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Abstract— We present an informed passenger robot deploy-
ment strategy for marsupial robots. A marsupial robot system
consists of a carrier robot (e.g., a ground vehicle), which is
highly capable and has a long mission duration, and at least
one passenger robot (e.g., a short-duration aerial vehicle) trans-
ported by the carrier. Passenger robots can have specialized
and complementary capabilities that are tailored to specific
tasks during the mission. However, an effective passenger
robot deployment strategy is necessary in order to optimize
performance of the carrier-passenger system. We propose a de-
ployment algorithm that reasons over uncertainty by exploiting
information about the prior probability distribution of features
of interest in the environment. Our algorithm is formulated
as a solution to a sequential stochastic assignment problem
(SSAP). The key feature of the algorithm is a recurrence
relationship that defines a set of observation thresholds that
are used to decide when to deploy passenger robots. Our
algorithm computes the optimal policy in O(N2) time, where N
is the number of deployment decision points. Our results show
that our deployment algorithm outperforms other competing
algorithms, such as the classic secretary approach and baseline
partitioning methods.

I. INTRODUCTION

Exploration of increasingly complex environments de-
mands more flexible robotic capabilities. Developments in
heterogeneous multi-robot systems have yielded carrier-
passenger robot systems called “marsupial robots”, in which
highly-capable carrier robots carry and deploy one or more
low-capability passenger robots. These marsupial robots can
tailor their complementary capabilities to the challenges of
exploring complex environments [1]. During exploration,
these environments can contain multiple features of interest
that the carrier robot may want to observe but are prohibitive
or difficult to reach [2], [3]. In marine environments, a large
ship may carry and deploy multiple heterogeneous robots
to increase the rate of information gathering of features
such as seafloor mines, adversarial vessels, and biological
hotspots [4], [5], [6]. In the case of urban environments, a
team of ground and aerial robots may seek to explore features
like ledges, vertical shafts, stairways, or other urban features
which ground robots cannot easily reach [7]. During these
missions, the carrier robot would ideally deploy the pas-
senger robot at a location which can maximize exploration
coverage or information gain and make use of the passenger
robot’s complementary capabilities (e.g., the ability to fly in
3D terrain).
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Fig. 1. RGB point cloud map of an urban environment from the
DARPA Subterranean Challenge [8] with example deployment locations.
Each decision point is revealed sequentially to the robot. Point A has high
exploration potential since it leads to another room, but not as much as point
C, which leads to multiple rooms and a stairwell only accessible to aerial
passenger robots. However, points B and D are poor deployment locations
since they lack nearby features to be explored by the passenger robots.

In order to optimize exploration efficiency, a marsupial
robot system must decide when and where to deploy its pas-
senger robots. In Fig. 1, an example of an urban environment
is illustrated with sequential decision locations with different
exploration potential. If a carrier robot deploys too early,
it risks missing out on the potentially more valuable later
decision points. Each of these sequential decision locations
may have different reward values which are only revealed
when they are observed along the robot’s path. Due to the
unknown nature of an unexplored environment, the carrier
robot is required to make online deployment decisions while
reasoning over the possible discovered deployment value at
each potential deployment location. Furthermore, the value
and number of these features are not known in advance.
Multi-robot systems require coordination beyond naı̈ve par-
titioning of deployment between the passenger robots to
ensure that the maximum expected number of features are
captured [9]. Prior works have explored marsupial robot
coordination and planning [3], [10] but, to our knowledge,
do not explicitly solve for passenger robot deployment or
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deploys in a naı̈ve manner [11]. To address these challenges,
we develop an online passenger deployment strategy that
reasons over the predicted future reward of deploying at each
decision point.

We formulate the deployment strategy as a sequential
stochastic assignment problem (SSAP) [12] where a set of
passenger robots are assigned to deployment locations. We
assume the probability distribution of the features in the
environment is known a priori. The deployment algorithm
exploits this probabilistic prior information of the distribution
of features throughout the environment. The key component
of the algorithm is a recurrence relationship that defines a
set of observation thresholds. These thresholds are used to
decide when to deploy passenger robots by comparing to
the current observation of deployment reward. Furthermore,
the thresholds only depend on the number of decision
points remaining in the mission and the prior distribution
of features. The algorithm is guaranteed to find the optimal
online deployment policy under the assumption of a known
prior distribution with independent observations. Also, the
algorithm is efficient in that it has O(N2) runtime, where N
is the number of decision points.

Our contributions in this paper are:
1) A multi-robot passenger deployment problem formu-

lated as a sequential stochastic assignment problem
2) An informed passenger deployment strategy for this

problem, which builds on [12], that maximizes the
expected sum of the deployment rewards

The solution to the problem formulation is guaranteed to
find the optimal online policy in quadratic time. We show
empirically that our algorithm is competitive with an offline
oracle solution that has full access to the rewards in advance
and greatly outperforms comparable deployment algorithms,
including a partitioned solution to the classic secretary
problem [13], and naı̈ve baseline methods. On average,
the sequential assignment deployment algorithm performed
within 96% of the oracle.

II. RELATED WORK

Heterogeneous robotic teams are a subset of multi-robot
systems that are composed of different types of robots
with varying, often complementary, capabilities. There have
been works which evaluate distributed coordination of these
heterogeneous-robot systems [14], [15]. In most heteroge-
neous robot systems, the motion of the robots are loosely-
coupled without physical constraints between robots. In
marsupial robots, tightly-coupled constraints are physically
imposed on the deployments of the passenger robots by the
carrier robots. These marsupial robots are a special type of
heterogeneous robots, comprising of a carrier “mother” robot
and potentially multiple passenger “child” robots [1]. The
complementary nature of marsupial robotics enables these
combinations of robots to traverse a wider type of terrain
and approach a larger set of tasks during a mission.

The increased complexity of marsupial robots requires new
planners which are able to handle tasks like coordination, de-
ployment, retrieval, and manipulation. A temporal symbolic

planner was created by Wurm et al. [10] in order to organize
and coordinate between multiple marsupial robotic systems.
The authors are able to utilize the framework to handle
exploratory navigation actions, as well as plan for debris
clearing actions. However, the temporal planner does not
explicitly decide an optimal deployment location and relies
on frontier exploration algorithms to generate deployment
targets. Mathew et al. [14] addresses the task scheduling
and path planning for package delivery using marsupial
robots. They consider urban environments where deployment
locations and potential routes are known beforehand. In
[16], the authors consider marsupial robot path planning
and passenger robot deployment in order to minimize return
signals by an adversary and to maximize the amount of
information gained from a target of interest. The authors
simplify the passenger deployment criteria by having the
passenger deploy immediately and do not consider multi-
ple passenger deployments. Hansen et al. [17] employs an
iterative planning approach to deploy sensors for the highest
expected information gain. Their deployment system consists
of an autonomous surface vehicle which deploys passive
drifters following water currents in a marine environment.

The deployment problem is closely related to optimal
stopping theory [13], which considers problems that require
deciding online the right time to carry out a particular action.
A key example of an optimal stopping problem is the classic
secretary problem, but does not leverage prior information
regarding future rewards [13]. However, the Cayley-Moser
problem [18] reasons over predicted future rewards by con-
sidering the prior probability distribution. This has been
applied to robotics problems by Lindhé and Johansson [19],
who consider the problem of when to communicate by
utilizing multi-path fading communication model to make
predictions about future stopping decisions. Our method is a
generalization of the Cayley-Moser algorithm, adapted for
the context of the deployment problem. Additionally, we
formulate a policy that considers all future deployments,
rather than just the single next decision point.

Optimal stopping variants have been generalized to mul-
tiple decision points. Das et al. [4] applies multi-choice
optimal stopping theory for AUVs to collect multiple plank-
ton samples which minimizes the cumulative regret of the
samples. They explore two applicable algorithms, the multi-
choice hiring algorithm [20] and the submodular secretary
algorithm [21]. Both of these algorithms seeks to select the
best observations and do not consider information such as
the distribution of the observations. A generalization of the
Cayley-Moser algorithm, sequential stochastic assignment
problems (SSAP) [12], seeks to find an optimal policy
to maximize the expected sum of rewards from multiple
assignments of agents to tasks. SSAP has been applied to
other fields [22] but, to our knowledge, has not been utilized
in robotics. A closely related body of work focuses on
multi-robot task assignment problems [23]; however, these
problems generally assume that task values are known a
priori and are therefore not directly applicable to online
problems, such as ours.
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III. PROBLEM FORMULATION

We consider a marsupial robot system that must contin-
ually make online decisions regarding when to deploy its
passenger robots. At each deployment location, the robot
must consider if the reward gained from deployment is
expected to be more favorable than continuing onwards and
deploying at a later location. We formulate the multi-robot
deployment decision as a sequential stochastic assignment
problem (SSAP). Multiple deployment decisions are made
based on sequentially revealed random variables. We for-
malize this problem as follows.

A carrier robot moves through an environment and makes
decisions to deploy or not deploy a passenger robot. There
are assumed to be a total of N decision points, where N is
known to the robot. The carrier robot houses R passenger
robots of equal capability. At each decision point, the carrier
robot may choose to deploy one passenger robot.

We consider an environment that contains a set of point
features, which may represent points of interest that are ideal
for additional exploration by passenger robots, but are ill-
suited for the carrier robot. We assume these features are
distributed as a Poisson point process with a known rate Λ.

At decision point j, the carrier robot detects features
within a circular sensing area centered at the current location,
with sensing radius ρ. The number of features, xj , that are
detected within a sensing area is drawn from a Poisson
distribution, which has a probability mass function

f(x) =
λxe−λ

x!
, for x ∈ {0, 1, ...}. (1)

The rate of this Poisson distribution λ is proportional to Λ
as λ = ΛA, where A is the ratio between the sensing area
and the environment area. Along the sequence of decision
points, the observations of the number of features in the
sensing area are denoted (X1, ..., XN ). We assume that the
sensing areas do not overlap, and therefore the observations
are independent.

At stage j ∈ {1, ..., N}, the carrier robot reaches a
decision point, and the outcomes of all random variables
(X1, ..., Xj), denoted (x1, ..., xj), are known to the robot.
Along the path, the robot must make an irreversible decision
at each deploy location to deploy or continue on to deploy
later. If the carrier robot decides to deploy, it assigns one
passenger robot to the deployment location and returns a
reward of xj . If the carrier robot decides to continue, no
reward is claimed at this stage.

This process continues for the N stages. All passenger
robots must be deployed by stage N , with the constraint of
one deployment per stage. We define the set of stages where
passenger robots were deployed as (d1, ..., dR). The goal of
the carrier robot is to maximize the expected sum of the
reward returned from the deployment locations; i.e., find the
optimal deployment sequence:

(d1, ..., dR)∗ = argmax
(d1,...,dR)

E
[ R∑
r=1

xdr

]
. (2)

Here, xdr denotes the reward from passenger robot r.

IV. ONLINE PASSENGER DEPLOYMENT ALGORITHM

We present the online passenger deployment algorithm,
which finds the optimal deployment policy in quadratic
time. The algorithm is computed via dynamic programming,
using a technique that stems from sequential stochastic
assignment [12]. We begin by considering the general case of
R passenger robots to deploy, then formulate a specialized
efficient solution for a single passenger robot. Finally, we
provide an analysis of the optimality and runtime complexity
of the algorithm.

A. Multi-Robot Deployment

Our deployment algorithm precomputes a set of thresh-
olds, which are dependent on the distribution of the obser-
vations and the number of remaining stages. At stage j, the
current observed value xj is compared to the threshold values
and informs the carrier robot whether or not to deploy now.

For convenience, we define a sequence of values
(p1, ..., pN ), such that pi = 1 for N − R < i ≤ N ,
which represent the R passenger robots, and pi = 0 for
1 ≤ i ≤ N −R. From this definition, the problem can then
equivalently be thought of as assigning these pi values to
each xj .

Specifically, the optimal policy for the passenger robot
assignment is to assign pi to the observed deployment
value xj , if the observation value xj falls into an ith non-
overlapping interval comprising the real line [12]. These non-
overlapping intervals are separated by a set of thresholds,
denoted as ai,n, where n is the number of remaining stages.
Each threshold ai,n is computed recursively and depends
only on the pdf f(x), as well as number of stages N . For
stage j = N −n+ 1, there are a set of thresholds, such that

−∞ = a0,n ≤ a1,n ≤ a2,n ≤ ... ≤ an,n =∞. (3)

At stage j, the optimal choice is to use pi if the realization
xj of the random variable Xj is contained in the interval
(ai−1,n, ai,n].

Threshold ai,n+1 is defined as the expected value, if there
are n stages remaining, of the quantity to which the ith
smallest p is assigned [12]. This formulates the recurrence
relationship

ai,n+1 = Pr(xn < ai−1,n)ai−1,n

+ Pr(ai−1,n < xn < ai,n)

× E(xn|ai−1,n < xn < ai,n)

+ Pr(xn > ai,n)ai,n (4)

= ai−1,n

∫ ai−1,n

−∞
f(x)dx+

∫ ai,n

ai−1,n

xf(x)dx

+ ai,n

∫ ∞
ai,n

f(x)dx, (5)

where −∞ · 0 = 0 and ∞ · 0 = 0. In both (4) and (5),
the second term is for the case where xn lies within the
ith interval, and therefore pi receives the value of xn. The
first term is for the case where xn is below the ith interval,
meaning that xn is assigned to a pk < pi, and thus pi is
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5 - - - - ∞

4 - - - ∞ a4,5

3 - - ∞ a3,4 a3,5

2 - ∞ a2,3 a2,4 a2,5

1 ∞ a1,2 a1,3 a1,4 a1,5

0 −∞ −∞ −∞ −∞ −∞

1 2 3 4 5i n

Fig. 2. The method for the recurrence threshold calculation is shown and
the relationship between the terms in (4). ai,n is the threshold for the ith
non-overlapping interval when there are n stages left to go. For example,
the term a2,3 is calculated from the ai−1,n term, which is a1,2, and the
ai,n term, which is a2,2 = ∞.

assigned in a later stage with an expected value of ai−1,n.
Similarly, the third term is for the case where xn is above
the interval and pi has an expected future assignment of ai,n.

In our case, the observation values (X1, X2, ..., Xj) are
Poisson distributed, with the pmf shown in (1). Substitut-
ing (1) into (4), yields

ai,n+1 = ai−1,n

bai−1,nc∑
x=0

λxe−λ

x!
+

bai,nc∑
x=dai−1,ne

x
λxe−λ

x!

+ ai,n

1−
bai,nc∑
x=0

λxe−λ

x!

 . (6)

The above recurrence relationship can be computed in
quadratic time by iterating over n and i. This process is
illustrated in Fig. 2, where the cells in the table can be
computed from left to right by reusing the previous values,
as indicated by the arrows.

B. Single-Robot Deployment

A single passenger robot presents a single decision for the
carrier robot to decide to deploy at a location. In the single
passenger robot case, the sequential stochastic assignment
algorithm only considers a single pN = 1. Now, the only
thresholds relevant for deployment are the an−1,n elements.
These elements are shown as the cells one below the diagonal
in Fig. 2. With only one set of thresholds to calculate,
the an−1,n terms are identical to the thresholds used in
the Cayley-Moser optimal stopping problem [18]. This has
the benefit of only requiring linear, rather than quadratic,
computation time in N .

C. Analysis

The dynamic programming proceeds by iteratively solv-
ing optimal subproblems for ai,n+1 using the recurrence
relationship in (6), and thus computes the optimal set of
thresholds ai,n,∀i, n. The full proof of the results that these
subproblems are optimal, and that these thresholds lead to
an optimal online assignment policy, is presented in [12].

The proof proceeds by induction, and relies on Hardy’s
Theorem [24], which states that the optimal assignment
between two sets with a sum-product objective is to pair
the smallest values in each set, then the next smallest, and
continued until the largest values are paired.

As illustrated in Fig. 2, there are O(N2) subproblems
to be computed, where N is the total number of stages.
The integral (5) is computed once per subproblem, thus
the computation time is O(N2F ), where F is the time to
compute (5). For our problem, (5) simplifies to (6), which
can be computed in time O(A), where A is the maximum
value of any threshold ai,n, i < n. As discussed in Sec. IV-B,
for a single-robot deployment, the number of subproblems is
reduced to O(N), thus yields a computation time of O(NF ).

V. EXPERIMENTS

In order to evaluate the effectiveness of our algorithm
for passenger robot deployment, we conducted simulation
tests comparing our algorithm with various other deployment
strategies. On average, our algorithm performed within 96%
to the oracle.

A. Experimental Setup

A 2D simulated world containing randomly distributed
features of interests was created, as seen in Fig. 3. The
features of interests were modeled as points and would only
be detected within the observation range of the carrier robot.
Certain deployment algorithms described below divides the
carrier robot path into R equal partitions in the case of multi-
robot deployment. The algorithms treat each partition inde-
pendently from each other. Different deployment strategies
were employed, aiming to maximize the amount of features
detected:
• Sequential Assignment: Performs as described in the

multi-robot deployment approach and considers the
entire path as a singular deployment, without partitions
and deployment constraints.

• Oracle: Selects the top R deployment location across
all the partitions, with perfect knowledge of the world
in advance.

• Partition Oracle: Selects the best deployment location
within each partition, with perfect knowledge of the
world in advance.

• Cayley-Moser: Performs as described in the single robot
deployment approach in each partition.

• Classic Secretary: An optimal stopping variant that only
observes for the first N/Re of decision points and then
selects the next value that is higher than the max value
observed in the observation phase [13]. The algorithm
runs within each partition.

• Random: Selects a decision point randomly within each
partition.

• First: Selects the first decision point within each parti-
tion.

• Last: Selects the last decision point within each parti-
tion.
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Fig. 3. Lawnmower path with three deployment partitions. 200 sparse
features (red dots) shown here for visual fidelity. Circle outlines denote the
robot’s observation area at each deployment decision point.
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Fig. 4. Illustrative example of the deployments for three passenger
robots to be deployed over 30 decision points. Our method (reward: 21)
performs similar to the Oracle (reward: 24) that has full knowledge of
the observation sequence in advance. The Classic Secretary (reward: 19)
algorithm performed relatively poorly, in part due to being constrained by
having one deployment in each of the three partitions (dotted lines).

B. Results

An example of a trial of the algorithm selection process is
shown in Fig. 4. The Oracle algorithm optimally selects the
top R = 3 rewards. Our algorithm, Sequential Assignment,
decided to deploy and select the reward in an optimal
fashion in the first two decision cases. The algorithm does
not select early deployment locations because it expects to
encounter higher values in the future and the observed values
were not higher than the required thresholds. Lastly, the
algorithm’s last decision was not optimal. As the end stage
is approaching, the thresholds begin to lower and relax since
there are less stages for higher future expected values. The
last few thresholds approaches the expectation of a single
observation and prompts the algorithm’s selection before
the last stage. The Classic Secretary algorithm does not
reason over possible future observations and locally selects a
decision point in each partition. In the second partition, the
algorithm passes over a valuable decision location within the
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Fig. 5. Algorithm comparisons with three passenger robots over 250 test
iterations. Partition Oracle is denoted as Oracle-P. CM is Cayley-Moser and
CSP is Classic Secretary. The First and Last algorithms performed similarly
to the Random algorithm and are excluded for clarity.

first N/Re decision points and is forced to accept the last
decision point in that partition. Lastly, the algorithm selects
a high deployment value location in the third partition but
not the best possible deployment location.

The results of the Sequential Assignment algorithm
through repeated tests are extremely positive. Trials with
three passenger robot deployments and n = 60 stages are
shown in Fig. 5. During each trial, the algorithms’ results are
compared to the max possible number of features captured
accomplished by the Oracle. On average, the Sequential
Assignment algorithm performed within 96% of the Oracle.
Also, the Partition Oracle is not as perfect as the Oracle
but performs similarly when compared to the Sequential
Assignment algorithm. The Partition Oracle captures each
of the local maximum, which provides excellent results,
but does not consider a global purview and is unable to
capture the global maximum. The partitioned Cayley-Moser
algorithm has a lower performance than the Sequential
Assignment algorithm since the calculated thresholds are only
local to each partition and is constrained to one deployment
location per partition. The Sequential Assignment algorithm
is able to account for the expected future values over the
total number of stages, whereas the partitioned Cayley-Moser
locally calculated the thresholds only for the number of
stages in a partition.

The Sequential Assignment algorithm generalizes to R
passenger robot deployments. Multiple test scenarios were
conducted with a different number of passenger robots in
order to examine the behavior of the algorithms as a function
of the R deployment decisions. The average utility, as a
percentage of the Oracle, is shown for the algorithms in
Fig. 6. The performance of Sequential Assignment handily
outperforms other algorithms. Cayley Moser is mathemati-
cally equivalent to Sequential Assignment in the case where
R = 1 and yields identical results, as discussed in the single-
robot deployment section.
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Fig. 6. Algorithm comparisons with R passenger robots and 150 test
iterations. The First and Last algorithms performed similarly to Random
and are excluded for clarity. SEM error bars are displayed.

VI. FUTURE WORK

We show a formulation of passenger robot deployment
for marsupial robots and demonstrate the feasibility of the
sequential assignment optimal policy to passenger robot
deployments. However, there is still a need to address various
aspects and assumptions of our deployment algorithm in
order to increase the real-world robustness of the algorithm.
In order to address one of the algorithm’s main assumption,
it would be interesting to study the case where the prior
feature distribution is not known and to learn the distribution
online [25]. Additionally, to more closely represent real-
world robot exploration, the deployment algorithm should be
simulated in a more realistic environment that incorporates
obstacles such as real-world maps and data. Furthermore,
practical deployment of passenger robots may impose con-
straints between subsequent deployments which warrants fur-
ther research. An example of a constraint is preventing back-
to-back deployments between consecutive decision points
for robot collision safety. Also, it is interesting to consider
a dependent relationship between consecutive observations.
Overlapping observations more closely represent the case
where the robot continuously observes new information
along the path as it is travelling. Lastly, the sequential
stochastic assignment problem handles the case where mul-
tiple passenger robots are to be deployed but does not extend
to the case with multiple carrier robots. We aim to extend the
deployment problem formulation to multiple carrier robots as
well.
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