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Abstract— Marsupial robot teams consist of carrier robots
that transport and deploy multiple passenger robots, such
as a team of ground robots that carry and deploy multiple
aerial robots, to rapidly explore complex environments. We
specifically address the problem of planning the deployment
times and locations of the carrier robots to best meet the
objectives of a mission while reasoning over uncertain future
observations and rewards. While prior work proposed optimal,
polynomial-time solutions to single-carrier robot systems, the
multiple-carrier robot deployment problem is fundamentally
harder as it requires addressing conflicts and dependencies
between deployments of multiple passenger robots. We propose
a centralized heuristic search algorithm for the multiple-
carrier robot deployment problem that combines Monte Carlo
Tree Search with a dynamic programming-based solution to
the Sequential Stochastic Assignment Problem as a rollout
action-selection policy. Our results with both procedurally-
generated data and data drawn from the DARPA Subterranean
Challenge Urban Circuit show the viability of our approach
and substantial exploration performance improvements over
alternative algorithms.

I. INTRODUCTION

Rapid robotic exploration of a wide-range of environ-
ments, such as for urban search and rescue [1], [2], [3]
or marine monitoring [4], [5], [6], can be achieved by
heterogeneous multi-robot systems called marsupial robots.
These systems typically consist of a large and robust carrier
robot (e.g., a ground vehicle or surface vessel) that transports
smaller but agile passenger robot(s) (e.g., aerial or underwa-
ter robots) [7]. By utilizing complementary capabilities be-
tween the different types of robots, marsupial robot systems
are able to explore complex environments that contain navi-
gation or sensing challenges, such as vertical shafts or smoky
occlusions, that a single type of robot cannot overcome on its
own. As we scale to larger and more complex environments,
it is necessary to expand these marsupial robot teams to
comprise multiple carrier robots. This enables carrying larger
teams of passenger robots and achieving a wider spatial
coverage of passenger robot deployment locations.

A key challenge to address in these systems is the selection
of a high value set of passenger robot deployment locations.
The value of deployment locations are quantified through
application-specific rewards, such as frontier cells for explo-
ration tasks. This problem requires reasoning over the value
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of deploying a passenger robot immediately at the current
decision point compared to the uncertain value of possible
future deployment locations [8]. Additionally, as we scale
to larger numbers of passenger robots, it is also necessary
to ensure the set of selected deployment locations do not
include conflicting deployments within close proximity to
each other that would prohibit efficient and safe exploration.

For the case of a single carrier robot, an optimal,
polynomial-time deployment planning algorithm was pro-
posed in our previous work [8]. This algorithm draws upon
the close relationship to the Sequential Stochastic Assign-
ment Problem (SSAP) [9], which poses the problem of
selecting an optimal subset of a set of sequentially-revealed
random variables. The decision to include or exclude a ran-
dom variable must be made as it is revealed while reasoning
over prior knowledge of future rewards. This SSAP decision
process is analogous to the process of deploying marsupial
robots.

However, this SSAP-based algorithm [8] fails to ade-
quately address the complexities of the multiple carrier
robot deployment problem. Specifically, it is suboptimal
in scenarios where it is necessary to reason over conflicts
between possible deployment locations, which arise due to,
for example, the need to not deploy passenger robots in close
proximity. We address this generalized problem in this paper.

We propose the first solution algorithm to the multiple-
carrier, multiple-passenger marsupial robot deployment prob-
lem. At each candidate deployment location, the algorithm
reasons over the value of deploying now in comparison to
the expected future value of continuing on and deploying
at a later stage. This reasoning is performed by employing
Monte Carlo Tree Search (MCTS) [10] coupled with a fast
and effective problem-specific heuristic rollout policy. MCTS
optimizes over the joint deployment action space of the
multiple carrier robots while considering penalties introduced
by deployment conflicts. Rather than using the standard,
naive random rollout policy within MCTS, we propose an
action selection heuristic that generalizes the single carrier
robot SSAP algorithm [8]. This rollout policy influences
the subsequent tree search expansions, and thus improves
the overall performance of the tree search. The algorithm
is anytime and maintains the asymptotic convergence guar-
antees of MCTS [11]. Our MCTS algorithm is executed
by a centralized decision maker, motivated by scenarios
where sufficient communication infrastructure is available;
however, we also anticipate the methods proposed here to be
a necessary foundation for the development of decentralized
planners for this problem in the future.

We present simulated marsupial robot deployment ex-



periments where a team of carrier ground robots housing
multiple aerial passenger robots seeks to deploy the pas-
senger robots in deployment locations with high exploration
value. Each carrier robot observes features of interest that are
unreachable to the ground robots but accessible to passenger
aerial robots. We present results in two scenarios: one with
random features of interest drawn from a Poisson point
process, and the other where these features are derived from a
dataset recorded by three exploring robots during the DARPA
Subterranean Challenge Urban Circuit [12]. In experiments
with up to 6 carrier robots and 18 passenger robots, our
algorithm outperforms the optimal deployment policy to the
relaxed deployment problem without conflicts [8] and MCTS
with the standard random rollout policy.

II. RELATED WORK

The increased complexity of marsupial robots over more
traditional multi-robot systems require planners that are able
to handle tasks such as coordination, deployment, and re-
trieval of the passenger robots, in addition to typical planning
requirements of multi-robot systems. Planners must consider
locations that are traversable by the carrier robot and obsta-
cles that are not, requiring the differentiating capabilities of
passenger robots [13], [14].

The problem of planning deployment locations is key to
the success of all of the above decision making, as a poor
deployment location selection can result in passenger robots
being unable to contribute towards the mission objectives.
These deployment decisions have largely been left to hu-
man operators [15], who may not have adequate situational
awareness to effectively make these decisions. One way to
automate these decisions is to formulate a policy that triggers
deployments based on predefined Boolean conditions, such
as the discovery of a goal that is unreachable to the carrier
ground robot [2], [16]. However, these relatively simple
approaches are limited in applicability and do not reason over
the long term value of decisions, particularly when there are
multiple passenger robots to deploy.

These limitations have been addressed by a recently
proposed SSAP-based algorithm [8]. The SSAP algorithm
reasons over the observations encountered in the environment
and possible future observations in order to deploy multiple
passenger robots in high value locations for robotic informa-
tion gathering. Other related deployment algorithms include
formulating the problem as a coverage-type problem [17],
[18], as well as algorithms that combine more complex
triggers such as power consumption and communication
availability [19]. However, these approaches do not consider
conflicts and dependencies between different deployment
decisions. We leverage MCTS to reason over these conflicts
and dependencies while borrowing ideas from the SSAP-
based algorithm [8].

MCTS [10] is rising in popularity as a high performing
search algorithm for sequential decision making in robotics.
This is in part due to its flexibility to optimize with respect to
a general class of reward functions and its ability to naturally
handle uncertainty [6], [20], [21], [22], [23], [24]. Best

Fig. 1. A deployment problem example with R = 3 carrier robots. Each
colored circle represents a deployment decision location with the associated
stage j. Here, overlap conflicts can be seen inside the blue circles. The first
overlap conflict would be defined as o1 = {[r1, 3], [r2, 7], [r3, 6]} and the
second conflict defined as o2 = {[r1, 6], [r3, 3]}.

results are often achieved when replacing the default random
rollout policy with problem-specific heuristics, which are di-
rectly leveraged to guide the best-first search procedure [25].
In robotics, a common problem-specific rollout policy is the
greedy policy for information gathering [6], [21], [26]. For
the deployment problem, the single-carrier SSAP solution
discussed above [8] presents a useful heuristic for the multi-
carrier generalization.

MCTS-based algorithms have also recently been proposed
for the context of multi-robot systems. These include cen-
tralized algorithms where a single search tree represents the
action space of all robots [24], and decentralized algorithms
where each robot separately searches over a tree representing
its own actions [21], [23]. Here, we focus on centralized
contexts, and thus formulate a similar search tree to [24], but
our proposed SSAP-based rollout policy is also applicable to
the decentralized MCTS variants.

III. THE MULTIPLE MARSUPIAL ROBOT
DEPLOYMENT PROBLEM

We consider a marsupial robot system consisting of mul-
tiple carrier robots, each carrying multiple passenger robots.
A centralized decision maker must make online decisions re-
garding when to deploy the passenger robots. These decisions
must be made while reasoning over both the reward gained
from deploying immediately and the estimated rewards for
deploying at an unknown later deployment location. The
decision maker must also consider potential deployment
conflicts by reasoning over the loss of reward caused by
multiple deployments in close proximity. We formalize this
problem as follows.

A. Marsupial Robot Team Decision Points

The multi-robot team consists of R carrier robots denoted
(r1, r2, ..., rR), with each carrier robot carrying D passenger
robots to deploy. Along each carrier robot’s path, there are N
stages that represent possible deployment locations. For each
carrier robot r, there are a sequence of N random variables
(Xr

1 , X
r
2 , ..., X

r
N ), which represent deployment rewards as-

sociated with each decision point (ignoring the conflicts



introduced below in Sec. III-B). We assume the random
variables x are distributed according to a known prior dis-
tribution f(x) and are assumed to be independent. At stage
j ∈ {1, ..., N}, the carrier robot reaches a decision point,
and the outcomes of all random variables (Xr

1 , X
r
2 , ..., X

r
j ),

denoted (xr1, x
r
2, ..., x

r
j), have been observed and are known

to the decision maker.
For each carrier robot, a subset of the N stages may be

invalid deployment locations; for example, due to staggered
start times between the carrier robots. To maintain consistent
indexing between the different carrier robots, we denote the
realized observations at an invalid deployment stage j for a
robot r as xrj = ∅.

B. Deployment Conflicts

As illustrated in Fig. 1, some possible deployment loca-
tions may be in close proximity to each other. However,
in many applications, it is undesirable to deploy passenger
robots in close proximity to each other since it may, for
example, lead to inefficient exploration of the environment.
We refer to groups of decision points in close proximity
with each other as conflicts. Each conflict is defined by an
overlap o ∈ O, where O is the set of all overlaps. Each
overlap o ∈ O is defined as a set of robot–stage pairs
o = {[r1, j1], [r2, j2], ...}, which implies that the deployment
location for carrier robot r1 associated with stage j1 is in
conflict with the robot–stage pairs with o. For simplicity,
we focus on addressing problems with overlap definitions
where each carrier robot r does not have conflicts with itself
at later stages (i.e., ri 6= rj ,∀[ri, ji] 6= [rj , jj ] ∈ o), although
the proposed algorithm allows for relaxing this constraint.

If carrier robot r deploys a passenger robot at stage j, then
a reward of vrd = xrj/p is received, where 1/p is a penalty
factor associated with conflicts. Specifically, we define p as
the number of selected passenger robot deployments that are
within the same conflict set as [r, j]. This penalty factor
defines a loss of reward associated with making multiple
deployments in close proximity (conflict) with each other. We
note that while we focus on this conflict penalty definition
throughout this paper, our proposed algorithm would also be
applicable to other definitions.

C. Deployment Actions

The action of carrier robot r at stage j is defined as arj . At
each deployment location, carrier robot r has two possible
actions: deploy the passenger robot, or continue to the next
deployment location. The joint actions of all of the R carrier
robots at stage j is defined as Aj = {a1j , a2j , ..., aRj }. If the
carrier robot has no remaining passenger robots to deploy,
the carrier robot defaults to a no-deploy action. At stage j,
the decision maker knows the previous deploy actions of all
carrier robots.

D. Problem Statement

The set of stage indices where the passenger robots are de-
ployed by carrier robot r are defined as dr = (dr1, d

r
2, ..., d

r
D).

Furthermore, the set of all of the deployed stage indices

across all carrier robots is defined as π = {d1, d2, ..., dR}.
As such, the goal of the decision maker is to maximize
the expected sum of the rewards returned from the chosen
deployment locations; i.e., find the optimal deploy sequences

π∗ = argmax
π

E
[ R∑
r=1

D∑
d=1

vrd

]
, (1)

where R is the number of carrier robots, D is the num-
ber of passenger robots per carrier robot, and vrd is the
reward for each deployment after accounting for conflicts
(penalty factor 1/p). The expectation in (1) is with respect to
the unknown outcomes (xr1, x

r
2, ..., x

r
j) of random variables

(Xr
1 , X

r
2 , ..., X

r
j ).

The key computational challenges presented by this prob-
lem lie in the need to reason over these unknown rewards
of future deployment decisions and also the need to account
for deployment conflicts, which lead to dependencies in the
reward structure.

IV. MCTS WITH SEQUENTIAL STOCHASTIC
ASSIGNMENT ROLLOUT POLICY

We propose a centralized algorithm for the multiple mar-
supial robot deployment problem that combines MCTS [10]
with heuristics derived from solutions to SSAP [9]. MCTS
is a general-purpose sequential decision making algorithm
that admits problem-specific heuristics. While SSAP-based
algorithm have been proposed as an optimal solution to
the single carrier robot deployment problem [8], here a
SSAP-based algorithm serves as a strong heuristic to guide
our MCTS-based algorithm for the multiple carrier robot
deployment problem, which requires additionally addressing
deployment conflicts.

This section begins by providing an overview of the tree
data structure and overall algorithm, followed by a detailed
description of the key algorithmic components and a brief
analysis of runtime complexity and optimality.

A. Search Tree and Algorithm Overview

At stage j, our online algorithm incrementally expands
and searches over a search tree Tj , which represents the
search space for the remaining deployment decisions. The
root of Tj represents stage j, while subsequent layers of Tj
are associated with future stages {j+1, ..., N}. The outgoing
edges of a vertex enumerate all possible joint actions Ai
available to the team at stage i.

Pseudocode for the algorithm is provided in Alg. 1.
The search proceeds by employing standard MCTS [10]
(described further in Sec. IV-B) with an adapted rollout phase
that exploits information provided by the optimal solution to
the single carrier deployment problem to guide the search
tree expansion (described further in Sec. IV-C). It does this
while reasoning over the various inputs introduced in Sec. III,
which we summarize as follows:
• the current observations xrj by each carrier robot of the

associated random variables,
• the prior belief distribution f(x) for all possible future

deployment locations,



• the previous actions of the carrier robots (A1, ..., Aj−1),
which influences potential future deployment conflicts,

• the set of deployment conflict overlaps O, and
• the number of stages remaining: N − j.

The search concludes after a predefined number of iterations
and returns the estimated best joint deployment action Aj to
execute at stage j.

B. MCTS for Multiple Carrier Robot Deployments

Our deployment algorithm employs the standard MCTS
algorithm [10] to incrementally expand and search over the
search tree Tj . We summarize MCTS as follows, and defer
our main innovation—the inclusion of a new SSAP-based
rollout policy—to Sec. IV-C. MCTS consists of four phases:
selection, expansion, rollout, and backpropagation.

In the selection phase (Alg. 1 line 4) a path is followed
through Tj from the root node to a leaf node n. As per
the standard UCT selection policy [11], this path is created
by recursively selecting child nodes that maximize an upper
confidence bound:

v̄(n′) + c

√
ln t(n)

t(n′)
, (2)

where v̄(n′) is an estimate of the average reward associated
with the node n′ that is being considered, t(n) is the number
of samples that have passed through the parent node n,
t(n′) is the number of samples that have passed through
the considered node n′, and c is the exploration parameter
(typically set as

√
2 if the rewards are scaled between 0 and

1). The purpose of following this upper confidence bound
policy is to naturally balance between exploring the tree
(i.e., pick nodes that have been considered fewer times) and
exploiting the knowledge gained so far (i.e., pick nodes with
high expected rewards).

In the expansion phase (line 5), a new child node n+ is
added to Tj that extends from the selected node n. This
node n+ is chosen arbitrarily from any of the feasible joint
actions that may be performed from the state represented
by n. For our context of the deployment problem, a joint
action is considered feasible if all carrier robots do not
deploy more than the number of passenger robots they are
carrying, deployments only occur at valid deployment stages
(see Sec. III-A), and at stage N all passenger robots have
been deployed.

In the rollout phase (lines 6–8), a sequence of feasible
actions is generated according to some given policy and then
evaluated with respect to the reward function. In standard
MCTS, the given policy is a random policy. However,
there is also an opportunity here to employ problem-specific
heuristics here to improve the reward estimates and speed up
the search. We discuss our proposed rollout policy below in
Sec. IV-C.

Every node n in the tree maintains a reward average
v̄(n) and a count t(n) of the number of rollouts that pass
through this node. These two quantities are updated during
the backpropagation phase (line 9). The rollout evaluation
v is merged into the averages stored at all nodes on the

path from the expanded node n+ back to the root node,
and the associated counts are incremented. These updated
statistics guide the selection phase in the following iteration,
and thus the tree expansions are directly influenced by the
rollout evaluations.

At the end of the search (lines 10–13), the best node n∗

is picked as the node with the highest expected reward. The
first joint action in the sequence associated with n∗ defines
the deployment actions to be executed at this stage j. The
algorithm is online such that the algorithm is run again
at stage j + 1 while using any new gathered information,
particularly the previous deployment decisions and new
observations.

C. SSAP Action Selection Rollout Policy

As discussed above, problem-specific heuristics can be
used within the rollout phase to improve the reward esti-
mates, which in turn improves the MCTS node selection
and therefore the overall search performance. Ideal rollout
policies should be both fast to compute and provide good
reward estimates. For our deployment problem, we draw
inspiration from a solution to the single carrier robot problem
presented in [8]. While it is an optimal solution to the
single carrier formulation, for the multi carrier problem this
strong guarantee does not hold due to the need to address
the conflicts, which breaks the independence assumption.
However, we adapt it to provide reasonable reward estimates
for our generalized problem that can be computed quickly
within the online search algorithm.

Both the single carrier solution [8] and our adapted heuris-
tic for the multiple carrier case are based on the solution to
the Sequential Stochastic Assignment Problem (SSAP) [9].
The aim of SSAP is to find the optimal subset (with given
cardinality) of a set of random variables whose realizations
are revealed sequentially. The decision to include or exclude
a random variable from the subset must be made immediately
when its realization is revealed.

SSAP maps closely to our deployment problem, as the
value of a deployment location is only revealed as the
carrier robot arrives at a location, and decisions to deploy
or not deploy at a decision point are irreversible. We briefly
formalize the optimal solution to SSAP as follows (further
details may be found in [8], [9]) and discuss how we adapt
it to be used as an MCTS rollout policy.

The optimal SSAP policy [9] consists of precomputing
a set of thresholds {ai,n} for each stage. The realization
xrj of the random variable Xr

j is compared to the relevant
thresholds to determine whether to deploy now or wait until
a later decision point. These thresholds are computed by
considering the number of stages N and the prior belief
distribution for the rewards f(x). Specifically, for n =
N − j + 1 stages remaining, the thresholds are computed



Algorithm 1 Overview of the online deployment algorithm for selecting the deployment actions Aj at stage j.
1: Tj ← initialize MCTS tree
2: . Incrementally expand the search tree Tj
3: for fixed number of iterations do
4: n← SELECTNODE(Tj) . Select node to expand using UCT [11]
5: n+ ← EXPANDTREE(n) . Add new child node
6: (xrj+1, ..., x

r
N )∀r ← SAMPLEFUTUREOBSERVATIONS(f ) . Sample from the prior belief distribution

7: (Aj , ..., AN )← SSAP ROLLOUT(n+, (A1, ..., Aj−1), (xrj+1, ..., x
r
N )∀r,O) . SSAP heuristic: See Sec. IV-C

8: v ← EVALUATESOLUTION((xr1, ..., x
r
N )∀r, (A1, ..., AN ),O) . Evaluate the selected action sequence

9: BACKPROPAGATEREWARD(n+, v) . Update statistics along the path back to the root node
10: . Extract the solution
11: n∗ ← best node in Tj
12: Aj ← first joint action in sequence for n∗

13: return Aj

via the recurrence relationship

ai,n+1 = ai−1,n

∫ ai−1,n

−∞
f(x)dx+

∫ ai,n

ai−1,n

xf(x)dx

+ ai,n

∫ ∞
ai,n

f(x)dx, (3)

where −∞·0 = 0 and∞·0 = 0. The second term represents
an expectation of reward for the case where the reward
is revealed to be within the two thresholds and therefore
the decision maker receives this reward. The first integral
represents the expected future reward if the reward lies in a
lower threshold, and the third integral is for the case where
it lies in a larger threshold. The set of all thresholds can
be computed in quadratic time. If there are n− i passenger
robots left to deploy at stage j = N−n+1, then the optimal
policy is to deploy if xrj is greater than the ith interval, ai,n,
and do not deploy otherwise.

However, while the SSAP deployment policy is optimal for
a single carrier robot, it does not consider multiple carrier
robots and potential conflicts between the deploy locations,
as defined in Sec. III-B. The conflicts can be partly accounted
for by adjusting the belief reward distributions f(x) at
decision points that conflict with known prior deployments by
multiplying by the 1/p penalty factor. However, addressing
unknown future conflicts would require enumerating all
permutations of future deployments, which is infeasible to
achieve within a fast MCTS rollout policy. Therefore, we
instead rely on future MCTS iterations to correct for any
error in the reward estimates by this SSAP heuristic.

The MCTS rollout policy (Alg. 1 lines 6–8) also requires
evaluating the reward that will be achieved by the selected
sequence of actions. While for specific belief distribution
structures, it may be possible to efficiently compute the
expectations in (1) for a specific deployment sequence, in
general this will be impractical. Instead, we suggest ap-
proximating this expectation via Monte Carlo sampling of
the random variable realizations from the prior distribution
f(x). The actions executed by a rollout can be selected by
following the SSAP policy with respect to a sampled real-
ization of the random variables (Xr

j+1, ..., X
r
N ),∀r. Within

MCTS, these reward estimates are then used within the
backpropagation phase (line 9) to guide the subsequent tree
expansions.

D. Analysis

The fully expanded search tree contains 2RN tree nodes,
where R is the number of robots, and N is the number of
stages. MCTS is an iterative anytime algorithm that expands
a subset of this search space. Thus, the computation time
is directly proportional to the number of iterations, which
in practice is typically selected by the user. The runtime
complexity of each MCTS iteration of our algorithm is dom-
inated by the SSAP rollout computation, which is achieved
in quadratic time in the number of stages remaining [8], and
the reward evaluation, which has runtime proportional to the
number of samples used in the Monte Carlo sampling.

MCTS also provides strong convergence rate guarantees
for the convergence to the optimal action selection [11]. In
practice, MCTS performance can be further enhanced with
the use of problem-specific rollout policy heuristics [25].
While the proposed SSAP policy is optimal in the single-
carrier case with no conflicts, this optimality guarantee does
not extend to the generalized multiple-carrier case we con-
sider here as the conflicts break the independence assumption
of the reward distributions. Therefore, SSAP is instead best
used as a strong heuristic within a general search algorithm
that provides optimality guarantees, such as MCTS as we
have proposed here.

We note that the search tree Tj that is incrementally
expanded by our algorithm branches on actions but not
observations. Thus, the convergence guarantee is toward
the optimal open-loop action sequence rather than closed-
loop policy. The advantage of seeking the open-loop action
sequence is a lower branching factor, although it may come
at the cost of optimality in some contexts. Alternative MCTS
algorithms have been proposed for addressing the policy
search problem [27], and our SSAP rollout policy could
readily be used within these generalized MCTS algorithms.



V. EXPERIMENTS AND RESULTS

We evaluate our multi-carrier, multi-passenger robot
deployment algorithm in deployment experiments with
Poisson-distributed simulated data and real-world data from
the DARPA Subterranean Challenge [28]. The goal in these
scenarios is for the passenger robots to maximally observe a
set of features of interest by deploying passenger robots at
high value locations. Our deployment algorithm is compared
to other deployment strategies in order to demonstrate the
benefits of accounting for the conflicts and employing a
problem-specific MCTS rollout policy.

A. Comparison Methods

In the following experiments, we compare the following
deployment strategies:
• MCTS SSAP Rollout: Our method as described in

Sec. IV-A with the rollout policy described in Sec. IV-C.
• MCTS Random Rollout: A variant of our method, how-

ever with the standard random policy [10] during the
rollout phase.

• Single Robot SSAP: An optimal online deployment strat-
egy for a single carrier robot with multiple passenger
robots, adapted from [8]. This deployment strategy is
applied to each carrier robot independently, without
consideration for the conflicts between the deployment
locations.

• Random: A baseline method that selects D decision
points randomly from the path of each carrier robot.

B. Capturing Poisson-Distributed Features of Interest

1) Experimental Setup: A system of multiple marsupial
robots, composed of carrier robots transporting multiple
passenger robots, travels through a 2D simulated world. As
each carrier robot travels along the path, the robot detects
features of interests at each decision point j. The features
of interest in the environment are distributed as a stationary
Poisson point process. Accordingly, the number of features
xrj detected by carrier robot r at stage j is modeled as a
Poisson distribution with probability mass function

f(x) =
λxe−λ

x!
, for x ∈ {0, 1, ...}. (4)

If the carrier robot decides to deploy at the decision point,
a reward of vrj = xrj/p is received. The set of overlaps O
were randomly generated and kept constant throughout the
trials.

To ensure the rewards were approximately in the range
[0, 1], the rewards were normalized by the 90th percentile of
the belief distribution f(x). The exploration constant c was
set as 0.05×

√
2, which encouraged more exploitation of the

problem-specific rollout function.
2) Results: Fig. 2 shows results for simulated trials with

R = 4 carrier robots, each carrying D = 3 passenger robots.
Both the MCTS SSAP Rollout and MCTS Random Rollout
algorithm captured more features than the Single Robot
SSAP algorithm. The performance difference showcases the
advantages of MCTS in accounting for overlap conflicts

Fig. 2. Algorithm comparisons with error bars (one standard error of the
mean) of R = 4 carrier robots, each deploying D = 3 passenger robots,
and traveling for N = 10 stages over 50 trials. At each stage, MCTS ran for
10,000 iterations. The performance of Single Robot SSAP suffers as conflicts
increases, due to its inability to account for overlaps. MCTS SSAP Rollout
algorithm leverages the SSAP heuristic to improve over MCTS Random
Rollout as the number of overlap conflicts increases, making more efficient
use of the limited number of iterations.

Fig. 3. Algorithm comparisons with error bars (one standard error of
the mean) of various numbers of carrier robots, each deploying D = 3
passenger robots. The robots travel for N = 10 stages and encounter 10
potential overlap conflicts over 50 trials. At each stage, MCTS ran for 10,000
iterations.

between the carrier robots and avoiding reward penalties
stemming from deployment conflicts that the Single Robot
SSAP is unable to do. As the number of conflicts increases,
MCTS SSAP Rollout outperforms the MCTS Random Rollout
since the SSAP rollout heuristic is better able to reason
over potential passenger deployment conflicts. All methods
consistently outperformed Random.

We also show the scaling of our algorithm as the number
of carrier robots R increases from R = 2 to R = 6.
The number of MCTS iterations was kept constant across
all trials. Despite the increasingly large joint action space,
the MCTS algorithms consistently outperform the competing



algorithms. By leveraging the search capabilities of MCTS,
both MCTS SSAP Rollout and MCTS Random Rollout are
able to deploy large amounts of passenger robots without
heavy penalties incurred from conflicts. The potential for
conflicts and overlap penalties increases with more robots in
the environment, hindering the performance of Single Robot
SSAP, which only considers each robot independently and
does not account for overlap conflicts.

C. Subterranean Challenge Urban Circuit Data

To provide a real-world scenario for the application of
the algorithm, we tested the efficacy of our deployment
algorithm on recorded data from the Urban Circuit of the
DARPA Subterranean Challenge [28]. A team of marsupial
robots consisting of ground robots carrying aerial robots
autonomously explore the Satsop Nuclear Power Plant in
Elma, Washington. At the competition, several teams utilized
marsupial robots, but the aerial robot deployment decisions
were manually initiated by the human operator [12]. The
operator needed to constantly look for valuable deployment
locations for the passenger drones to deploy. As such, the
operator was required to constantly split their attention be-
tween other tasks and identifying ideal deployment locations.
This placed an additional burden on the operator, on top of
many other operational tasks required in the competition.
Our algorithm aims to directly address the deployment
problem autonomously, in order to relieve the burden from
the operator.

1) Experimental Setup: Frontier cells in an occupancy
grid were selected as a representation of features of inter-
est (e.g., shafts, ledges, passageways) that are worthy for
the passenger aerial robot to explore but cost-prohibitive
to access by the ground robot. Using OpenVDB [29], an
occupancy grid of the world was generated from the LiDAR
data collected from the competition. The value of a deploy-
ment location is based on the total number of frontier cells
captured within a 10 m radius of a ground robot’s location.
Cells are considered to be frontier cells if they are a free cell
neighboring at least one unknown cell [30]. Additionally, we
filter out easily accessible frontier cells by the ground robot
and only retain frontier cells which are above 1 m and below
0.1 m the ground robot’s position.

The carrier robots were deployed from the start location
asynchronously and deployment decision locations were set
every 100 seconds from the start of the hour-long run.
The reward sequences for each robot were padded with ∅
observations for times where the carrier robot had not yet
deployed from the start location, terminated the exploration
early, or the robot’s progress was stalled. For example, at
stage j = 3, time-from-start t = 300, robot R1 has already
started to explore the environment but robot R2 is still at
the start gate, awaiting to be deployed into the environment.
The observations of robot R1 at stage j = 3 would be
{x11, x12, x13}, whereas for robot R2, it would be {∅,∅,∅}.
For stages where robot r has an ∅ observation value, the
deployment algorithm removes the child nodes containing
deployment actions by robot r in the expansion phase and

Fig. 4. Deployment locations for each carrier robot in the Alpha envi-
ronment from the DARPA Subterranean Urban Circuit selected by MCTS
SSAP Rollout with 10,000 iterations and N = 19 stages. Robots 1 and 2
deploy in non-conflicting locations, avoiding the overlap conflicts. Robot
3 explores down a stairwell in the top left corner of the map and selects
to deploy in those locations. The Single Robot SSAP algorithm decided to
deploy in high value but conflicting locations.

modifies the SSAP threshold calculations in the rollout phase
to only consider N ′ stages remaining, where N ′ is the
number of total non-∅ stages. For the overlap conflicts
between all three robots, any deployment points within 30 m
(3 times the 10 m observation radius) of each other were
considered to be conflicting and added to the overlap set O.

2) Results: Our deployment algorithm was able to handle
the potential deployment conflicts between the R = 3 robots
and captured more features than the competing deployment
algorithms. The MCTS SSAP Rollout algorithm captured
157 features, compared to Single Robot SSAP: 122 features,
MCTS Random Rollout: 114 features, and Random: 68
features. The selected deployment locations for each robot
are illustrated in Fig. 4. The set of deployment locations
achieve good spatial coverage across the environment while
targeting the areas with high aerial robot exploration value.
As this was a real-world mission, multi-robot coordination
planning was employed between the carrier robots, which
naturally seeks to prevent path overlap between the robots
to maximize exploration efficiency. Compared to the sim-
ulated data in Sec. V-B, there is expected to be less non-
uniformly distributed overlaps. However, there were several
valuable locations that Single Robot SSAP selects to deploy
at but without consideration for overlap conflicts, leading to
penalties.



VI. FUTURE WORK

We proposed an algorithm for planning the deployment
of multiple passenger robots from multiple carrier robots in
a multi-marsupial robot system. Our algorithm reasons over
the future value of decisions and potential conflicts between
multiple deployments. In the future, we are interested in
developing decentralized algorithms, such as by employing
the SSAP rollout policy within Dec-MCTS [21], to enable
deployment planning in communication sparse environments.
It would also be interesting to plan over the space of closed-
loop policies, rather than open-loop action sequence, which
may be achieved with an MCTS generalization such as
POMCP [27], as noted in Sec. IV-D. Furthermore, exten-
sions for heterogeneous teams of passenger robots should
be developed, which may be achieved through generalized
assignment values [9]. Also, different forms of conflicts and
dependencies may exist between the deployment location
rewards, which would lead to alternative reward function
definitions, such as a set cover formulation. We would like to
demonstrate the viability of our approach in other domains,
such as in marine monitoring scenarios where multiple un-
derwater robots are deployed from multiple surface vessels.
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