
Learning Behavior Trees for Robotic Task Planning by
Monte Carlo Search over a Formal Grammar

Emily Scheide, Graeme Best, Geoffrey A. Hollinger
Collaborative Robotics and Intelligent Systems (CoRIS) Institute

Oregon State University
Corvallis, Oregon 97331

Email:{scheidee, bestg, geoff.hollinger}@oregonstate.edu

Abstract—This extended abstract presents a method of learn-
ing behavior trees for robotic task and motion planning, which
alleviates the need for time-intensive manual design. Our method
involves representing a set of behavior trees as a formal grammar
and searching over this grammar by means of a generalization of
Monte Carlo tree search for directed acyclic graphs. We present
promising preliminary results for a marine target search and
response scenario, and the learned behavior tree compares well
with a manually designed tree. It is notable that the learned
tree contains several, but not all, sub-trees that are crucial and
present in the manually designed tree. Our results motivate future
investigation of ways to learn for our sparse reward functions
and to better combine promising sub-trees.

I. INTRODUCTION

Many modern autonomous robots operate through the ex-
ecution of actions within a predefined control architecture.
The manual design of control architectures is often infeasible
due to it being inherently time-intensive and requiring expert
knowledge, particularly as robotic tasks become increasingly
complex or applications require larger multi-robot teams. This
motivates the need to automatically generate control architec-
tures that function well in challenging task domains.

Recently, behavior trees have become a popular control
architecture in robotics and computer games. They offer
advantages in readability, recursivity, and modularity [1, 3,
10, 13, 15] as compared to finite state machines, decision
trees, and various other controlled hybrid systems [3, 6]. These
advantages are inherent to the behavior tree design, which is
built with respect to tasks rather than states. Put simply, a
behavior tree is a directed rooted tree that is comprised of
leaf nodes, which evaluate conditions and activate actions, and
internal nodes, which describe a logic structure. Behavior tree
operation occurs through the switching between a number of
tasks, based on changing observed input signals [3]. Due to
the advantages such a structured tree brings, it is more feasible
to manually design behavior trees than state-based methods.

Even so, the manual design of a behavior tree can still
become too time-intensive. To meet the increasing demand
for autonomous robotics, it is vital that this design be as ex-
pedited as possible, without sacrificing functionality. In order
to expedite this process given the difficulties of manual design,
we require an automatic behavior tree generation method that
is robust to task complexity. Given a set of robot capabilities
and a task simulator, the goal of the method is to find the
behavior tree structure that maximizes the expected reward.

In this paper, we propose a novel behavior tree generation
method. This method learns an optimal behavior tree by
searching over our formal grammar that represents the set
of valid, well-structured behavior trees. The search is carried
out by a generalization of Monte Carlo tree search (MCTS).
Unlike MCTS [2], our method searches over a directed
acyclic graph, which allows us to further optimize the learning
process. Our MCTS generalization is based on [7], with
improvements for propagating information. It also periodically
restarts, which prevents the search from becoming stuck at
local maxima, and updates the grammar to subsequently guide
the search toward desirable behavior trees.

We demonstrate this method within the domain of marine
target search and response. The results show that our method
is capable of generating a behavior tree with several optimized
sub-trees pertaining to relevant tasks. While these results are
promising, they also motivate several avenues of improvement
that we intend to work on in the future.

II. RELATED WORK

Due to the manipulability and modularity of behavior trees,
they are feasible to restructure using reinforcement learn-
ing methods. Genetic programming [5, 11, 12, 14] and Q-
learning [1, 8, 9] have both been implemented with the goal of
learning optimal behavior tree structure with various guiding
criteria. A key difference between these various approaches is
how they represent a behavior tree. One such representation is
a grammar, which has the advantage of having a well-defined
set of rules that tell you how to incrementally build all behavior
trees. This representation makes it feasible to search over the
set of all valid behavior trees. The grammar we design in this
paper generalizes the grammars in [8, 12, 14] to enforce a
more functional behavior tree structure.

Given this grammar as our behavior tree representation, we
need to design algorithms to search for the sequence of pro-
duction rules that constructs the optimal behavior tree. Monte
Carlo search has been shown to be an effective algorithm
for searching over a grammar [7]. In this paper, we adapt
MCTS [2] to search over a grammar by means of a directed
acyclic graph instead of a tree. This allows for the easier
propagation of rewards throughout the tree, which further
optimizes the learning process.

Fig. 1. A manually designed behavior tree for a marine target search and response application. Leaf squares are actions, ovals are conditions, ? denotes a
fallback, → denotes a sequence, and ! denotes a not-decorator. The flow of behavior tree execution is from left to right, and is visualized by the coloring of
the nodes. Red denotes a node that has failed, green denotes a node that has succeeded, and blue denotes that a node is currently executing. Unshaded nodes
are currently inactive as they are currently not being evaluated or performed by the behavior tree.

III. BACKGROUND ON BEHAVIOR TREES

Behavior trees are directed rooted trees, which are com-
prised of control flow, execution, and decorator nodes. The
types of control flow nodes are fallback, sequence, and par-
allel, and they determine which nodes are active. Execution
node types are action nodes, which trigger execution of robot
actions, and condition nodes, which are either true or false
depending on the state of the robot and the world. Decorator
nodes have one child condition node by definition, and, given
the state of that condition node as input, return a state. A
common example is the not-decorator node, which returns
the logical complement of the child condition [3]. An exam-
ple behavior tree for our marine target search and response
scenario is shown in Fig. 1.

IV. PROBLEM FORMULATION

A robot’s capabilities are described as a set of actions
and its sensors are described as a set of Boolean conditions.
These actions and conditions are further divided into groups
by category of application. We define this set of groups as G,
with g ∈ G and g = [Ag, Cg], where Ag is the set of actions
and Cg is the set of conditions in a group. These are introduced
to guide the learning to connect related actions and conditions.

Additionally, for all g ∈ G, the associated sets of actions,
Ag , and conditions, Cg , must be compiled into a behavior
tree, b. Where B is the set of all valid behavior trees, each
b ∈ B can be evaluated by running it through a black box
simulator that returns a reward, f(b).

Ultimately, we aim to find the behavior tree, b∗ ∈ B, that
has the maximum reward; i.e.,

b∗ = argmax
b∈B

f(b). (1)

The goal is for the resulting behavior tree to be the most
efficient and well-suited for autonomously guiding the robot
through the execution of all tasks within its task domain.

V. BEHAVIOR TREE LEARNING METHOD

We are proposing a new method for this behavior tree design
problem. This method involves representing a set of behavior
trees as a formal grammar. A generalization of MCTS is used
to search for the optimal behavior tree over a directed acyclic
graph. We describe these components as follows.

A. Behavior Tree Formal Grammar

We design a set of production rules, which together form
a formal grammar. This set of rules guides the autonomous
production of all valid behavior trees, and ensures that the
structure of each is functional. This set of rules is universal,
and is applicable to any robot or scenario, as it takes in the
groups of actions, Ag , and conditions, Cg , as input.

The structure the formal grammar enforces has a fallback
node at the root, and then a layer of sequence nodes. Next,
it allows fallback, action, condition, or not-decorator nodes
with the constraint that conditions must appear to the left of
actions. Finally, if a fallback was chosen at the previous level,
the deepest level is allowed to contain action, condition, or not-
decorator nodes only. We also enforce that each sub-tree only
contains actions and conditions that are in the same group.

We define this formal grammar, F = {T,N, P, S}. Termi-
nal characters are T = {?,→, !, [a], (c),), (}, where ? denotes
fallback, → denotes sequence, ! denotes not-decorator, [a]
denotes an action a ∈ Ag, g ∈ G, (c) denotes a condition
c ∈ Cg, g ∈ G, (denotes going down a level, and)
denotes going up a level. Non-terminal characters are N =
{S, s, s+, sg, fg, Ag, Cg, Čg, r

1
g , l

1
g, r

2
g , l

2
g}, where subscript g

denotes a character for every g ∈ G. The production rules, P ,
are defined in Table I, and S is the start character. Note that r1g
and l1g pertain to nodes added below sequence nodes, →, and
r2g and l2g appear only in the deepest level of the tree. We also
enforce that a particular action or condition can only appear
once in a sub-tree, and all sg must have a unique group, g.

TABLE I
BEHAVIOR TREE FORMAL GRAMMAR PRODUCTION RULES.

Terminal characters are shown in red and non-terminals in blue.

Setup a fallback node with sequence sub-trees:
S → ? (s s+) s+ → s s+ s+ → s

Sub-tree structure, ∀g ∈ G:
s → sg sg → → (Ag r1g) sg → → (fg r1g)
sg → → (l1g Ag) sg → → (l1g fg) fg → ? (Ag r2g)
fg → ? (l2g Ag) r1g → fg r1g r1g → fg
r1g → Ag r1g r1g → Ag l1g → l1g fg
l1g → fg l1g → l1g Čg l1g → Čg

r2g → Ag r2g r2g → Ag l2g → l2g Čg

l2g → Čg Čg → Cg Čg → ! (Cg)

Insert actions ∀a ∈ Ag and conditions ∀c ∈ Cg:
Ag → [a] Cg → (c)

B. Monte Carlo Search over a Formal Grammar

Given this grammar, F , which represents all possible behav-
ior trees, we need a method of determining which behavior tree
word within F is optimal. In other words, which valid behavior
tree, b∗, is best suited for a given robot and application. We
achieve this through a new generalization of MCTS [2].

Our algorithm searches over a directed acyclic graph, D, in
which a node can have multiple parents due to a word in F
having multiple possible derivations. This means we need to
generalize MCTS to be applicable to DAGs. Like MCTS, our
algorithm is comprised of four stages: selection, expansion,
simulation, and backpropagation. Each edge in D represents
a single application of a production rule. Each node represents
a partial or complete behavior tree, where a behavior tree
is partially complete if it contains at least one non-terminal
character. Similarly, terminal nodes are valid behavior trees.

The main differences to standard MCTS are in how we do
expansion and backpropagation for a DAG. In the expansion
phase, when a new node is added, edges are connected to
all possible parents. During backpropagation, the reward is
propagated up all possible trajectories from a terminal node
to the root node. This method is based on [7] with two novel
improvements. Firstly, we actively search for and connect
ancestors within a fixed number of rules to each new child
node. This allows information to more quickly propagate
throughout the DAG. Secondly, we periodically restart the
search, and during each restart we add additional rules to the
grammar that represent the most promising learned sub-trees.

VI. MARINE TARGET SEARCH AND RESPONSE

We evaluate the efficacy of our method with respect to
a marine target search and response scenario simulation, al-
though our method is applicable to any task planning problem
that can be represented by behavior trees. The robot moves
through a marine environment locating targets, disarming
sea mines, and retrieving objects of interest. The goal is to
maximize the occurrence of these actions. Each of the actions
associated with these goals has a reward, and these rewards
are linearly combined to evaluate the behavior tree guiding the
robot’s actions. The robot’s tasks and states are sorted into

Fig. 2. A behavior tree generated by our method for the same scenario as
the manually designed tree shown in Fig. 1. Three sub-trees were successfully
learned for groups g1, g2, and g5, but is not as complete the manually
designed designed tree.

groups of related actions and conditions. These groups are
as follows: g1 = [{go to comms, report},{in comms, target
found, at surface}], g2 = [{disarm},{mine found, is armed}],
g3 = [{pick up, take to drop off},{object found, carrying
object}], g4 = [{go to likely target},{likely target found}], g5 =
[{random walk},{}], and g6 = [{shortest path},{}]. The robot
moves on a roadmap with a random distribution of targets,
mines and objects of interest over the vertices. We define the
robot’s sensor model to be a probability distribution, which is
updated via Bayes’ rule.

The learned behavior tree is shown in Fig. 2. For compar-
ison, we manually designed a behavior tree (Fig. 1), which
is comprised of a series of sub-trees, each only containing
actions and conditions from the same group. We can see that
several functional sub-trees were successfully learned. This
is a promising result, but our goal is to generate a behavior
tree containing a sub-tree for each crucial group within G.
Currently, our learned tree is missing sub-trees relating to
groups that are present in the manually designed tree.

VII. DISCUSSION AND FUTURE WORK

Our method is promising in that the generated behavior tree
contains correctly learned sub-trees. However, this tree is not
as complete as the manually designed tree, and we believe
this is for a number of reasons. Firstly, the reward structure
in the DAG is very sparse, which makes it difficult to learn.
Secondly, we observed that our method finds correct sub-trees,
but does not always learn to compile them in one tree. In the
future, we plan to investigate ways to learn for our sparse
reward function and to better combine promising sub-trees.
We also aim to generalize and adapt our method to multi-robot
teams [4], and demonstrate its effectiveness for other robotics
applications. We are also interested in extending other learning
methods, such as Q-learning and genetic algorithms.

VIII. ACKNOWLEDGEMENTS

This research was funded in part by Office of Naval Re-
search grant N00014-17-1-2581.

REFERENCES

[1] Bikramjit Banerjee. Autonomous acquisition of behavior
trees for robot control. In Proc. of IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), pages 3460–
3467, 2018.

[2] Cameron B Browne, Edward Powley, Daniel White-
house, Simon M Lucas, Peter I Cowling, Philipp Rohlf-
shagen, Stephen Tavener, Diego Perez, Spyridon Samoth-
rakis, and Simon Colton. A survey of Monte Carlo
tree search methods. IEEE Trans. on Computational
Intelligence and AI in Games, 4(1):1–43, 2012.

[3] Michele Colledanchise and Petter Ögren. Behavior trees
in robotics and AI: An introduction. CRC Press, 2018.

[4] Michele Colledanchise, Alejandro Marzinotto, Dimos V
Dimarogonas, and Petter Ögren. The advantages of using
behavior trees in mult-robot systems. In Proc. of Int.
Symp. on Robotics (ISR), 2016.

[5] Michele Colledanchise, Ramviyas Parasuraman, and Pet-
ter Ögren. Learning of behavior trees for autonomous
agents. IEEE Trans. on Games, 11(2):183–189, 2018.

[6] Peter I. Cowling, Michael Buro, Michal Bida, Adi Botea,
Bruno Bouzy, Martin V. Butz, Philip Hingston, Hector
Muñoz-Avila, Dana Nau, and Moshe Sipper. Search in
Real-Time Video Games. In Simon M. Lucas, Michael
Mateas, Mike Preuss, Pieter Spronck, and Julian To-
gelius, editors, Artificial and Computational Intelligence
in Games, volume 6. Schloss Dagstuhl, 2013.

[7] Frédéric de Mesmay, Arpad Rimmel, Yevgen Voronenko,
and Markus Püschel. Bandit-based optimization on
graphs with application to library performance tuning. In
Proc. of Int. Conf. on Machine Learning (ICML), page
729–736, 2009.

[8] Rahul Dey and Chris Child. QL-BT: Enhancing be-
haviour tree design and implementation with Q-learning.

In Proc. of IEEE Conf. on Computational Intelligence in
Games (CIG), 2013.

[9] Yanchang Fu, Long Qin, and Quanjun Yin. A reinforce-
ment learning behavior tree framework for game AI. In
Proc. of Int. Conf. on Economics, Social Science, Arts,
Education and Management Engineering (ESSAEME),
2016.

[10] Andreas Klöckner. Interfacing behavior trees with the
world using description logic. In Proc. of AIAA Guid-
ance, Navigation, and Control (GNC) Conference, page
4636, 2013.

[11] Chong-U Lim, Robin Baumgarten, and Simon Colton.
Evolving behaviour trees for the commercial game de-
fcon. In Proc. of European Conference on the Appli-
cations of Evolutionary Computation, pages 100–110,
2010.

[12] Aadesh Neupane and Michael Goodrich. Learning swarm
behaviors using grammatical evolution and behavior
trees. In Proc. of Int. Joint Conference on Artificial
Intelligence (IJCAI), pages 513–520, 2019.

[13] Petter Ögren. Increasing modularity of UAV control
systems using computer game behavior trees. In Proc.
of AIAA Guidance, Navigation, and Control Conf., page
4458, 2012.

[14] Diego Perez, Miguel Nicolau, Michael O’Neill, and
Anthony Brabazon. Evolving behaviour trees for the
Mario AI competition using grammatical evolution. In
Proc. of European Conference on the Applications of
Evolutionary Computation, pages 123–132, 2011.

[15] Christopher Iliffe Sprague, Özer Özkahraman, Andrea
Munafo, Rachel Marlow, Alexander Phillips, and Pet-
ter Ögren. Improving the modularity of AUV control
systems using behaviour trees. In Proc. of IEEE/OES
Autonomous Underwater Vehicle Workshop (AUV), 2018.

	Introduction
	Related Work
	Background on Behavior Trees
	Problem Formulation
	Behavior Tree Learning Method
	Behavior Tree Formal Grammar
	Monte Carlo Search over a Formal Grammar

	Marine Target Search and Response
	Discussion and Future Work
	Acknowledgements

