Modeling User Expertise for Choosing Levels of Shared Autonomy

Lauren Milliken and Geoffrey A. Hollinger

Abstract— In shared autonomy, a robot and human user both
have some level of control in order to achieve a shared goal.
Choosing the balance of control given to the user and the
robot can be a challenging problem since different users have
different preferences and vary in skill levels when operating
a robot. We propose using a novel formulation of Partially
Observable Markov Decision Process (POMDP) to represent
a model of the user’s expertise in controlling the robot. The
POMDP uses observations from the user’s actions and from the
environment to update the belief of the user’s skill and chooses
a level of control between the robot and the user. The level of
control given between the user and the robot is encapsulated
in macro-action controllers. A user study was run to test the
performance of our formulation. Users drive a simulated robot
through an obstacle-filled map while the POMDP model chooses
appropriate macro-action controllers based on the belief state
of the user’s skill level. The results of the user study show that
our model can encapsulate user skill. The results also show that
using the controller with greater robot autonomy helped users
of low skill avoid obstacles more than it helped users of high
skill.

I. INTRODUCTION

When deploying robots in the field, there are many ad-
vantages to using shared autonomy, where both the human
operator and the robot have some level of control. Direct
teleoperation may be tedious or difficult, and assistance from
the robot may be able to take away a great deal of burden
from the human user. However, different users may have
varying needs when it comes to the level of autonomy the
robot should be given. A novice user may need a great
deal of assistance in performing even basic tasks in order
to complete the goal safely. On the other hand, a user with
more experience may be able to accomplish these tasks easily
without as much assistance from the robot, and may even
dislike the lack of control in certain situations. Different
users also have different learning curves. Some may quickly
become familiar with the system, while others might need
assistance for longer. In this paper, we present a method of
modeling a human user’s expertise in systems using shared
autonomy.

We propose a novel method using Partially Observable
Markov Decision Processes (POMDPs) to model user ex-
pertise and choose the optimal level of shared autonomy.
Fig. 1 shows a visualization of how our model uses the
human operator’s actions to make a prediction of what state

This research is funded in part by grant NSF IIS-1317815 and support
from PCC Structurals, Inc. and Oregon Metals Initiative. User studies were
performed under Oregon State University IRB 6656.

L. Milliken and G. Hollinger are with the Robotics Program of
the School of Mechanical, Industrial, and Manufacturing Engineer-
ing, Oregon State University, Corvallis, OR. (e-mail: {millikel, ge-
off.hollinger } @oregonstate.edu)

Expert Actions

Beginner

Novice Actions

Fig. 1: As the user performs more actions expected from an expert,
the likelihood the user is classified as an expert increases. If the
user performs more actions expected from a novice, they will be
more likely to be classified as a beginner.

of expertise they are at. This paper is a continuation of our
prior workshop paper [1]. The shared control of the system is
encompassed by macro-action controllers. The macro-actions
are designed to model the robot controls for varying levels
of autonomy. The actions encompassed by the controllers are
designed for users of varying expertise. Rather than solving
the POMDP with many low-level actions, the macro-action
controllers encapsulate the shared autonomy control that
maximizes the performance based on the user’s expertise.

Our POMDP model can be used to predict the level of a
user’s expertise and assign a controller that will best assist
them. A system created for expert users may be difficult or
even dangerous for beginners to use. On the other hand, an
expert may find a system created for beginners to be too
simplistic or they may be skilled enough to control the robot
in ways that would be otherwise unsafe for someone not
familiar with the system. By modeling user expertise, we
can create a flexible interface for the robot that can work
for users of many skill levels. The novelty of our method
lies in the ability to find the skill level of users and assign
them macro-controllers based on that expertise. Past work
in shared autonomy has shown that different users have
different preferences and requirements for the levels of robot
autonomy used [2]-[4]. Our method is able to assign con-
trollers for users of different skill levels without the need to
solve a POMDP online, which is computationally intractable.
Our model is able to adapt to user’s skill level over time, such
as a beginner improving or an expert becoming fatigued.
A user study testing the performance of our formulation
in a robot driving simulator confirmed the benefits of our
approach.

The rest of the paper is organized as follows. Section II
gives an overview of related works. Section III describes the
implementation of the model and the domain we designed to

test it. Section IV describes the user trial, Section V shows
the results, and Section VI discusses the results and future
work.

II. RELATED WORKS

Many tasks benefit from collaboration between robots and
humans, but often this collaboration comes with trade-offs.
Shared autonomy can reduce the workload for a human
operator in tasks such as search and rescue [5], stable control
of marine and aerial vehicles [6], [7], or driving semi-
autonomous cars [8]. The robot can do much of the work
that would have otherwise required human teleoperation, but
the user still needs to maintain situational awareness and an
understanding of what the robot will do. This should not
increase the workload for the human [9]. However, it is not
always clear what level of shared autonomy is needed in
different situations since the amount of control between the
human and the robot can be very broad [10]. Our method
is used to provide different levels of shared autonomy based
on an adaptive model of the user’s expertise.

Previous work using shared autonomy has looked at the
arbitration between the user’s input and the robot’s assistance
[2], [11]. Such work has found that even when assistance
from the robot decreases the task completion time, some
users still preferred feeling in control of the robot. By encom-
passing the user’s actions, both desirable and undesirable, the
system can choose behaviors that both optimize reaching the
goal and perform actions preferred by the user. A user study
done in [12] found that using assisted teleoperation resulted
in fewer obstacles hit, but an increase in time to complete
a map. The study also found that users with video game
experience found the task more enjoyable and less physically
demanding.

Much of the work done in improving shared autonomy
looks at being able to predict the user’s intentions. Work
from [4] showed that in human-robot collaboration, the robot
needs the ability to predict the human user’s intent and
must also act in an intent-expressive way that enables the
human to predict what the robot will do. Work done in [13]
uses Gaussian mixture models to predict user intention in
free-form tasks and a cooperative motion planner is used
to generate trajectories based on the user’s desired task.
Predicting the user’s intent has also been shown in assistive
technology such as robotic wheelchairs [14], [15] in order
to assist users with limited physical capabilities control their
wheelchairs. In our work, rather than continuously predicting
the user’s actions, we use the prediction of their skill level
in order to make a generalization of what actions the user
will most likely perform. For instance, a user classified as a
beginner is more likely to choose poor actions, so the model
is used to choose an appropriate controller that provides
greater assistance to the user.

Previous work has designed robots to adapt to different
users based on their past actions [3]. These methods work
to model the what the user prefers the robot to do. Robot
autonomy often can decrease the workload and improve effi-
ciency, but some users are unable or unwilling to cooperate

with the robot. If the user is trying to work against the robot’s
actions, workload and frustration in the human will naturally
increase. Work done in [3] models the human’s willingness
to adapt to the robot’s actions to improve the effectiveness
of the team while retaining human trust in the robot. A
method proposed in [16] is used to find how the user reacts
to assistive actions and how to choose the most assistive
robot actions using the user model. Other work has looked
at how robots can learn how to work best side-by-side with
the human user. The cross-teaming method of [17] is used
to teach a robot to adapt to the preferences of the user. This
method uses an MDP to encode a mental model that learns
the user’s preferences in completing a certain task through
training with the user. Our work similarly uses a Partially
Observable Markov Process to model the human user, but
we utilize the Markov process to find user expertise in a
way that is general enough to be used on multiple systems.

III. ALGORITHM DESCRIPTION
A. User Model

We leverage the POMDP framework to learn a human’s
level of expertise and use this model to determine the level
of autonomy to give the robot. The POMDP model is a tuple
<S,A,0,T,Q,R,b,,v>. The set of states, S, encompasses the
user’s level of expertise. The set of observations, O, includes
the observations from the environment as well as the actions
performed by the user, which reflect either expert or novice
skills. These observations may include how many times the
user came close to hitting or hit an obstacle, how quickly
they completed the goal, or if they are operating the robot at
constant speeds or rapidly accelerating. The actions, A, are
macro-actions controllers. These controllers are developed
for users at different skill levels or as transitional controllers
when users are moving between skill levels. T, Q, R,
bo, and ~ represent the conditional transition probabilities
between states, the conditional observation probabilities, the
reward function, the initial belief, and the discount factor,
respectively. Currently, the values of the POMDP tuple are
hand-tuned, but could potentially be learned from data.

B. Shared Autonomy Policy

With knowledge of the user’s skill level, we can use
controllers that will best assist the user based on what actions
they are most likely to perform. For our experiments, we used
the Approximate POMDP Planning Toolkit (APPL) as an
offline POMDP solver [18]. APPL implements the SARSOP
algorithm to approximately solve the POMDP. Hand-tuned
values of the POMDP tuple were input into APPL to generate
a policy offline. The policy 7 is computed to maximize the
expected total reward.

We use the POMDP and the policy generated offline to
update the belief of the user’s level of expertise as they
operate the robot. At each time step, the policy 7 is used to
select the macro-action controller a € A based on the current
belief state b. The controller provides some level of shared
autonomy to the user. When the time step completes, the
observation o € O is received based on the user’s actions,

Algorithm 1 User Expertise Prediction and Controller Se-
lection

1: procedure CHOOSECONTROLLER(,b)

2: a « 7(b)
3: while not at update condition do
4: Use macro-action controller, a
5: Record observation, o
6: b =7(b,a,0)
7 b+t

return b

TABLE I: POMDP for modeling user expertise

S Beginner, Expert
A LeastHelp, SomeHelp, MoreHelp, MostHelp

No Obstacles Hit-Easy, Few Obstacles Hit-Easy,
(0] Many Obstacles Hit-Easy, No Obstacles Hit-Hard,

Few Obstacles Hit-Hard, Many Obstacles Hit-Hard

the actions taken by the controller, and the observation of
the environment. The belief state is updated based on the
current belief, the controller used, and the observation given
by ¥ = 7(b,a,0). The process then continues with the
new belief state. The complete procedure is described in
Algorithm 1.

C. Domain

For our experiments, a robotic driving simulator was
created using the pygame library of Python [19]. A picture of
the simulator is shown in Fig. 2. The user drives the robot
using the WASD keys on the computer keyboard with the
objective of reaching the goal as fast as they can.

The states of the world represent the user’s expertise
and the difficulty of the map. Easy maps contained fewer,
more spread out, obstacles while hard maps contained a
greater number of obstacles which require finer maneuvering
to avoid. The observations in the model represented the
perceived difficulty of the map and the amount the user
collided with an obstacle. Four controllers were created that
provided different levels of assistance in avoiding obstacles.
These controllers are described in more detail below. Table
I shows the states, actions, and observations chosen for our
experiments. The values of the POMDP were set so that the
policy assigns user’s with a high probability of being at the
Expert state the “LeastHelp” controller. Those with a high
probability of being at the Beginner state are assigned the
“MostHelp” controller. When the probability is distributed
more evenly between Beginner and Expert, the “SomeHelp”
or “MoreHelp” controllers are assigned.

D. Robot Controller

The macro-action controllers can be set up for different
user levels and environmental states. By selecting macro-
action controllers rather than low-level motions, the number
of actions the POMDP must be solved for can be greatly
reduced [20]. In a human-robot system, some of the burden
of modeling the state of the world is taken over by the

human rather than relying on the POMDP alone. Our macro-
action controllers combine the actions of the user and the
robot so that the POMDP requires a fewer number of states
and observations to navigate through the environment. By
encapsulating the user skill level in our model, we can predict
a range of probabilities that certain actions will be performed
by the user depending on their skill and the difficulty of the
task.

The macro-action controllers were created with the pos-
sible differences between beginners and experts in mind.
The principal difference being that beginners would be more
likely to hit obstacles. We note that our model is general
enough to incorporate many different controllers and ob-
servations across domains, and future work will incorporate
more complex observations of novice and expert actions.

In order to assist the user in avoiding obstacles, the
controllers use a potential field method similar to the method
presented in [21]. When obstacles are within range of the
robot, the controller attempts to slow the robot down and
steer it away from the incoming obstacle. To balance the
control between the user and the robot, a variable U = [0, 1]
defines the amount of user influence. As the user presses the
control buttons on the keyboard, U increases. Once the button
is released, U decreases. The user influence affects both the
velocity and the heading of the system with U, representing
the user’s influence over velocity (when pressing the W or
S keys) and with U, representing the user’s influence over
rotation (when pressing the A or D keys). If they hold the key
long enough, the user can override the robot’s actions when
it tries to slow or rotate. The variable v is the current speed
of the robot, oy is the factor for the amount slowed when
approaching an obstacle from any side, and « is the variable
for the amount slowed when approaching an obstacle from
the front of the robot. The speed of the robot is calculated
as shown below.

Unew = U — (1 - UU)(OQ + a2)3ign(v) (1)

The angle of rotation from the user’s control is defined
as Oy, the repelling angle from the potential field of the
obstacles is defined as fg, and 3 is a weighting factor for
the amount of control given to the robot. Below is the final

©© mostHelp BestTime:833 Your Time: 14.5797898769.

Controller Goal Time User Time

Robot

e -
Sensors ..
f Obstacles . .

Fig. 2: Simulated driving environment used to test macro-action
POMDP.

[vy, 6]
[v, 6]

[-sign(vy)ay, Og]

Fig. 3: The effect of the POMDP macro-action controllers. If the
user drives towards an obstacle, the force of the robot turns away
from the obstacle and slows the robot down. Since the robot is
approaching the obstacle from the side, a; is activated, but aw is
not.

angle of rotation for the robot leveraging both the user’s and
the robot’s steering commands:

0 =U,0u +B(1—U)0r 2

The controller’s effect on the robot’s velocity and steering
is shown in Fig 3 While the controllers designed for the
beginner states were able to avoid obstacles, they also took
away some of the control from the user and would decrease
the speed of the robot. This may be preferred by a beginner
who may require the robot to assist them, but could slow
down an expert user. The differences in the controllers are
shown in Table II. These parameters were derived from
testing of the simulator in pilot trials.

TABLE II: The parameters set for each of the controllers.

Controller Parameters
MostHelp a; =2, a2 =0.80, 6=2.0
MoreHelp a1 =2, a2 =0.60, =15
SomeHelp a1 =1, a2 =045, 6=1.0
LeastHelp a1 =0, a2 =0.25, 6=0.0

IV. USER STUDY

A user study was designed to verify that (1) the POMDP
model is able to make accurate predictions of user expertise,
(2) users predicted by the POMDP as more likely to be
experts perform better than the users predicted more likely
to be beginners, and (3) using the different controllers will
result in differences in user performance.

Fourteen able-bodied users (6 male, 8 female, mean age
24) were recruited to participate in the user study through
emails and fliers distributed through Oregon State University.
The participants were compensated $5 USD for the 30-
minute experiment. The users were given a brief overview
of the robot’s level of autonomy and how to drive the robot
using the WASD keys.

The participants were given the robot driving simulator
described in Section III. The participants are given the view
as shown in Fig. 2. At the top of the screen, the user is shown
which controller they are currently using, a “best time”, and

their own time. The controller that is being used by the robot
is shown to the user to give the robot’s autonomy some
transparency. Pilot trials of the simulator showed us that
when the users were not shown which controller was being
used, they would often become frustrated when a different
controller was chosen. Often they would not realize a new
controller was chosen and would drive the robot as if it
would behave the same as the last map. This often led to
mistakes before the user realized the controller was different.
The user’s time and the goal time are shown to motivate the
users to complete the map quickly. The same maps were
presented in the same order for every user. This was done so
that we could compare every user under the same conditions.

The users first drove the robot through the “training maps”,
30 pre-generated maps of varying difficulty. The initial belief
state is set at the beginning of the trial with equal probability
the user is a Beginner or Expert. Each user also starts with
the “SomeHelp” controller. The belief state is updated once
the user completes the map, and the controller to be used in
the next map is chosen by checking the policy with the new
belief state.

After completing the training maps, the user drove through
5 “test maps”. Instead of using the POMDP model to choose
the controller, they were given either the “LeastHelp” or the
“MostHelp” controller. The users then ran those same 5 maps
a second time with the other controller. During the test maps,
the controller used first is counterbalanced so that half the
users started with the “LeastHelp” controller and half started
with the “MostHelp” controller. Therefore, the results will
not be skewed from seeing the maps a second time. We
used the controllers with the most/least autonomy in the test
maps so that we could compare how the amount of autonomy
affected the users.

V. RESULTS

A. Training Maps

Fig. 4 shows the total number of obstacles hit versus
the mean probability of the user being a Beginner during
the training maps. Fig. 5 shows the total time in seconds
to complete the training maps versus the mean probability
of the user being a Beginner. Though there is variance in
the results, the plots show that the users who have a higher
probability of being a Beginner did perform worse than users
who had a lower probability. Users who had a high average
probability of being a Beginner tend to hit more obstacles
and take longer to complete the maps than those with a low
average probability. The probability that the model predicts
the user is an Expert over the training maps is shown for
three of the users in Fig. 6. User 1 has a high probability of
being an Expert through most of the maps. User 2 has a low
probability of being an expert for the first 15 maps, but then
the probability increases, showing that they have improved.
User 3 may have performed well on some maps, but never
performed consistently enough for the POMDP to give them
a high probability of being an Expert by the end of the maps.

70

@
<]
T

r? =0.41273

3
S
T

o
o
T

w
S
T

n
o
T

Total Number of Obstacles Hit in Training Maps

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Mean Probability of Beginner State

o

Fig. 4: The total number obstacle hits in the training maps versus
the mean probability of being a Beginner.

1300
% 1200 | r? = 0.4273
1100 |

1000

©

o

S
T

@

o

[S)
T

700 -

600 -

500 -

400

Total Time to Complete Training Maps (seconds

300 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mean Probability of Beginner State

Fig. 5: The total time to complete the training maps versus the
mean probability of being a Beginner.

B. Test Maps

We pose three hypotheses regarding the validity of using
the different controllers for different users. We looked at the
number of obstacles hit, the total time to complete the maps,
and the total amount of user input, the amount of time the
user was pressing one of the WASD keys. The “MostHelp”
controller was designed with the intention of helping users
avoid obstacles at the cost of slowing the robot more and
giving more control to the robot. The “LeastHelp” controller
was designed for users more skilled at avoiding obstacles.
Since these users need little or no help to avoid obstacles,
there is less need to slow them down or give the robot
more control. Because the robot’s autonomy was presented
as the robot “helping”, the names Most, More, Some, and
LeastHelp were given to show the user how much the robot
would be helping them avoid obstacles. However, the robot’s
increased autonomy also slowed the robot down more and
requires more user input to counteract if the robot tries to
turn away from obstacles against the user’s wishes. While

o
©
T

o || [
8 | | '
) |/ |
To06f | I | 1
3 | o |
3 | |
il a |
© | *
>04 71 | |
= | /
©
Q
O o2t il # —e—User 1-Expert 1
o *X J —*— User 2-Improves
X ¥ User 3-Inconsistent
*
0 L L L L L
0 5 10 15 20 25 30
Map Number

Fig. 6: The POMDP’s predicted probability of being at the Expert
state over the training maps for 3 users.

this does help to avoid obstacles, it can also increase the
time and amount of user input needed to complete the maps.
Three hypothesis were proposed.

Hypothesis 1a Using the “MostHelp” controller will result
in fewer obstacles hit than using the “LeastHelp” controller.

Hypothesis 1b Using the “LeastHelp” controller will result
in shorter time to complete the maps than using the “Mos-
tHelp” controller.

Hypothesis 1¢ Using the “LeastHelp” controller will result
in less user input to complete the maps than using the
“MostHelp” controller.

A paired t-test was conducted to compare the users’ results
from the test maps while using the “LeastHelp” controller
and the “MostHelp” controller. We use a p-value<0.05 as
a threshold for statistical significance, and a p-value<0.1
as trending towards statistical significance. The results are
shown in Fig. 7. There was a statistically significant differ-
ence in the number of obstacles hits for “LeastHelp” (M =
3.14, SD = 2.60) and “MostHelp” (M = 1.64,SD = 1.50)
conditions; #(13)=2.39, p=.033. There was also a statistically
significant difference in the total user input for “LeastHelp”
M = 55.68, SD = 18.10) and “MostHelp” M = 71.97,
SD = 25.88) conditions; #(13) = -3.16, p = .008. There
was not a statistically significant difference in the total time
for “LeastHelp” (M = 90.13, SD = 29.21) and “MostHelp”
M = 97.89, SD = 1.50) conditions; #(13) = -1.80, p =
.095. Hypothesis la and lc are supported with statistical
significance, and while Hypothesis 1b is not statistically
significant, it shows a trend towards significance. These
results suggest that while using the “MostHelp” controller,
a user will hit less obstacles; however, when using the
“LeastHelp” controller the amount of time and user input
needed to complete the map decreases. For users who are
able to avoid obstacles well on their own, the “LeastHelp”
controller is the more fitting option.

(a) Number of Hits (p = .033)

(b) Total Time (p = .095)

10 + :
2 %\ 140 h 120 -
© I — I
= § 130 | 2110
B 8t 8 ! ‘ 2 |
s 2 120 | [8 100 !
- @ | ! 2 |
£ Q | ! - 90 |
[7) T 110 | 2 |
£ 6f I = ! 5] T
T | 3 I = 80 !
® ! $ 100 | = |
) ! " [| @ 70 !
g 1 © g0 s
2 4 v k] = 60
O o = T
- - £ 80 3 50 |
o I 8 | =3 I
3 2 o 70 I T 40 i |
o = L Q |
S) T 2 30 |
2 ! E 60 ! = |
4 | | ': | -._‘E 20 |
50 ‘ ‘ T 50+ ‘ ‘ o - ‘
° °
= LeastHelp MostHelp [LeastHelp MostHelp LeastHelp MostHelp

(c) User Input (p = .008)

Fig. 7: The performance using the “LeastHelp” and “MostHelp” controllers. There is a statistically significant difference between the
number of obstacle hits (7a) and the total user input (7c). The difference in total time is trending towards significance (7b). We can take
away from these results is that using the “MostHelp” controller reduces the number of obstacles hit, but using the “LeastHelp” controller
reduces the time and the amount of user input needed to complete a map.

10 T
140 120 T

2 I LeastHelp > Il LeastHelp [l LeastHelp
5] " IMostHelp T 120 [IMostHelp | & [IMostHelp
= g £ 100]
(%3 (0] (=]
(o} K2 o
= % 100 3
= S % 80
%) S Q
= 6r = 5]
I 5 80 =
§ 2 2 60
- o =
B 4r 1 2% =

=% =
o £ 3 40
> g 4 g
8 af 1 e 3
E o 20 S 2
2 £ =
= = g
g . . s . . = . .
= Beginners (n=4) Experts (n=10) L Beginners (n=4) Experts (n=10) Beginners (n=4) Experts (n=10)

(a) Number of Hits (p = .037)

(b) Total Time (p = .966)

(c) Total User Input (p = .972)

Fig. 8: The performance from users grouped into Beginners and Experts. The error bars show the standard deviation. The change in
performance from the two controllers is compared for Beginners and Experts. There is a statistical difference in the number of obstacles
hits (8a). There is not a statical difference in the total time (8b) and total user input (8c). These results suggest that Beginners receive the
most amount of assistance in avoiding obstacles when using the “MostHelp” controller, but the reduction of time and user input is not

significantly greater for Beginners and Experts.

We compared the results of users at different skill levels
to see if the two controllers made significant improvements
for users of higher and lower expertise. We grouped the
users into “beginners” and “experts” based on the mean
probability of user state of maps 20-30 performed in the first
part of the experiment. Users who had reached a mean Expert
probability above 0.9 were classified as “experts” (10 users),
while those below were classified as “beginners” (4 users).
Looking at the Fig. 6, those such as User 1 (high probability
of Expert through most of the training maps) and User 2
(showed improvement and had a high probability of Expert
at end of training maps) were classified as experts. Those
such as User 3 (did not improve greatly) were classified as
beginners. We posed three more hypothesis to compare the
controllers between the different kinds of users.

Hypothesis 2a The difference in the number of obstacles
hit between using the “MostHelp” and the “LeastHelp”
controller will be greater for users classified as beginners
than users classified as experts.

Hypothesis 2b The difference in the time to complete the
maps between using the “MostHelp” and the “LeastHelp”

controller will be greater for users classified as beginners
than users classified as experts.

Hypothesis 2¢ The difference in the user input to complete
the maps between using the “MostHelp” and the “Leas-
tHelp” controller will be greater for users classified as
beginners than users classified as experts.

An unpaired t-test was conducted to compare the dif-
ference between using the “LeastHelp” controller and the
“MostHelp” controller for the users classified as Beginners
and Experts. Fig. 8 shows the differences between the user
types. There was a statistically significant difference in the
difference of obstacles hits for Beginners (M = 3.50, SD =
3.11) and Experts (M = 0.70, SD = 1.49); #(12) = 2.34, p
= .037. There was not a statistically significant difference in
the difference of total time for Beginners (M = -7.45, SD =
9.49) and Experts (M = -7.88, SD = 18.58); #(12) = 0.043,
p = .966. There was not a statistically significant difference
in the difference in user input for Beginners (M = -16.61,
SD = 29.49) and Experts (M = -16.17, SD = 15.72); t(12) =
-0.037, p = .972. Hypothesis 2a is supported with statistical
significance suggesting that for the Beginner users, using the

“MostHelp” controller gives more improvement in terms of
the number of obstacles hit. Hypothesis 2b and 2c¢ do not
show a statistically significant difference between Beginners
and Experts for total map completion time and user input
time. What these results suggest is that users who are less
skilled receive more assistance from the robot autonomy in
avoiding obstacles than a more skilled user would receive.
Since Experts do not improve as much as Beginners from
the increase in the robot’s control, a controller that lets
them complete the maps more quickly may be the more
appropriate controller to use.

VI. CONCLUSION AND FUTURE DIRECTIONS

The results from the user trial show that our model can
distinguish between users of different skill level. Our results
have shown that the users that have lower probabilities of
being an Expert hit more obstacles and take more time to
complete the maps. They also showed that our designed
macro-action controllers were able to reduce the number of
obstacles hit with the robot’s assistance, but this assistance
also increased the amount of time to complete the maps
and the amount of input the user had to give. Though this
was the case for all users, we found that the users with a
lower probability of being an Expert received more help in
avoiding the obstacles than those with a higher probability
of being an Expert. There was no statistically significant
difference between the two types of users when looking at
the amount of time and user input, but for Expert users,
a controller that allows them to complete the maps faster
should be chosen since there is little difference in the number
of obstacles hit. These results support our idea that using a
macro-action POMDP to predict user expertise can be useful
when leveraging levels of shared autonomy. Our model has
shown promising results so far, and we are working to make
further improvements.

In this paper, the only user observations considered were
how often they would hit an obstacle. Future work using our
POMDP model will observe more complex human actions,
such as control stability. We also plan to apply our model to
robots in the field. While the user controls the robot, expertise
will be learned on the fly, and controllers will be chosen for
the users as they either improve or fatigue. Another future
goal is to be able to automatically synthesize controllers.
We plan to use our ability to observe user actions to train
simulated-user bots to act as either beginners or experts.
Using these bots, we will synthesize controllers that are
able to optimize the performance different users in numerous
scenarios. For example, one might want to use a controller
to train a beginner to become an expert, but in another case,
they may want just optimize the goal without worrying about
improving the user’s ability to operate the robot.

User expertise makes a difference in how a user performs
with a robot. Finding ways to tune the levels of shared
autonomy between different users is necessary for improving
human-robot teaming, and using the user’s expertise is one
more way to design robots that are better able to suit the
needs of a wide variety of users.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

L. Milliken and G. A. Hollinger, “Modeling user expertise for choosing
levels of shared autonomy,” in Proc. Planning for Human-Robot
Interaction Shared Autonomy and Collaborative Robotics Workshop,
Robotics: Science and Systems Conference, 2016.

A. D. Dragan and S. S. Srinivasa, “A policy-blending formalism
for shared control,” The International Journal of Robotics Research,
vol. 32, no. 7, pp. 790-805, 2013.

S. Nikolaidis, A. Kuznetsov, D. Hsu, and S. Srinivasa, “Formalizing
human-robot mutual adaptation via a bounded memory based model,”
in Proc. ACM/IEEE International Conference on Human-Robot Inter-
action, 2016, pp. 75-82.

A. Dragan, K. Lee, and S. Srinivasa, “Teleoperation with intelligent
and customizable interfaces,” Journal of Human-Robot Interaction,
vol. 1, no. 3, pp. 33-79, 2013.

M. Gao, J. Oberldnder, T. Schamm, and J. Zollner, “Contextual task-
aware shared autonomy for assistive mobile robot teleoperation,” in
Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2014, pp. 3311-3318.

A. Franchi, C. Secchi, M. Ryll, H. Bulthoff, and P. Giordano, “Shared
control: Balancing autonomy and human assistance with a group of
quadrotor uavs,” IEEE Robotics & Automation Magazine, vol. 19,
no. 3, pp. 57-68, 2012.

T. Somers and G. Hollinger, “Human-robot planning and learning for
marine data collection,” Autonomous Robots, vol. 40, no. 7, pp. 1123—
1137, 2016.

S. Anderson, S. Karumanchi, and K. Iagnemma, “Constraint-based
planning and control for safe, semi-autonomous operation of vehicles,”
in Proc. IEEE Intelligent Vehicles Symposium (IV), 2012, pp. 383-388.
A. Steinfeld, T. Fong, D. Kaber, M. Lewis, J. Scholtz, A. Schultz,
and M. Goodrich, “Common metrics for human-robot interaction,” in
Proc. ACM SIGCHI/SIGART conference on Human-Robot Interaction,
2006, pp. 33-40.

J. Beer, A. Fisk, and W. Rogers, “Toward a framework for levels of
robot autonomy in human-robot interaction,” Journal of Human-Robot
Interaction, vol. 3, no. 2, p. 74, 2014.

S. Javdani, S. S. Srinivasa, and J. A. Bagnell, “Shared autonomy
via hindsight optimization,” in Robotics: Science and Systems, Rome,
Italy, 2015.

L. Takayama, E. Marder-Eppstein, H. Harris, and J. M. Beer, “Assisted
driving of a mobile remote presence system: System design and
controlled user evaluation,” in Proc. IEEE Conference on Robotics
and Automation, 2011, pp. 1883-1889.

K. Hauser, “Recognition, prediction, and planning for assisted tele-
operation of freeform tasks,” Autonomous Robots, vol. 35, no. 4, pp.
241-254, 2013.

P. Pinheiro, E. Cardozo, and C. Pinheiro, “Anticipative shared control
for robotic wheelchairs used by people with disabilities,” in Proc.
IEEE International Conference on Autonomous Robot Systems and
Competitions, 2015, pp. 91-96.

E. Demeester, A. Hiintemann, D. Vanhooydonck, G. Vanacker, H. V.
Brussel, and M. Nuttin, “User-adapted plan recognition and user-
adapted shared control: A bayesian approach to semi-autonomous
wheelchair driving,” Autonomous Robots, vol. 24, no. 2, pp. 193-211,
2008.

S. Javdani, J. A. Bagnell, and S. Srinivasa, “Minimizing user cost for
shared autonomy,” in Proc. ACM/IEEE International Conference on
Human-Robot Interaction, 2016, pp. 621-622.

S. Nikolaidis, P. Lasota, R. Ramakrishnan, and J. Shah, “Improved
human-robot team performance through cross-training, an approach
inspired by human team training practices,” The International Journal
of Robotics Research, vol. 34, no. 14, pp. 1711-1730, 2015.
“Approximate pomdp planning software,” http://bigbird.comp.nus.edu.
sg/pmwiki/farm/appl, 2014.

P. Shinners, “Pygame,” http://pygame.org/, 2011.

C. Amato, G. Konidaris, A. Anders, G. Cruz, J. P. How, and L. P. Kael-
bling, “Policy search for multi-robot coordination under uncertainty,”
in Robotics: Science and Systems Conference, 2015.

J. W. Crandall and M. A. Goodrich, “Characterizing efficiency of
human robot interaction: A case study of shared-control teleoperation,”
in Proc. IEEE/RSJ International Conference Intelligent Robotics and
Systems, vol. 2, 2002, pp. 1290-1295.

