
Learning to Dock: A Simulation-based Study on Quantifying and Reducing the
Sim2Real Gap in Autonomous Underwater Docking

By
Kevin Chang

A THESIS

submitted to

Oregon State University

Honors College

in partial fulfillment of
the requirements for the

degree of

Honors Baccalaureate of Science in Computer Science
(Honors Scholar)

Presented May 27, 2025
Commencement June 2025

AN ABSTRACT OF THE THESIS OF

Kevin Chang for the degree of Honors Baccalaureate of Science in
Computer Science presented on May 27, 2025.
Title: Learning to Dock: A Simulation-based Study on Quantifying and Reducing
the Sim2Real Gap in Autonomous Underwater Docking

Abstract approved:

Geoffrey Hollinger

Underwater robotic vehicles offer a promising pathway towards safer and more
efficient completion of underwater tasks such as exploring unsafe environments, in-
specting infrastructure, and collecting scientific data. Yet the efficacy of these robots
is severely limited by their low battery life. Docking stations offer a viable solu-
tion towards long-term autonomy by allowing underwater robots to land on them,
recharge and deliver data, and then continue on with their missions. However, com-
plex non-linear hydrodynamics, unexpected disturbances like payloads or waves and
currents, and robot failures such as jammed thrusters require docking controllers to
be incredibly robust. In this work, we seek to utilize deep reinforcement learning cou-
pled with a highly-parallelized simulation environment to develop docking controllers
that are robust to these problems. Additionally, in our simulation, we perform con-
trolled studies with modeled disturbances to seek to quantify the sim2real gap, and
then test and evaluate existing methods for lowering that gap. Our findings provide
insight into which real-world factors contribute most to the sim2real gap, and how
existing methods are able to address those issues. Our work has valuable implica-
tions towards developing robust docking controllers that maintain their performance
against unexpected disturbances and long deployment times.

Key Words: Reinforcement Learning, Robotic Control, Autonomous Underwater
Vehicles

Corresponding e-mail address: changk2@oregonstate.edu

©Copyright by Kevin Chang
May 27, 2025

Learning to Dock: A Simulation-based Study on Quantifying and Reducing the
Sim2Real Gap in Autonomous Underwater Docking

By
Kevin Chang

A THESIS

submitted to

Oregon State University

Honors College

in partial fulfillment of
the requirements for the

degree of

Honors Baccalaureate of Science in Computer Science
(Honors Scholar)

Presented May 27, 2025
Commencement June 2025

Honors Baccalaureate of Science in Computer Science project of Kevin Chang
presented on May 27, 2025.

APPROVED:

Geoffrey Hollinger, Mentor, representing MIME

Alan Fern, Committee Member, representing EECS

Stefan Lee, Committee Member, representing EECS

Toni Doolen, Dean, Oregon State University Honors College

I understand that my project will become part of the permanent collection of
Oregon State University Honors College. My signature below authorizes release of
my project to any reader upon request.

Kevin Chang, Author

Contents

1 Introduction 3

2 Background 4
2.1 Underwater Robotic Vehicles . 4
2.2 Reinforcement Learning . 5

3 Related Work 7
3.1 Robotics Simulators . 7
3.2 Learning-based Robotic Control . 8
3.3 Underwater Docking Control . 10

4 Simulating the Underwater Docking Problem 10
4.1 Docking Environment . 10
4.2 Custom Dynamics Model . 11

4.2.1 Hydrodynamic Forces . 11
4.2.2 Thruster Forces . 12

5 MDP and Learning Setup 13
5.1 MDP Formulation . 13

5.1.1 States . 13
5.1.2 Actions . 15
5.1.3 Rewards . 15

5.2 Learning Setup . 16

6 Using Simulation to Study Sim2Real Transfer 17
6.1 Modeling Real-world Disturbances . 17

6.1.1 Mass Shift . 17
6.1.2 Center of Buoyancy Shift . 18
6.1.3 Wave and Current Forces . 18
6.1.4 Thruster Latency . 19
6.1.5 Disabled Thrusters . 19

6.2 Policy Evaluation Schema . 19

7 Naive Learning-based Docking 20
7.1 Naive Policy Experimental Process 20
7.2 Naive Policy Results . 20

7.2.1 Training Results . 20
7.2.2 Evaluating Against Real-world Disturbances 21

7.3 Analyzing Naive Performance . 22

8 Improving Controller Robustness 24
8.1 Techniques for Robust Learning . 24
8.2 Robust Training Experimental Process 25
8.3 Results and Analysis of Robust Policy Experiments 26

8.3.1 Training Results . 26
8.3.2 Evaluation Under No Disturbances 27
8.3.3 Evaluation Under Easy Conditions 29
8.3.4 Evaluation Under Medium Conditions 30
8.3.5 Evaluation Under Shifted CoB 32
8.3.6 Evaluation Under Increased Latency 33
8.3.7 Evaluation Under Randomly Disabled Thrusters 35
8.3.8 Evaluation Under Waves and Currents 36
8.3.9 Evaluation Under Attached Payloads 38

9 Conclusions and Future Work 39
9.1 Simulation-based Analysis of of Sim2Real Gap 39
9.2 Evaluation of Robust Training Techniques 39
9.3 Future Work . 40

1 Introduction

Throughout human history, the ocean, covering 70% of the planet and containing 97%
of the planet’s water, has played a crucial role in supporting life on Earth through
regulating the climate, providing a multitude of valuable resources, and more. Much
of society’s technological development has been terrestrial, yet in recent years, there
has been an increasing need to complete marine-based tasks. Most notably, the
urgency of the climate crisis has led to an increased public effort to study the damage
being done to marine ecosystems and find ways to mitigate it [1]. For example, many
oceanographers are searching for non-invasive ways to monitor biodiversity or evaluate
the health of coral reefs [2, 3]. Furthermore, there has been a recent rise in underwater
infrastructure being developed by companies and governments such as for underwater
oil drilling operations [1]. Another notable example of this is the recent investment
towards floating off-shore wind farms which seek to harness renewable energy from
wind while minimizing the negative anthropogenic effects of constructing such large-
scale energy systems [4].

With the increasing focus on the ocean and the rapid development of cutting-
edge technology in the last century, many are looking to utilize advanced technology
to support marine efforts. Most prominently, across academia and industry there
has been a push towards developing underwater robotic vehicles that are capable of
supporting many marine-related tasks. For example, a team at Woods Hole Oceano-
graphic Institution recently developed an autonomous underwater vehicle (AUV) with
hydrophones to study the acoustic landscape of a coral reef and identify different habi-
tats, demonstrated through a field trial where they successfully identified areas where
snapping shrimp tended to [2]. The same group used object detection algorithms
trained in a semi-supervised manner to successfully track and follow various marine
animals such as a barracuda and a jellyfish [5]. Additionally, glider robots have been
used to monitor oceanographic data by following paths that are designed to maxi-
mize information value [6]. Towards ocean conservation efforts, underwater robots
have also been designed to monitor dissolved substances around offshore oil or gas
production regions in order to support early detection of ecologically disastrous spills
and leaks [7].

Yet underwater robots face many challenges that significantly limit their utility
in the real-world. For example, short battery lives restrict the duration that they can
continue to operate, and often require a human crew to come and recharge the battery.
Furthermore, underwater robots can suffer many electrical and mechanical setbacks
such as seaweed and fishing lines causing thrusters to jam, hindering their capacity
for long-term autonomy. A recent effort towards addressing these challenges has been
the development of docking stations, or physical structures where these robots can
land during missions in order to autonomously recharge or unload crucial data [8, 9].
Yet even with these docking stations in place, underwater robots need controllers
that enable them to safely land on these structures even under the unpredictable and

highly non-linear and dynamic forces present throughout the ocean. In addition to
this, there is a need for controllers to be able to adapt to the many technical issues
that may arise during longer-term deployments such as thruster failures.

In this thesis, we seek to address the problem of developing docking controllers
that are robust to the many technical challenges and issues that arise during real-
world deployments. In particular, we aim to create learning-based controllers that
utilize extensive data to develop robustness to complex hydrodynamic conditions and
robot failures. To this end, we design, run, and evaluate simulation-based experiments
in order to both quantify the sim2real gap through evaluating different policies on
different evaluation environments and reduce it through applying various robustness
techniques. Specifically, we present an evaluation framework where we are able to
train policies in a baseline simulation environment and then transfer them into other
simulation environments containing challenging disturbances in order to then deter-
mine how well a policy adapts to novel circumstances. To support this work, we also
present a highly-parallelized aquatic simulator designed for the underwater docking
task, but also easily extendable to other scenarios. This simulator is demonstrated in
Figure 1. We now provide a summary of our chapters. In Chapter 1, we present an in-
troduction to our work. In Chapter 2, we describe our project’s background including
information on underwater robotic vehicles and reinforcement learning. In Chapter
3, we talk about related works including work on robotics simulators, learning-based
control, and underwater docking control. In Chapter 4, we discuss simulating the
underwater docking problem, including information on our docking environment and
custom dynamics model. In Chapter 5, we write about our MDP and learning setup.
In Chapter 6 we discuss using simulation to study sim2real transfer including mod-
eling real-world disturbances and defining our policy evaluation schema. In Chapter
7, we discuss our naive learning-based docking strategy where we discuss the exper-
imental process, naive policy results, and performance analysis. In Chapter 8 we
talk about improving controller robustness including techniques for robust learning,
our experimental process. In Chapter 9 we summarize our conclusions and layout
potential future work.

2 Background

2.1 Underwater Robotic Vehicles

Over the last couple of decades, significant effort has been made towards developing
underwater robotic vehicles that can enable a variety of ocean-related efforts such
as underwater exploration [10, 2], scientific sampling [11], and infrastructure inspec-
tion [12]. These robots are typically driven by propellers or thrusters [13, 10, 14],
though other mechanisms exist as well such as flippers [15] or buoyancy shifters [16].
One robot that is commonly used in marine robotics research is called BlueROV2,
which was developed by Blue Robotics [17, 18]. An important aspect of develop-

Figure 1: A demonstration of the capabilities of our highly-parallelized aquatic simu-
lator. We are able simulate thousands of robots in parallel which enables our learning
algorithm to quickly explore the state space and converge to an effective policy in
minutes.

ing underwater robotic vehicles is the control system, which must be designed to be
highly robust against the varying disturbances found in the ocean including waves
and currents. Additionally, various payloads are often attached to these vehicles,
so a controller must be capable of adapting to that as well. Typically, algorithmic
controllers are used for underwater robots like proportional-integral-derivative (PID),
sliding-mode (SM) control [19], and model-predictive control (MPC) [8]. Yet more
recently, learning-based methods for control have begun to be explored.

An existing barrier to using underwater robotic vehicles for long-term missions is
the limited battery life and data storage or transfer capability. A promising solution
to this issue is using docking stations to automatically recharge or collect data from
the robots [20]. Yet, for docking stations to be useful, the robot’s controller must
be capable of accurately, safely, and robustly landing itself onto the docking station.
Throughout this work, our focus is on developing controllers for autonomous docking
of underwater robotic vehicles.

2.2 Reinforcement Learning

Reinforcement learning (RL) is a subset of artificial intelligence (AI) in which the
goal is to develop intelligent agents that can learn to accomplish a task through
experience and trial and error. Mathematically, the task of intelligent decision-making
is formalized using a type of stochastic process called a Markov decision process

(MDP). An MDP is represented as a tuple < S,A, T,R > where S represents the
state space, or the possible states the agent can be in. A represents the set of actions
available to the agent. T (s, a, s′), represents the probability of transitioning into a
new state s′ if at the original state s, the agent takes action a, or P (s′|s, a). And
lastly R(s, a) represents the reward given to the agent for taking action a at state s.
Alternatively, R can be formulated as R(s) or R(s, a, s′). From this, we can derive a
mathematical objective corresponding to the intelligent decision-making task.

The goal of reinforcement learning is to find a policy, or a stochastic mapping
from states to actions that when used by the agent, maximizes the expected cumu-
lative reward. More formally, we want to find a policy π(a|s) ∈ Π which gives us
a probability distribution of actions conditioned on a given state, which maximizes
the expected cumulative reward achieved by the agent. This objective is formalized
below:

argmax
π∈Π

Eτ∼π[
T∑
t=0

γtR(st, at)] (1)

,
where τ is a sampled trajectory, T is the horizon length, and γ ∈ [0, 1) is a discount
factor which shapes the objective to prioritize earlier rewards.

In the last two decades, the development of deep learning (DL), or the use of
densely parametrized models, large datasets, and heavy compute power to train
deeply complex models, has naturally made its way into RL. In particular, what
has enabled DL to rapidly accelerate progress in AI in recent years has been the
development of neural networks (NNs) and the rapid improvements and expansions
made within the space of NNs. An NN is itself a computational model inspired by
how in nature, brains consist of a densely connected set of neurons, each sending and
receiving signals to and from other neurons. One of the first and most widely-used
NNs is called the multi-layer perceptron (MLP). In an MLP, the network is built
with layers of artificial neurons, starting with an input layer from which input data
is passed, hidden layers which process the input data, then an output layer which
produces the output of the model. The learning is typically done by formulating
some loss or objective function and then iteratively minimizing or maximizing using
gradient descent.

In addition to these tasks, DL has also been applied to RL in what is called deep
reinforcement learning (DRL). Much of the work here comes from the idea that a pol-
icy can be modeled and parameterized using a deep NN, and then using millions of
samples, complex policies can be learned that can successfully operate in continuous
state and action spaces. One of the earliest DRL algorithms is called REINFORCE,
in which various trajectories are sampled in a model-free manner, then those trajec-
tories are used to get an unbiased estimate of the gradient of the objective, then a
step of gradient ascent is applied [21]. Then, much more recently, an algorithm called
trust region policy optimization (TRPO) was developed which builds on standard

policy gradients but enforces policy updates to be within a trust region by adding
a constraint to the optimization problem which restricts the Kullback-Leibler (KL)
divergence between the previous policy and the new, updated one [22]. After that,
the same researchers developed proximal policy optimization (PPO) which slightly
modifies TRPO by adding the KL divergence constraint directly into the objective,
allowing standard gradient descent methods to be used rather than constrained opti-
mization methods [23]. At this point it is important to introduce another distinction
between different RL algorithms. So far, the DRL methods described above have in-
volved updating the same policy that is being used to dictate the agent’s exploration
throughout its environment, they are thus known as on-policy methods. However,
many methods also exist in which the policy being updated differs from the policy
used to generate trajectories, collectively known as off-policy methods. One popular
off-policy method is called soft actor-critic (SAC), in which a buffer is used to store
previous experiences from which are than randomly used to estimate the gradient. In
addition, a core novelty of SAC is that it not only seeks to maximize the expected cu-
mulative reward, but also the policy’s entropy, essentially seeking to act as randomly
as possible [24].

An important development that came from DRL was the application of RL to real-
world robotic control. Classical methods could not handle the continuous nature of
real-world state and action spaces or the deep complexities of well-performing policies,
but the use of deep NNs and powerful training algorithms in DRL has enabled the
technology to be used to control robots in the real-world. Yet even with the ability
to model complex continuous policies and iteratively optimize them, DRL algorithms
still needed access to copious amounts of data to learn reasonable policies. Naturally,
if a robot is to be deployed in the real-world, it is ideal to train its policy using
real-world data, but for many safety and efficiency reasons this is largely impractical.
Thus, researchers have resorted to training policies in simulations in which robots can
train safely and data can be collected faster. However, despite efforts to improve the
fidelity of training simulations, there commonly exists a gap between the dynamics
seen in simulation versus those experienced in the real-world, leading to a significant
deterioration in performance between training and evaluation. This is known as the
sim2real gap, and is a crucial barrier to using DRL for real-world robotic control.

3 Related Work

3.1 Robotics Simulators

Across many robotic domains and tasks, there has always been a need for more
powerful and realistic robotics simulators. Besides being crucial to learning-based
control methods, simulators have been used extensively as a way to evaluate the
performance of a robotic system or algorithm without having to perform a real-
world deployment. For example, many researchers have used simulation to evaluate

information gathering, path planning and simultaneous localization and mapping
(SLAM) algorithms.

One of the most extensive and widely-used robotics simulators is called Gazebo.
At the time of its release, most existing simulators were limited to 2-dimensional en-
vironments, so Gazebo was truly groundbreaking in how it supported 3-dimensional
systems. A primary focus in the design of Gazebo was its ability to be easily extended
through open-source development to support a wide variety of sensors, actuators, en-
vironments, and control systems. Originally, Gazebo used the Open Dynamics Engine
(ODE) as its physics engine, though they had mechanisms in place to easily switch to
other engines if opportunity presented itself. In addition to this, OpenGL is used to
create visually complex and diverse scenes. Furthermore, Gazebo supports complex
control systems through interfacing with the Robot Operating System (ROS). Gazebo
has formed the basis for a significant breadth of work on extending the framework
and utilizing it to model real-world tasks [25, 26, 27, 28].

Many simulators are also based on a physics engine called MuJoCo which is specif-
ically designed to efficiently handle complex dynamical problems [29]. MuJoCo has
shown impressive success as a back-end for simulators used in DRL in many robotic
domains and tasks, including bipedal locomotion [30, 31] and humanoid locomotion
[32]. Yet, one major issue in existing simulators used for DRL is their lack of paral-
lelization and thus slowness in training. NVIDIA’s Isaac Labs framework, formerly
known as Orbit and Isaac Gym and built on their Isaac Sim platform, enables high-
fidelity, highly-parallelized robotic simulation designed specifically for solving learning
problems across many robotic domains. Its highly-parallelized design enables training
of complex policies for robotic control in minutes. Another important benefit of the
framework is its simple API which is highly robust yet flexible enough to be easily
extendable to a wide variety of custom training environments. Additionally, its use
of the Universal Scene Description (USD) API makes creating complex, high-fidelity,
3-dimensional scenes fairly trivial [33, 34]. This framework has shown success when
used for DRL across many problems including controlling underwater robotic vehicles
[35] and quadrupeds [36].

3.2 Learning-based Robotic Control

In recent years, extensive work has been done towards learning-based robotic control
across many domains. In particular, the rise of DRL has enabled the development of
robust controllers for complex high-dimensional problems that improve with experi-
ence. Furthermore, significant progress has been made towards reducing the sim2real
gap. With quadrupeds, or four-legged robots, DRL-based controllers have demon-
strated impressive locomotion performance even under complex terrain. Tan et al.
demonstrated using DRL to train controllers for a variety of quadruped gaits, and also
conducted a survey into how effective existing techniques for reducing the sim2real
gap are such as domain randomization and compact observation spaces [37]. Then,

Lee et al. was able to show effective DRL-based controls for locomotion over com-
plex terrain, particularly through using privileged learning techniques and a recurrent
policy architecture. Miki et al. performed a similar task but with a focus on effec-
tively consolidating proprioceptive and exteroceptive inputs [38]. Towards a more
direct way of reducing the sim2real gap, Peng et al. proposed an online fine-tuning
process where during training the policy is conditioned on a latent embedding of the
environmental parameters, and then during real-world deployment, a search is per-
formed over the latent space to find an embedding that leads to the best real-world
performance [39]. Their work illustrates how carefully conditioning policies can lead
to improvements in performance through more specified behaviors.

Furthermore, significant progress has been made towards learning-based controls
in the bipedal domain as well. Siekmann et al. successfully used recurrent policy
architectures and domain randomization to train a bipedal robot to climb a vari-
ety of stairs without using any external perception modules [40]. Then, Pandit et al.
demonstrated the use of decentralized DRL-based control to enable multiple bipeds to
cooperatively carry various large payloads [41]. Towards robust and diverse learning-
based controls for bipeds, Li et al. presented a general framework for training policies
for bipedal locomotion with demonstrated effectiveness across a wide variety of loco-
motion tasks. Furthermore, they design and validate a novel method for integrating
both short-term and long-term state history into a controller. Additionally, they
demonstrate that beyond domain and dynamics randomization, task randomization
also leads to more robust and general controllers [42].

Beyond ground vehicles, DRL-based controllers have shown promising perfor-
mance in aerial tasks. Many existing works follow similar strategies as other do-
mains including using privileged learning and online adaptive fine-tuning processes
[43, 44, 45]. Notably, the highly agile nature of aerial vehicles such as quadcopters re-
quires perception modules to be able to perceive important information as efficiently
as possible, so researchers have experimented with developing DRL-based controllers
that are perception-aware, or seek to simultaneously perform a task while maximizing
the rate at which an on-board perception module gathers information. This often in-
volves adding a term to the reward function that encourages orienting the perception
module in the direction of the vehicle’s motion [45].

Lastly, in recent years, learning-based control has entered the underwater robotics
domain. Lu et al. utilized DRL for control of an underwater robot and proposed a
novel method of using real-world data to improve the robustness of policies trained
entirely in simulation [46]. Later, Cai et al. utilized NVIDIA’s Isaac Labs frame-
work to train policies for 6-DOF control of a thruster-driven underwater robot and
successfully demonstrated fully zero-shot transfer into the real-world with similar
performance to PID control [35].

3.3 Underwater Docking Control

Significant progress has been made towards developing control systems for successfully
docking underwater robotic vehicles. Typically, the docking station itself is located
relative to the robot through visible light sources [47], fiducial markers [8], or acoustics
[48]. Many existing docking controllers are based on MPC [9, 8], yet recently, there
has been interest in learning-based docking control. This first began with a work by
Anderlini et. al, where the authors performed docking of a torpedo-shaped underwater
robotic vehicle in simulation using the popular DRL algorithms Deep Q-Networks
(DQN) and Deep Deterministic Policy Gradients (DDPG) [19]. Then, Patil et. al
built off of this work, further refining their proposed reward function and testing on
other state-of-the-art DRL algorithms like PPO, Twin Delayed Deep Deterministic
(TD3), and SAC [49]. Later, Zhang et al. demonstrated using DRL for full 3-
dimensional docking control and also considered external disturbances including wave
and current forces, making efforts towards studying and reducing the sim2real gap
[50]. Then, Palomeras et al. similarly demonstrated DRL-based docking control
in a 3-dimensional simulation environment, but also proposed a novel method of
augmenting the observation space using an extended Kalman filter (EKF) to improve
performance against noisy observations [51]. Yet crucially, these previous works fail
to consider the full extent of possible disturbances that a docking controller might
experience in the real world such as thruster failures and attached payloads.

4 Simulating the Underwater Docking Problem

To support our work on learning-based autonomous underwater docking, we extend
the highly-parallelized aquatic simulator based on NVIDIA’s Isaac Sim and originally
developed by Cai et al. [35] to support the underwater docking task. We describe
their contributions as well as our own. First, we present the implementation details
of our docking environment.

4.1 Docking Environment

We construct an environment that accurately models the docking problem. To model
the docking station itself, we import an asset of a 0.7 m× 0.7 m× 0.7 m hollow cube
with an open face for the robot to enter through. We choose to use the BlueROV2 from
Blue Robotics due to its widespread use in marine robotics research. Additionally,
we use the Heavy configuration which adds 2 additional thrusters, making the total
number of thrusters on the robot 8. Additionally, at the start of each training episode,
we uniformly sample the robot’s starting position from a 2 m×2 m×2 m cubic space.
We assume that similarly to the underwater docking work done by Vivekanandan et al.
[8], the docking station will be localized with a fiducial marker pointing outwards in
the direction of the open face, and so we do not consider the challenging case where

Figure 2: An example trajectory in our docking environment. The robot randomly
spawns somewhere a few meters in front of the docking station and is initially set to
point in the forward direction, and then must navigate into the docking station while
maintaining its forward orientation in order to maximize reward.

the robot is behind the docking station. Our environment along with an example
trajectory generated by a trained policy is shown in Figure 2.

4.2 Custom Dynamics Model

To support the complex dynamics involved in underwater robotics, Cai et al. [35]
utilize the flexibility of Isaac Labs’ API to implement a custom dynamics model
which supports both hydrodynamic forces such as drag and buoyancy and thruster
or propeller forces. We make use of their dynamics model for our work, and describe
it here for completeness.

4.2.1 Hydrodynamic Forces

The hydrodynamic forces used in our simulation environment are ported from a simple
inertia model found in the physics engine MuJoCo [29]. We describe the model here.

The shape of the robot is modeled through an inertia box with the following
half-dimensions:

rx =

√
3

2M
(Iyy + Izz − Ixx) (2)

ry =

√
3

2M
(Izz + Ixx − Iyy) (3)

rz =

√
3

2M
(Ixx + Iyy − Izz) (4)

,

where M is a mass matrix and I is an inertia matrix.
Then, the fluid forces exerted onto the AUV are separated into quadratic drag

forces, denoted with D, and viscous forces, denoted with V . Then the forces and
torques can be represented as follows:

f inertia = fD + fV (5)

ginertia = gD + gV (6)

.
Then, where ρ is the density of the fluid, and v,ω are respectively the local linear

and angular velocities of the robot, the components of the quadratic drag term are
as follows:

fD,i = −2ρrjrk|vi|vi (7)

gD,i = −1

2
ρri(r

4
j + r4k)|ωi|ωi (8)

.
Then, where β is the fluid viscosity and req = (rx + ry + rz)/3 is the radius of the

equivalent sphere,

fV,i = −6βπreqvi (9)

gV,i = −8βπr3eqωi (10)

.
These forces are calculated at each environment step and directly applied to the

robot in simulation.

4.2.2 Thruster Forces

To compute thruster forces, we begin by assuming that our policy directly outputs
pulse width modulation (PWM) commands and that there is no signal latency. We
then convert these commands to angular velocities in radians per second using a
quadratic model fit to data from the thrusters’ manufacturer. This function V (a)
where a is the PWM value sent to an individual thruster is defined as:

V (a) =


0 if − 0.08 < a < 0.08

−139a2 + 500a+ 8.28 if a ≥ 0.08

161a2 + 517.86a− 5.72 if a ≤ −0.08

(11)

.

We then model the physical latency involved in utilizing a thruster using the
following first-order dynamics model represented by a function D:

ωtx+1 = D(ωtx , tx, tx+1) = (e(tx+1−tx)/τ)(ωtx) + (1− (e(tx+1−tx)/τ))(v) (12)

,
where τ is a dynamic time constant, tx and tx+1 are two successive time stamps in
simulation, ωtx and ωtx+1 are the agent states at those respective time stamps, and v
is the angular velocity command sent to the thruster. The effect τ has on the thruster
latency is demonstrated in Figure 3.

Then, we use the model proposed by Yoerger et al. [52] to convert thruster angular
velocities to an actual thrust. The model is shown below:

T (ω) = C(|ω|)(ω) (13)

,
where ω is the angular velocity of the thruster’s propeller at some arbitrary time and
C is a tunable rotor constant.

Then, our entire model to convert from an individual thruster action output by a
policy to a thrust within a single timestep is as so:

Thrusttx+1 = T (D(V (atx), tx, tx+1)) (14)

.
In software, the way this is implemented is by sampling an action from the policy,

passing it through the above model, applying the resulting force to the robot, then
repeating that process in each iteration.

5 MDP and Learning Setup

5.1 MDP Formulation

5.1.1 States

We take inspiration from the work by Cai et al. [35] when defining our state space
but extend it to support the docking task as well as memory-based policies. We make
an important distinction here between a robot state s⃗∗, which represents the actual
physical state of the robot in simulation, and the agent state, which is the state passed
into a policy during training and evaluation s⃗. Specifically, we define a robot state at
time t as follows:

s⃗∗t = (xdockt, qt, ẋt, q̇t, at−1) (15)

,

Figure 3: A demonstration of the effect τ has on the first-order dynamics model for the
thruster motion. The thruster is first commanded to spin at the maximum speed in
the positive direction, and then immediately commanded to switch directions. From
the plot, it is evident that increasing τ leads to greater latency.

where xdockt ∈ R3 is the offset of the docking station from the robot, qt ∈ R4 is a
quaternion representing the robot’s orientation, ẋt ∈ R3 is the robot’s linear velocities,
q̇t ∈ R3 is the robot’s angular velocities in the form of Euler angles, and at−1 ∈ R8 is
the action taken in the previous step, or the action taken that resulted in the present
state. Then, to support memory-based policies, each agent state can potentially
consist of a sequence of subsequent robot states. We model this as follows:

s⃗t = (s⃗∗t−h+1, s⃗∗t−h+2, . . . , s⃗∗t−1, s⃗∗t) (16)

,
where h is the history length or the number of subsequent robot states included in
the agent’s state.

5.1.2 Actions

We again build off of the work by Cai et al. [35] when defining our action space,
but modify it slightly to support the BlueROV2 with the Heavy configuration. In
particular, our action space is now in R8 since we are working with 8 thrusters instead
of 6. Similarly to Cai et al., our agent’s actions represent PWM values sent to each
thruster.

5.1.3 Rewards

To formulate our reward function, we are again inspired by the work by Cai et al.
[35] due to the similarity between their position and orientation holding task and our
docking task. Specifically, we define our reward function as follows:

Rt = λ1Rdist + λ2Rorient (17)

,
where Rdist and Rorient are defined as:

Rdist = exp(−||pt − pdock||2) (18)

Rorient = exp(−θt) (19)

,
where pt, pdock ∈ R3 are the position of the robot at time t and the fixed position
of the docking station respectively, and θt ∈ R is the angular distance from the
robot’s orientation at time t to the forward direction which points straight into the
docking station. The angular distance is measured as the angle component of the
axis-angle representation. We tune the weighting coefficients λ1, λ2 through first
setting λ1 = 2 and then experimenting with setting λ2 to each value in the set

Figure 4: The training setup for our robot. During training, our agent is sent ob-
servations or states from the simulation, and then outputs actions which then affect
the simulation and subsequently the next state. The learning algorithm PPO contin-
ually utilizes the states, actions, and rewards to compute gradient updates in order
to improve the agent’s performance. During evaluation, the agent interacts with a
simulation environment designed for evaluation.

{0.0, 0.15, 0.3, 0.45, 0.6}, and then selecting the value that enables the desired tradeoff
between speed and stability.

5.2 Learning Setup

To learn how to control the AUV to land in the docking station, we again follow
Cai et al. [35] and choose to use PPO [23] as our learning algorithm and a standard
MLP as our policy architecture. Besides seeing its successful use by Cai et al. [35],
the decision to use PPO is also motivated by the vast amount of learning-based
robotic control literature that has demonstrate its effectiveness across many robotic
domains [35, 39, 41, 38, 37]. Additionally, we hypothesize that given the large scale,
highly-parallelized nature of our training environment, PPO, as an on-policy learning
algorithm, will be able to make the best use of the extensive available training data to
estimate highly stable and accurate gradient updates. The specific hyper-parameters
for PPO and the MLP are shown in Table 1 and 2 respectively. The overall training
setup is described in Figure 4.

Hyper Parameter Value
Entropy coefficient 0.0
Value loss coefficient 1.0

Learning rate 0.0005
Schedule Adaptive

Clip parameter 0.2
Desired KL 0.01

Max gradient norm 1.0
λGAE 0.95

Discount factor 0.99
of Parallel Envs 2048

Table 1: Hyper-parameters used in PPO.

Hyper Parameter Value
Initialization Noise StdDev 1.0
Actor Hidden Dimensions [64, 64]
Critic Hidden Dimensions [64, 64]

Activation function ELU

Table 2: Hyper-parameters used in the MLP representing the policy.

6 Using Simulation to Study Sim2Real Transfer

As we do not utilize real-world deployments throughout this work, we develop a
method of evaluating the real-world robustness of a trained docking policy entirely
in simulation. To do this, we identify potential contributors to the sim2real gap and
explicitly model them in our simulation.

6.1 Modeling Real-world Disturbances

6.1.1 Mass Shift

Often times, the specific mass distribution of a robot can not be accurately modeled
in simulation. Marine robotics simulations often simplify this by modeling the robot
as a point mass [35]. This simplification may potentially lead to degradations in
performance when a policy is deployed in the real-world as the true mass distribution
will affect the robot’s stability and its reactiveness to control inputs. Furthermore, in
many real-world scenarios, researchers or practitioners may attach various payloads
to underwater robots such as cameras or hydrophones in order to collect scientific
data [2]. These payloads may significantly shift the vehicle’s mass distribution, and
their varying, on-the-fly nature make it difficult to model them in simulation without
severely restricting the robot’s real-world versatility. We represent this disturbance
by modeling the effect of having an arbitrary payload, represented as a point mass, at

some location on the vehicle. Specifically, we calculate the force and torque caused by
the mass and then apply that to the robot in simulation. For evaluation purposes, we
decided to determine a policy’s ability to adapt to real-world payloads by simulating
placing a weight of 5 kilograms onto the robot, 0.3 meters along the x-axis, which
corresponds to the back of the robot.

6.1.2 Center of Buoyancy Shift

The real-world position of the center of buoyancy (CoB) may also be difficult to
model in simulation. While computer-aided design may provide a rigorous way of
identifying a robot’s CoB, similar to before, payloads attached during real-world
deployments may shift the CoB on-the-fly. For example, if a set of sensors within an
air-sealed container must be attached to the vehicle, then that will cause the CoB to
shift. We model this change by parameterizing the relative offset of the CoB from the
center of mass (CoM) and then taking it into account when computing the buoyant
forces and torques. Initially, the CoB is estimated to be 0.01 meters directly above
the CoM, but to evaluate this real-world disturbance we then test policies with the
CoB shifted forward along the x-axis by 0.15 meters. This decision was motivated by
how as described above we chose to shift the vehicle mass closer to the back during
evaluation, and so we believed that shifting the CoB in the opposite direction would
lead to the most challenging yet realistic dynamical problem.

6.1.3 Wave and Current Forces

In the real-world, wave and current forces are highly unpredictable and may change
depending on the season and time of day, making precisely modeling them in simula-
tion rather challenging. Furthermore, many researchers lack the resources to evaluate
underwater robot performance in the real-world under wave and current disturbances
in a controlled manner, and must test in the highly unstructured and unpredictable
ocean. Thus, a method of evaluating a docking policy’s performance under these
disturbances entirely in simulation is highly valuable. We model wave forces by pe-
riodically applying a force to the robot along the global Z-axis which is dictated by
a sinusoidal function. We model current forces by applying a constant force onto the
robot in a constant direction. In our evaluation schema, when testing a policy under
wave and current disturbances we simulate a current force of 15 Newtons uniformly
pointing to the positive y-direction, and a wavelength and amplitude of 75 and 100
respectively. In this case, the units represented by the amplitude are Newtons and the
units represented by the wavelength are environment steps which each correspond to
1

120
. Thus a wavelength of 100 environment steps corresponds to 0.8333 seconds. We

note that this seems exceptionally fast, but we did not use a more physically realistic
value because we observed qualitatively in our simulation that given the speed of the
robot, it made the most sense. The function for the sinusoidal wave force is as thus:

Fwaves(s) = A(sin (
2π

λ
s)) (20)

,
where s is the number of environment steps, A is the amplitude in Newtons, and λ
is the wavelength in environment steps.

6.1.4 Thruster Latency

Across all real-world robotic domains, actuator latency is a significant contributor to
the sim2real gap [37]. In this case, we are specifically speaking of the time it takes for
an actuator to achieve a physical motion after the command for it is sent. In many
cases, it is possible to model actuator latency somewhat accurately in simulation by
fitting a dynamics model to real-world data. However, the BlueROV2 does not have
encoders on its thrusters, so creating an informed model for its thruster latency is
nontrivial. Thus, it is crucial to develop controllers that are robust under varying
amounts of latency. Furthermore, in the real-world, as with most thruster-driven
underwater robots, the BlueROV2’s thrusters may accumulate debris which may in-
crease their latency. Although this may lead to asymmetric latency across different
thrusters, for simplicity, we assume that all 8 thrusters on the robot experience the
exact same amounts of latency. As a baseline, we assume that the dynamic time
constant τ which controls latency in our dynamics model is initially set to τ = 0.05,
but then to evaluate a policy under a disturbance scenario we set τ = 0.15. The
latency under these two τ settings are visualized in Figure 3.

6.1.5 Disabled Thrusters

A common issue that arises in real-world deployments is that of thrusters becoming
disabled. This can have a variety of causes, from mechanical issues such as jams
caused by seaweed or fishing line to electrical issues. This represents an important
barrier to long-term autonomous missions because a thruster is more likely to fail as
missions become longer as there is a higher chance of both mechanical and electrical
failures taking place. Thus, towards developing learning-based controllers capable
of supporting long-term docking-based autonomous missions, we evaluate trained
policies based on how well they can continue to perform if a random thruster is
disabled.

6.2 Policy Evaluation Schema

To evaluate a policy in simulation, we utilize Isaac Labs’ evaluation feature, in which
agents can be loaded into an arbitrary environment along with a pretrained policy and
then episodes can be performed without any gradients being calculated and applied to
the policy. Our primary methodology is to create multiple environments specifically

designed for evaluation, each set with different parameters to test a policy’s robustness
to various disturbances. The evaluation environments and their parameters are shown
in Table 3.

Name τ CoM-CoB Offset Payload Waves Current Force Disable Thruster
Mass Offset Wavelength Amplitude

Base 0.05 [0.0m, 0.0m, 0.01m] 0 kg 0 m n/a n/a 0 N No
Easy 0.1 [−0.075m, 0.0m, 0.01] 2.5 kg 0.15 m 150 50 7.5 N Yes
Medium 0.15 [−0.15, 0.0, 0.01] 5 kg 0.3 m 150 100 15 N Yes
Payload 0.05 [0.0m, 0.0m, 0.01m] 5 kg 0.3 m n/a n/a 0 N No
CoB Shift 0.05 [−0.15m, 0.0m, 0.01m] 0 kg 0 m n/a n/a 0 N No
Latency 0.15 [0.0m, 0.0m, 0.01m] 0 kg 0 m n/a n/a 0 N No
Disabled Thruster 0.05 [0.0m, 0.0m, 0.01m] 0 kg 0 m n/a n/a 0 N Yes
Waves/Currents 0.05 [0.0m, 0.0m, 0.01m] 0 kg 0 m 150 100 15 N No

Table 3: The evaluation environments and their respective parameters.

7 Naive Learning-based Docking

In order to understand and attempt to solve the issue of the sim2real gap, it is crucial
to first identify a baseline performance. We identify the baseline method as a training
conducted under the naive assumption that there is no such sim2real gap, thus the
policy may overfit to the training environment because the evaluation environment
will be identical. Theoretically, this should result in the best possible performance in
that particular evaluation environment.

7.1 Naive Policy Experimental Process

Our process revolves around naively training policies and then evaluating them under
various disturbances to comparatively study the degrees to which disturbances cause
degradation in the performance of a policy. Following sim2real, this can be thought of
as simulating a sim2real transfer to gain insights into the existing gap. In particular,
we train policies under the Base evaluation environment, and then evaluate those
policies under each of the other evaluation environments, including Base. We train
naive policies across 5 different seeds for reproducibility. We train for around 1000
iterations since we find that of all of our planned training configurations, that is the
maximum amount of time required for a training to converge.

7.2 Naive Policy Results

7.2.1 Training Results

The training curve for our naive policies is shown in Figure 5. We observe that the
training is very stable and has low variance across the several seeds. We also observe
that it converges very quickly, with most of the training after iteration 300 appearing
to be redundant.

Figure 5: The training curves of the naive policies. These policies are trained in a
fixed environment with no disturbances, following the naive assumption that there
are no disturbances in the real world or differences between simulation and reality.

7.2.2 Evaluating Against Real-world Disturbances

We utilize the naively trained policies to evaluate how different disturbances have
varying effects on a generic policy’s performance. The positional and angular errors
collected during the evaluation of naive policies against various disturbances are shown
in Figures 6 and 7 respectively.

Figure 6: Positional error of naively trained docking policies evaluated under various
individual disturbances.

Figure 7: Angular error of naively trained docking policies evaluated under various
individual disturbances.

7.3 Analyzing Naive Performance

In analyzing both positional and angular error, we are able to confirm that the naively
trained policy indeed performs best under no disturbances. We will now analyze both

error metrics for each disturbance.
CoB Shift: Shifting the CoB leads to one of the highest increases in positional

error, missing the target by ∼0.4 m. This is a very significant error in real-world
docking, and should not be ignored when considering attaching a buoyant payload to
an underwater robot. Additionally, we see that this disturbance leads to one of the
highest angular errors, resulting in a misalignment of ∼0.5 radians. Depending on
the type of docking station, this may or may not be a significant issue, especially if
some sort of auto-alignment mechanism is in place such as a funnel.

Disabled Thruster: Randomly disabling a thruster seems to cause the most
positional error, similarly missing the target by ∼0.4 m. Given how thruster failure
is a common issue in longer term underwater robot deployments, this suggests that a
naively trained docking policy likely wouldn’t be effective in the long-term, even if it’s
power needs were supported by the docking station. We also see that compared to
other disturbances, randomly disabling a thruster leads to a fairly significant increase
in angular error.

Waves/Currents: Under the presence of wave and current forces, we observe
very minimal differences in performance, suggesting that naively training a policy is
sufficient to handle these conditions. We hypothesize this is due to how in our model,
waves and currents do not apply any torques to the robot, and so the robot simply
needs to adapt to different linear forces. It is important to note however that while
we do model oscillatory wave forces being applied to the robot, we do not model the
docking station’s motion, which may make the control problem more challenging.

Latency: Increasing the physical latency of our thruster model seems to also have
a fairly negligible impact with regards to both error metrics. This makes theoretical
sense, as the amount of latency should not significantly change the actions an optimal
policy would take under different situations. However it is important to consider that
we are only considering increasing latency on its own, and it is possible that combining
an increase in latency with another disturbance like a payload or CoB shift would
exacerbate the degradation caused by that disturbance alone.

Payload: Attaching a payload to the robot seems to have the worst overall effect
on the controller’s performance. In terms of positional error, it leads to an increase
in error by ∼0.4 m and it boasts the worst angular error, increasing it by ∼0.6
radians. It makes sense that the angular error would be very poor, since attaching a
payload shifts the robot’s mass distribution and thus applies significant torques. This
implies that when deploying a learning-based docking controller in the real-world,
care should be taken to attach minimal payloads that do not shift the center of mass
too significantly. Additionally, an interesting question is that of how much of the
positional error is caused by the torques applied from the shifted center of mass.
For example, would the positional error be significantly reduced of the payload were
attached directly at the center of mass? Depending on the mass of the payload, this
is analogous to a wave or current disturbance, so it would likely perform similarly.

Through these experiments, we gain insights into the varying effects that different

disturbances have on a naively trained policy. We observe that generally, shifting
the CoB, randomly disabling a thruster, and attaching a payload seem to cause the
most degradation in performance. We do again note that this is only considering the
individual effects of each disturbance, and that more work can be done in exploring
the effects of different pairs or triplets of disturbances. Still, this provides impor-
tant information on what contributes the most to the sim2real gap in learning-based
docking, and thus what still needs to be addressed.

8 Improving Controller Robustness

After exploring the performance of a naively trained policy, a natural direction for
further research is how can the policy be improved to become more robust to real-
world disturbances? Various techniques have been explored in literature, and so
we implement these methods and evaluate their performance against naively trained
policies.

8.1 Techniques for Robust Learning

One of the most commonly used techniques for improving the robustness of a pol-
icy involves randomizing dynamics parameters during training like mass, latency, or
damping, in a process called dynamics randomization. Additionally, environmen-
tal parameters like fluid density or terrain difficulty can be randomized as well in a
method known as domain randomization. From now on we do not distinguish be-
tween dynamics randomization and domain randomization and instead refer to both
collectively through the acronym DR. Through DR, a policy must learn to be robust
to a wider range of conditions, so then when it is deployed in a new environment for
evaluation it has the following benefits. Firstly, it is more likely that the evaluation
conditions were seen during training if a wider range of conditions were used in the
training environment. Secondly, even if the evaluation conditions are outside of the
distribution of training conditions, DR forces the policy to make less assumptions
about the environment, preventing overfitting and thus increasing its ability to gen-
eralize. The effectiveness of DR has been validated across many robotic domains
[35, 40, 38, 30].

Another common approach is that of memory-based architectures. With purely
reactive policies, such as those that are represented through MLPs and only take
in the robot’s latest state as input, the policy often lacks sufficient information to
adapt to unexpected disturbances. In particular, if for example a payload is attached
to a naively trained policy during evaluation, then the policy may understand that
something has changed due to observing new states, but other than that it must
react to it as if there were no payload. This issue worsens when DR is used, as the
policy is mostly unaware of what specific environmental variation it is currently learn-
ing in, and thus must learn to take actions that maximize the average performance

over the range of possible conditions, often leading to overly conservative behaviors.
One possibility is to directly condition the policy on the specific environmental set-
tings seen during DR so that the policy can learn to adapt its behavior to different
environments. However, in the real-world, the agent does not have access to this infor-
mation, so it must use alternate methods or find a way to discover that information.
One method of attaining that information implicitly is through memory-based archi-
tectures. Hypothetically, information on dynamics and environmental disturbances
should be captured in a robot’s state history and so the policy can almost perform a
type of implicit system identification with a similar effect as parameterizing the policy
on environmental settings directly. In our work, we perform a fairly naive form of this
where we feed a sequence of previous states alongside the latest state to our policy in
order to condition it on a state history. Other methods include using recurrent policy
architectures or transformers. Memory-based policies have also shown success on a
variety of robotic tasks, especially in the biped domain [40, 53, 42].

8.2 Robust Training Experimental Process

We design various training configurations that capture the usage of both DR and
memory-based architectures. In particular, for DR, we consider our intended evalua-
tion settings when selecting our parameter distributions such that we are able to test
both in-distribution and out-of-distribution performance. Furthermore, for each eval-
uation environment described in Table 3, we compare these robust policies with two
naively trained policies, one trained under no disturbances, and another trained for
the specific evaluation settings currently being tested. The goal is to determine how
our efforts to directly mitigate the sim2real gap compare with methods that follow
the naive assumption that there is no such sim2real gap under the case where that
assumption is valid and where it is not. Our methods for performing DR on each
environmental parameter are shown below:

• τ : the dynamic time constant is sampled uniformly within some specified in-
terval. It is applied symmetrically across all thrusters.

• CoM-CoB Offset: the CoB shift relative to the CoM is sampled uniformly
within a sphere of a specified radius.

• Payload: the mass of the payload is sampled uniformly from specified interval.
The offset from the center of the robot is sampled uniformly from a sphere of a
specified radius.

• Waves: the wavelength is fixed but the amplitude is sampled uniformly from
0 to a specified upper bound.

• Current: the direction of the current is sampled uniformly from all possible
directions and then the force is sampled uniformly from 0 to a specified upper
bound.

• Disable Thruster: if enabled, in each episode a random thruster is chosen
uniformly to be disabled for the duration of the episode.

The specific training parameters including parameter intervals for DR are shown
in Table 4.

Parameter Base Small DR Medium DR Medium DR w/ History
τ 0.05 0.1 0.15 0.15
CoM-CoB Radius 0 m 0.075 m 0.15 m 0.15 m
Payload Mass 0 kg [0, 2.5] kg [0, 5] kg [0, 5] kg
Payload Spawn Radius 0 m 0.15 m 0.3 m 0.3 m
Wavelength n/a 150 150 150
Max Amplitude n/a 50 100 100
Max Current Force 0 N 7.5 N 15 N 15 N
Disable Thruster No Yes Yes Yes
History Length 1 1 1 3

Table 4: The training environments and their respective parameters.

Similarly to before, each configuration is trained across 5 seeds for reproducibility.

8.3 Results and Analysis of Robust Policy Experiments

8.3.1 Training Results

The training curves of the robust policies along with the naive policies as a baseline
are shown in Figure 8. We observe that as the amount of DR applied during training
increases, the reward the policy converges to decreases, which makes sense as when
parameters are randomized, the agent must sacrifice performance for robustness. No-
tably, we see a marginal improvement in reward from incorporating memory into our
policy. We expected the improvement to be higher, though it is possible that the
policy architecture is not large and complex enough to condition its behavior on the
limited available memory.

Figure 8: The training curves of the naive and robust policies. Robust policies are
trained using DR and state histories. Naive policies are shown again as a baseline
reward curve.

8.3.2 Evaluation Under No Disturbances

Figure 9: Positional error of different training configurations evaluated under no
disturbances or Base evaluation configuration.

Figure 10: Angular error of different training configurations evaluated under no dis-
turbances or Base evaluation configuration.

We observe in our plots shown in Figures 9 and 10 that when our different policies are
evaluated under no disturbances, then the robust policies perform roughly as well as
the naively trained policies. However, we note that while the naive and robust policies
converge to the same positional error, the robust policies move towards the target at
a slower, steadier pace. This is likely caused by DR producing more conservative
behaviors. Regarding the angular error, we notice that within our limited horizon,
some of the robust policies do not reach the minimal error attained by the naive
policies, though given the downward trend of the robust policies’ error, it is possible
that given a longer horizon, they would all converge to the same error. We note
here that the error produced by the naive policies tend to spike at the beginning
and then quickly diminish. This can most likely be attributed to the naively trained
agent learning to orient itself in order to utilize its thruster more efficiently. We also
note that on the other hand, the steadiness of the angular error produced by the
robust policies could possibly explain why their positional error decreases so steadily
by indicating that the agent is not attempting to orient its thrusters more efficiently.

8.3.3 Evaluation Under Easy Conditions

Figure 11: Positional error of different training configurations evaluated under easy
conditions or Easy evaluation configuration.

Figure 12: Angular error of different training configurations evaluated under easy
conditions or Easy evaluation configuration.

Analyzing our results from evaluating our various training configurations under easy
conditions, shown in Figures 11 and 12, we observe that our robust training techniques

produce superior performance to policies naively trained under no disturbances. In
particular, we see in Figure 11 that the robust policies are able to exceed the perfor-
mance of the standard naive policies and converge to the same error as the fine-tuned
naive policies. This indicates that under relatively easy disturbances, even without
knowing the exact evaluation configuration, our robust training techniques enable
performance that matches naively trained policies that had access to the evaluation
environment. With regards to the angular error, shown in Figure 12, we again observe
that our robust policies exceed the performance of the standard naive policies, though
they do not quite reach the performance of the naively fine-tuned policies. Notably,
we see our memory-based policies performing slightly better than our purely reactive
DR policies, suggesting that conditioning on a history of states does indeed lead to
improved performance.

8.3.4 Evaluation Under Medium Conditions

Figure 13: Positional error of different training configurations evaluated under
medium conditions or Medium evaluation configuration.

Figure 14: Angular error of different training configurations evaluated under medium
conditions or Medium evaluation configuration.

When evaluating our policies on harder, medium conditions, results shown in Figures
13 and 14, we observe drastically different results than those from the evaluations per-
formed under easy conditions. Crucially, we see that with regards to positional error
shown in Figure 13, none of the robust policies are able to exceed the performance of
the standard naive policies. However, we do note that in the angular case, shown in
Figure 14, the robust policies outperform the standard naive policies. Furthermore,
across all policies, we observe highly oscillatory angular error, which can potentially
be attributed to the policies’ inability to maintain rotational stability against various
disturbances due to the high thruster latency. Surprisingly, we observe that the fine-
tuned naive policy greatly outperforms all other policies in terms of positional error,
but converges to the highest angular error. Given that the evaluation environment is
within the DR distribution used to train the Large DR and Large DR w/ His-
tory policies, this result suggests that training on the exact environmental instance
used during evaluation leads to poorer performance than training on a distribution
containing that same environmental instance, which is challenging to understand or
explain.

8.3.5 Evaluation Under Shifted CoB

Figure 15: Positional error of different training configurations evaluated under CoB
shift or CoB Shift evaluation configuration.

Figure 16: Angular error of different training configurations evaluated under CoB
shift or CoB Shift evaluation configuration.

Studying the effect that shifting the CoB has on our policies shown in Figures 15
and 16, we observe similar results to previous disturbances where our robust policies

exceed the performance of the standard naive policies but do not quite reach the error
achieved by the fine-tuned naive policies. Notably, when looking at the angular error
in Figure 16, we see that the robust policies achieve lower variance than their naive
counterparts. This can likely be explained by how DR has a regularization effect on
the policy where it becomes less likely to overfit to the training distribution. Yet
it is interesting that despite being trained on the exact evaluation environment, the
fine-tuned naive policies exhibit the highest variance. Additionally, a crucial detail
here is that using memory-based policies shows a large improvement over standard
reactive policies, even when trained with the same DR settings.

8.3.6 Evaluation Under Increased Latency

Figure 17: Positional error of different training configurations evaluated under in-
creased thruster latency or Latency evaluation configuration.

Figure 18: Angular error of different training configurations evaluated under increased
thruster latency or Latency evaluation configuration.

When evaluating the positional errors produced by our various policies under in-
creased thruster latency, shown in Figures 17, we observe that our naive and robust
policies all roughly converge to the same positional error. However, we see unexpected
results in the angular error shown in Figure 18 where the policies naively trained on
the evaluation environment show the worst error and the highest variance. This is
surprising, as it suggests overfitting, even though the training and evaluation environ-
ments are identical. We note that the robust policies achieve roughly the same angular
error as the standard naively trained policy. Both the positional and angular error
results suggest that using robust training techniques does not lead to any significant
improvement when evaluated under increased latency conditions. Interestingly, we do
not observe any improvements from using memory-based policies, possibly because
memory does not offer a significant advantage against increased thruster latency.

8.3.7 Evaluation Under Randomly Disabled Thrusters

Figure 19: Positional error of different training configurations evaluated under ran-
domly disabled thrusters or Disable Thruster evaluation configuration.

Figure 20: Angular error of different training configurations evaluated under randomly
disabled thrusters or Disabled Thruster evaluation configuration.

Across the positional and angular error results produced by evaluating our different
policies while randomly disabling thrusters shown in Figures 19 and 20 respectively,

we see consistent improvements from our robust training techniques. In particular, we
observe that our robust policies converge to the same positional and angular error as
the fine-tuned naive policies, while achieving lower variance, especially in the angular
case. This is a crucial result as it demonstrates that DR is sufficient to counteract the
issue of random thruster failures. We suspect that using DR leads to a regularization
effect similar to dropout in deep learning where our policy learns to not rely on any
single thruster too heavily, but rather to distribute importance to each thruster rela-
tively equally in order to minimize potential losses if it is to lose a thruster. We again
observe that memory-based policies do not show any improvement, suggesting that
either the state history does not sufficiently implicitly identify the thruster conditions
or knowing that information does not provide the policy with a significant advantage.
An interesting question is if disabling more thrusters during training and evaluation
would lead to larger improvements from memory-based architectures since theoreti-
cally the purely reactive policies trained using DR would become overly conservative
and would require a greater ability to condition their behavior.

8.3.8 Evaluation Under Waves and Currents

Figure 21: Positional error of different training configurations evaluated under waves
and currents or Waves/Currents evaluation configuration.

Figure 22: Angular error of different training configurations evaluated under waves
and currents or Waves/Currents evaluation configuration.

Evaluating our different policies under wave and current disturbances, with error
plots shown in Figures 21 and 22, we observe marginal improvements from our robust
training techniques. Specifically, we again notice the pattern where the standard naive
policies perform the worst, the fine-tuned naive policies perform the best, and then
the robust policies attain an error slightly worse than the best fine-tuned policies.
We again observe that our robust policies achieve lower variance. Overall, this again
suggests that our robust training techniques lead to improvements in performance
under real-world disturbances. We again observe no major difference between purely
reactive policies and memory-based policies, potentially indicating that waves and
currents are not a challenging enough disturbance to require further conditioning of
a policy. It is also possible that the purely reactive policies can already roughly
identify the wave and current conditions since different settings enable the agent to
see relatively disjoint parts of the state space.

8.3.9 Evaluation Under Attached Payloads

Figure 23: Positional error of different training configurations evaluated under pay-
loads or Payload evaluation configuration.

Figure 24: Angular error of different training configurations evaluated under payloads
or Payload evaluation configuration.

When payloads are applied, we observe in the positional and angular error plots shown
in Figures 23 and 24, that we see incredible performance improvements from using

robust training techniques. In particular, we observe that with regards to positional
error, our robust policies exceed the performance of the standard naive policies and
converge to the same error as the fine-tuned naive policies. In terms of angular error,
we see similar performance but interestingly we observe that incorporating memory
improves performance beyond that of the fine-tuned naive policies. This is surprising,
as training with history should only enable performance that is at most as high as a
policy trained directly on the evaluation environment. More research will have to be
done to further explore what is causing this.

9 Conclusions and Future Work

9.1 Simulation-based Analysis of of Sim2Real Gap

Through modeling different real-world disturbances and evaluating different policies
under each one individually, as well as all of them combined, we have gained insights
into the comparative impacts of each disturbance, developing an understanding of
what factors contribute to the sim2real gap. In particular, we observe that for a
naively trained policy, which we believe provides the best baseline analysis of effects
of each disturbance, randomly disabling a thruster, shifting the CoB, and attach-
ing a payload lead to the most significant degradations. On the other hand, waves
and currents, and increased thruster latency only have marginal effects on the per-
formance of a naively trained policy. These results are shown in Figures 6 and 7.
Another important result is that different disturbances lead to varying amounts of
improvements from incorporating memory into a policy. Overall, these results suggest
that when seeking to minimize the sim2real gap in autonomous docking, the most
important real-world disturbances to consider are thruster failures, CoB shifts, and
payloads. On the other hand, thruster latency and waves and currents are potentially
less crucial.

9.2 Evaluation of Robust Training Techniques

Throughout our robust training results, we continually see DR and incorporating
memory leading to significant improvements in both positional and angular perfor-
mance. In particular, we observe that these techniques improve performance under
CoB shifts, thruster failures, waves and currents, and payloads. This suggests that
when developing a learning-based controller for docking in the real-world, these tech-
niques are appropriate methods for improving robustness, especially when the distur-
bances listed above are expected to be experienced during deployment. Additionally,
we observe that incorporating memory often leads to performance improvements.
Specifically, we notice that under a shifted CoB, an attached payload, and under easy
and medium conditions where all disturbances are enabled to varying degrees, we see
various improvements in angular error from incorporating memory. This could suggest

that shifting the CoB and attaching payload is either a significant enough disturbance
that memory becomes useful, or possibly that compared to other disturbances, it is
particularly easy to identify a shift in the CoB or an attached payload from a history
of states. Additionally, the fact that incorporating memory led to improvements in
environments where all disturbances were present suggests that the interplay between
specific disturbances when combined together creates a control problem where mem-
ory becomes necessary. Further research could potentially study this issue deeper
through possibly attempting to train a decoder to identify the disturbance parame-
ters from the state history in order to determine if an implicit system identification
is even possible in certain cases. In general, we validate that DR is an appropriate
technique for reducing the sim2real gap. Additionally, we find that incorporating
memory into policies can lead to improved performance, although a potential open
issue is that of overfitting to simulation, which we do not explore our work.

9.3 Future Work

In the future, our most important next step is to deploy our controllers in the real-
world to validate our simulated findings. Importantly, we would want to first show
that some learned policy can successfully perform docking in the real-world, as to the
best of our knowledge this has yet to be demonstrated in literature. Furthermore, we
would like to validate our findings regarding improvements in performance through
robust training techniques. This may involve physically or electronically modifying
an AUV by for example attaching different payloads or manually disabling thrusters.
Additionally, we would like to compare our learning-based controllers against existing
state-of-the-art docking controllers such as those that are based on MPC [8]. A
challenging question we will have to answer will be how to design an experiment that
most fairly and comprehensively compares the two methods. We will likely focus on
analyzing each method’s robustness to various real-world disturbances.

References

[1] Apr 2025. [Online]. Available: https://education.nationalgeographic.org/resource/all-
about-the-ocean/

[2] S. McCammon, S. Jamieson, T. A. Mooney, and Y. Girdhar, “Discovering biological
hotspots with a passively listening auv,” in Proceedings of IEEE International Confer-
ence on Robotics and Automation (ICRA), 2024, pp. 3789–3795.

[3] M. Estes, C. Anderson, W. Appeltans, N. Bax, N. Bednaršek, G. Canonico, S. Djavid-
nia, E. Escobar, P. Fietzek, M. Gregoire, E. Hazen, M. Kavanaugh, F. Lejzerowicz,
F. Lombard, P. Miloslavich, K. O. Möller, J. Monk, E. Montes, H. Moustahfid,
M. M. Muelbert, F. Muller-Karger, L. E. Peavey Reeves, E. V. Satterthwaite, J. O.
Schmidt, A. M. Sequeira, W. Turner, and L. V. Weatherdon, “Enhanced monitoring
of life in the sea is a critical component of conservation management and sustainable
economic growth,” Marine Policy, vol. 132, p. 104699, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0308597X21003109

[4] S. Hong, J. McMorland, H. Zhang, M. Collu, and K. H. Halse, “Floating
offshore wind farm installation, challenges and opportunities: A comprehensive
survey,” Ocean Engineering, vol. 304, p. 117793, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0029801824011314

[5] L. Cai, N. E. McGuire, R. Hanlon, T. A. Mooney, and Y. Girdhar, “Semi-
supervised visual tracking of marine animals using autonomous underwater vehicles,”
International Journal of Computer Vision, vol. 131, no. 6, p. 1406–1427, Mar. 2023.
[Online]. Available: http://dx.doi.org/10.1007/s11263-023-01762-5

[6] R. N. Smith, M. Schwager, S. L. Smith, D. Rus, and G. S. Sukhatme, “Persistent
ocean monitoring with underwater gliders: Towards accurate reconstruction of dynamic
ocean processes,” in Proceedings of IEEE International Conference on Robotics and
Automation, 2011, pp. 1517–1524.

[7] N. Kato, M. Choyekh, R. Dewantara, H. Senga, H. Chiba, E. Kobayashi, M. Yoshie,
T. Tanaka, and T. Short, “An autonomous underwater robot for tracking and
monitoring of subsea plumes after oil spills and gas leaks from seafloor,” Journal
of Loss Prevention in the Process Industries, vol. 50, pp. 386–396, 2017. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0950423017302383

[8] R. Vivekanandan, D. Chang, and G. A. Hollinger, “Autonomous underwater docking
using flow state estimation and model predictive control,” in Proceedings of IEEE
International Conference on Robotics and Automation (ICRA), 2023, pp. 1062–1068.

[9] J. Wallen, N. Ulm, and Z. Song, “Underwater docking system for a wave energy con-
verter based mobile station,” in Proceedings of OCEANS MTS/IEEE SEATTLE, 2019,
pp. 1–8.

[10] Y. Girdhar, N. McGuire, L. Cai, S. Jamieson, S. McCammon, B. Claus, J. E. S.
Soucie, J. E. Todd, and T. A. Mooney, “Curee: A curious underwater robot for

ecosystem exploration,” in Proceedings of IEEE International Conference on Robotics
and Automation (ICRA). IEEE, May 2023, p. 11411–11417. [Online]. Available:
http://dx.doi.org/10.1109/ICRA48891.2023.10161282

[11] R. D. Patmore, D. Ferreira, D. P. Marshall, M. D. du Plessis, J. A.
Brearley, and S. Swart, “Evaluating existing ocean glider sampling strate-
gies for submesoscale dynamics,” Journal of Atmospheric and Oceanic
Technology, vol. 41, no. 7, pp. 647 – 663, 2024. [Online]. Available:
https://journals.ametsoc.org/view/journals/atot/41/7/JTECH-D-23-0055.1.xml

[12] H. Hirai and K. Ishii, “Development of dam inspection underwater robot,” Journal of
Robotics, Networking and Artificial Life, vol. 6, p. 18, 01 2019.

[13] S. Hotta, Y. Mitsui, M. Suka, N. Sakagami, and S. Kawamura, “Lightweight underwater
robot developed for archaeological surveys and excavations,” ROBOMECH J., vol. 10,
no. 1, Jan. 2023.

[14] M. S. Mohd Aras, H. Kasdirin, M. Jamaluddin, and M. Basar, “Design and de-
velopment of an autonomous underwater vehicle (auv-fkeutem),” Proceedings of
MUCEET2009 Malaysian Technical Universities Conference on Engineering and Tech-
nology, MUCEET2009, MS Garden, Kuantan, Pahang, Malaysia, 01 2009.

[15] G. Dudek, P. Giguere, C. Prahacs, S. Saunderson, J. Sattar, L.-a. Torres-Mendez,
M. Jenkin, A. German, A. Hogue, A. Ripsman, J. Zacher, E. Milios, H. Liu, P. Zhang,
M. Buehler, and C. Georgiades, “Aqua: An amphibious autonomous robot,” Computer,
vol. 40, no. 1, pp. 46–53, 2007.

[16] K. Macauley, L. Cai, P. Adamczyk, and Y. Girdhar, “Reefglider: A highly
maneuverable vectored buoyancy engine based underwater robot,” 2024. [Online].
Available: https://arxiv.org/abs/2405.06033

[17] T. Alinei-Poiană, D. Reţe, D. Martinovici, V.-M. Maer, and L. Buşoniu, “A
bluerov2-based platform for underwater mapping experiments,” IFAC-PapersOnLine,
vol. 58, no. 20, pp. 470–475, 2024, proceedings of 15th IFAC Conference on Control
Applications in Marine Systems, Robotics and Vehicles CAMS. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2405896324018536

[18] J. S. Willners, I. Carlucho, T. Luczynski, S. Katagiri, C. Lemoine, J. Roe,
D. Stephens, S. Xu, Y. Carreno, È. Pairet, C. Barbalata, Y. R. Petillot, and
S. Wang, “From market-ready rovs to low-cost auvs,” CoRR, vol. abs/2108.05792,
2021. [Online]. Available: https://arxiv.org/abs/2108.05792

[19] E. Anderlini, G. G. Parker, and G. Thomas, “Docking control of an autonomous
underwater vehicle using reinforcement learning,” Applied Sciences, vol. 9, no. 17,
2019. [Online]. Available: https://www.mdpi.com/2076-3417/9/17/3456

[20] M. Lin, R. Lin, C. Yang, D. Li, Z. Zhang, Y. Zhao, and W. Ding,
“Docking to an underwater suspended charging station: Systematic design and

experimental tests,” Ocean Engineering, vol. 249, p. 110766, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0029801822002141

[21] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Machine Learning, vol. 8, no. 3–4, p. 229–256, May 1992.
[Online]. Available: http://dx.doi.org/10.1007/BF00992696

[22] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust region policy
optimization,” 2017. [Online]. Available: https://arxiv.org/abs/1502.05477

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” 2017. [Online]. Available: https://arxiv.org/abs/1707.06347

[24] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,” 2018.
[Online]. Available: https://arxiv.org/abs/1801.01290

[25] I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero, “Extending the openai
gym for robotics: a toolkit for reinforcement learning using ROS and gazebo,” CoRR,
vol. abs/1608.05742, 2016. [Online]. Available: http://arxiv.org/abs/1608.05742

[26] J. Deng, S. Marri, J. Klein, W. Pa lubicki, S. Pirk, G. Chowdhary, and D. L.
Michels, “Gazebo plants: Simulating plant-robot interaction with cosserat rods,”
2024. [Online]. Available: https://arxiv.org/abs/2402.02570

[27] H. R. M. Sardinha, M. Dragone, and P. A. Vargas, “Closing the gap in swarm robotics
simulations: An extended ardupilot/gazebo plugin,” CoRR, vol. abs/1811.06948,
2018. [Online]. Available: http://arxiv.org/abs/1811.06948

[28] T. R. Player, A. Chakravarty, M. M. Zhang, B. Y. Raanan, B. Kieft, Y. Zhang, and
B. Hobson, “From concept to field tests: Accelerated development of multi-auv mis-
sions using a high-fidelity faster-than-real-time simulator,” in Proceedings of IEEE
International Conference on Robotics and Automation (ICRA), 2023, pp. 3102–3108.

[29] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based con-
trol,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2012, pp. 5026–5033.

[30] H. Duan, B. Pandit, M. S. Gadde, B. van Marum, J. Dao, C. Kim, and A. Fern,
“Learning vision-based bipedal locomotion for challenging terrain,” 2024. [Online].
Available: https://arxiv.org/abs/2309.14594

[31] F. Yu, R. Batke, J. Dao, J. Hurst, K. Green, and A. Fern, “Dynamic bipedal
maneuvers through sim-to-real reinforcement learning,” 2022. [Online]. Available:
https://arxiv.org/abs/2207.07835

[32] J. Dao, H. Duan, and A. Fern, “Sim-to-real learning for humanoid box
loco-manipulation,” 2023. [Online]. Available: https://arxiv.org/abs/2310.03191

[33] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin,
D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State, “Isaac gym: High
performance gpu-based physics simulation for robot learning,” 2021. [Online].
Available: https://arxiv.org/abs/2108.10470

[34] M. Mittal, C. Yu, Q. Yu, J. Liu, N. Rudin, D. Hoeller, J. L. Yuan, R. Singh, Y. Guo,
H. Mazhar, A. Mandlekar, B. Babich, G. State, M. Hutter, and A. Garg, “Orbit:
A unified simulation framework for interactive robot learning environments,” IEEE
Robotics and Automation Letters, vol. 8, no. 6, p. 3740–3747, Jun. 2023. [Online].
Available: http://dx.doi.org/10.1109/LRA.2023.3270034

[35] L. Cai, K. Chang, and Y. Girdhar, “Learning to swim: Reinforcement learning for
6-dof control of thruster-driven autonomous underwater vehicles,” 2025. [Online].
Available: https://arxiv.org/abs/2410.00120

[36] M. Shafiee, G. Bellegarda, and A. Ijspeert, “Manyquadrupeds: Learning a single lo-
comotion policy for diverse quadruped robots,” in Proceedings of IEEE International
Conference on Robotics and Automation (ICRA), 2024, pp. 3471–3477.

[37] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and
V. Vanhoucke, “Sim-to-real: Learning agile locomotion for quadruped robots,” CoRR,
vol. abs/1804.10332, 2018. [Online]. Available: http://arxiv.org/abs/1804.10332

[38] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
robust perceptive locomotion for quadrupedal robots in the wild,” CoRR, vol.
abs/2201.08117, 2022. [Online]. Available: https://arxiv.org/abs/2201.08117

[39] X. B. Peng, E. Coumans, T. Zhang, T. E. Lee, J. Tan, and S. Levine, “Learning agile
robotic locomotion skills by imitating animals,” CoRR, vol. abs/2004.00784, 2020.
[Online]. Available: https://arxiv.org/abs/2004.00784

[40] J. Siekmann, K. Green, J. Warila, A. Fern, and J. W. Hurst, “Blind bipedal stair
traversal via sim-to-real reinforcement learning,” CoRR, vol. abs/2105.08328, 2021.
[Online]. Available: https://arxiv.org/abs/2105.08328

[41] B. Pandit, A. Gupta, M. S. Gadde, A. Johnson, A. K. Shrestha, H. Duan, J. Dao, and
A. Fern, “Learning decentralized multi-biped control for payload transport,” 2024.
[Online]. Available: https://arxiv.org/abs/2406.17279

[42] Z. Li, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath, “Reinforcement
learning for versatile, dynamic, and robust bipedal locomotion control,” 2024.
[Online]. Available: https://arxiv.org/abs/2401.16889

[43] A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun,
and D. Scaramuzza, “Learning high-speed flight in the wild,” Sci-
ence Robotics, vol. 6, no. 59, p. eabg5810, 2021. [Online]. Available:
https://www.science.org/doi/abs/10.1126/scirobotics.abg5810

[44] J. Xing, A. Romero, L. Bauersfeld, and D. Scaramuzza, “Bootstrapping reinforcement
learning with imitation for vision-based agile flight,” 2024. [Online]. Available:
https://arxiv.org/abs/2403.12203

[45] Y. Song, K. Shi, R. Penicka, and D. Scaramuzza, “Learning perception-
aware agile flight in cluttered environments,” 2023. [Online]. Available:
https://arxiv.org/abs/2210.01841

[46] W. Lu, K. Cheng, and M. Hu, “Reinforcement learning for autonomous underwater
vehicles via data-informed domain randomization,” Applied Sciences, vol. 13, no. 3,
2023. [Online]. Available: https://www.mdpi.com/2076-3417/13/3/1723

[47] S. Cowen, S. Briest, and J. Dombrowski, “Underwater docking of autonomous under-
sea vehicles using optical terminal guidance,” in Proceedings of Oceans MTS/IEEE
Conference, vol. 2, 1997, pp. 1143–1147 vol.2.

[48] R. Stokey, M. Purcell, N. Forrester, T. Austin, R. Goldsborough, B. Allen, and C. von
Alt, “A docking system for remus, an autonomous underwater vehicle,” in Proceedings
of Oceans MTS/IEEE Conference, vol. 2, 1997, pp. 1132–1136 vol.2.

[49] M. Patil, B. Wehbe, and M. Valdenegro-Toro, “Deep reinforcement learn-
ing for continuous docking control of autonomous underwater vehicles: A
benchmarking study,” CoRR, vol. abs/2108.02665, 2021. [Online]. Available:
https://arxiv.org/abs/2108.02665

[50] T. Zhang, X. Miao, Y. Li, L. Jia, Z. Wei, Q. Gong, and
T. Wen, “Auv 3d docking control using deep reinforcement learn-
ing,” Ocean Engineering, vol. 283, p. 115021, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0029801823014051

[51] N. Palomeras and P. Ridao, “Autonomous underwater vehicle docking under realistic
assumptions using deep reinforcement learning,” Drones, vol. 8, no. 11, 2024. [Online].
Available: https://www.mdpi.com/2504-446X/8/11/673

[52] D. Yoerger, J. Cooke, and J.-J. Slotine, “The influence of thruster dynamics on un-
derwater vehicle behavior and their incorporation into control system design,” IEEE
Journal of Oceanic Engineering, vol. 15, no. 3, pp. 167–178, 1990.

[53] N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver, “Memory-based control with re-
current neural networks,” 2015. [Online]. Available: https://arxiv.org/abs/1512.04455

