be to investigate more efficient
methods for accounting for disturbances or calculating distributions of interest, such as
those presented in [22]. This would also potentially allow for a more nuanced handling

of the uncertainty, rather than just relying on the expectation.
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6.1.2 Online Learning During Execution

One interesting avenue of future work would be to look more closely at how to use
online learning to improve the realizability of paths during execution. This includes both
methods for intelligently modeling and updating models of the environment and vehicle
as well as how to incorporate this learning into the planning and execution. Additionally,
it would potentially be useful to incorporate planning about the potential information
that could be gathered during execution into the realizability planning framework to

allow the system to account for the potential of the information it might gather.

6.1.3 Multi-Robot Realizability

In the multi-robot domain, it would be interesting to investigate how multiple robots
could be used to increase the realizability across the team. One could imagine a situation
where a single vehicle could be used to initially explore the environment and send back
information which would then allow the rest of the team to plan more realizable paths.
Another interesting question in this domain would be how and when the robot should
share information about the environment accounting for the potential for it to affect the

realizability for other vehicles.
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