
Optimized Robotic Information Gathering using
Semantic Language Instructions

Ian C. Rankin, Seth McCammon, Geoffrey A. Hollinger
Collobrative Robotics and Intelligent Systems (CoRIS)

Oregon State University
Corvallis, Oregon

Email: {rankini, mccammos, geoff.hollinger}@oregonstate.edu

Abstract—This work presents a framework that uses language
instructions to define the constraints and objectives for robots
gathering information about their environment. Commanding
and operating robots in the field is a challenging task, often
requiring a team of expert operators to run a single robot.
Commands require setting non-intuitive constraints and reward
functions in order for the robot to achieve sensible actions. This
work introduces a framework to convert language instructions
to robot plans without a large corpus of domain specific data.
Language commands provide an intuitive interface for operators
to give complex instructions to robots. This work introduces three
main contributions: a framework to map language instructions
to constraints and rewards for robot planners; a homotopic
constrained information gathering algorithm; and an automatic
semantic feature detection algorithm of upwelling fronts.

I. INTRODUCTION

Designing information gathering missions for robots re-
quires setting reward functions, cost functions, and constraints
for the planning algorithm. These functions are typically
challenging to define, and they cannot be changed without
modification of the robot’s software. In this paper, we propose
a framework which allows the user to set mission goals, con-
straints, and reward functions more naturally using language
instructions. We focus on the marine robot task of studying
coastal upwelling fronts. These fronts are locations where cold,
nutrient rich, deep water is pushed to the surface. The mixing
of the warm surface water and the deep water is of interest
scientifically for both biological and physical oceanography
[27]. Our framework allows complex language instructions
for information gathering tasks; an example command and
planned path is given in Figure 1.

The main challenge in generating robot plans from language
instructions is grounding the language to real features and
actions in the environment [2]. Solving this problem requires
a process of identifying salient features in the environment
then mapping the language instructions to these features.
There are three key components to the information gathering
from language instruction framework we present. First we
separate the detection of semantic features and the language
understanding task into separate problems. Then we directly

This research was funded in part by NSF grants IIS-1723924 and IIS-
1845227.

Sample the upwelling front, routing to the left of

the island. Use the gradient of the salinity eld.

Action = [sample],

Object = [Upwelling front 1],

Reward function = [gradient magnitude],

Information eld = [salinity],

Route constraints = [(island, left)]

Langauge

instruction

Plan

constraints

Robot plan

Fig. 1: Example planned path for “Sample the upwelling front, routing to
the left of the island. Use the gradient of the salinity field.” The language
instruction is grounded into a set of plan constraints, and then a constrained
information gathering algorithm is ran from the given plan constraints.

ground the language instruction from the dependency in-
formation contained in Universal Dependency (UD) trees,
without requiring a corpus of language instructions to robot
plan constraints. Finally, we use homotopic constraints [3] to
constrain the information gathering paths to distinct homotopy
classes defined by the given language instruction.

To create an information gathering plan from a given lan-
guage instruction, we first use the Stanford parser [5, 11, 17] to
generate a UD tree. Semantic features are generated from the
automatic semantic feature extractor and other named features.
The UD tree is then used to directly ground the language
instruction to robot action, constraints, reward function, and
information field. The constraints are turned into a set of
robot plan constraints with a given topological trajectory class,
goal sample locations, and a reward function. Finally, an
information gathering algorithm constrained to the desired
topological class is used to generate the information gathering
robot plan.

This paper introduces three main contributions. The first

contribution is a grounding framework which directly grounds
language instructions from the relationship information in a
UD tree to robot plan constraints. The second contribution
is a homotopy-constrained information gathering algorithm
which uses Dijkstra’s algorithm to precompute a homotopy
augmented graph to ensure expansion of the information gath-
ering algorithm to locations that satisfy the given constraints.
The final contribution is a semantic feature extractor to auto-
matically locate coastal upwelling fronts using a Convolutional
Neural Network (CNN).

This paper is structured as follows. In Section II, we discuss
related works to this paper. In Section III, we outline our
proposed method including grounding language instructions,
semantic homotopy graph formulation, constrained informa-
tion gathering algorithm, and the automatic semantic feature
extractor. Then, in Section IV we present the results of
the paper including results of generating robot plans from
language instructions taken from robotics researchers, and
results from the automatic upwelling front detector. Finally, in
Section V we discuss the limitations of our approach, future
research directions, and the conclusions of the paper.

II. RELATED WORKS

A. Language grounding

One way to solve the mapping of language instruction to
robot plan is using embodied AI, which is studying visually-
grounded navigation instruction following and question an-
swering [1, 25]. These methods combine the language un-
derstanding and feature recognition into a single framework.
However, embodied AI is focused on deep learning methods
which require a significant amount of training data. In current
embodied AI research this training is gathered from photo-
realistic indoor environments allowing the algorithms to train
over thousands to millions of iterations [25]. Unfortunately, it
can be difficult to collect the large quantities of data needed
to train these networks from field robotics domains. This
makes current embodied AI algorithms infeasible for these
environments.

An alternative way to solve this problem is to use natural
language dependency parsers, such as the Stanford Parser [5],
to find the structure of the language instructions before ground-
ing. The Stanford Parser extracts a UD tree [14], which decom-
poses the sentence into its component grammatical structures.
Previous works have used the shape of the dependency tree to
inform the language grounding process [9, 23]. More recent
works have focused on grounding language instructions using
neural networks for mapping semantic features to language
instructions and learning unknown object groundings [15, 24].
These methods all depend on greater amount of learning
requiring more data in order to operate effectively. The closest
work to the approach presented here is Howard et al. [6],
which uses a probabilistic graphical model with the shape
generated from the UD tree to construct robot plan constraints
from natural language instructions. Unlike Howard et al. [6],
which requires a corpus of language instructions that map
to robot constraints, our method uses explicit groundings to

map language instructions to robot plan constraints without
the need for a corpus.

B. Semantics and Homotopy

Semantic maps and features have been used in robotics
in indoor environments extensively. Semantic maps are rep-
resented using graphs G = (V,E) where vertices, v ∈ V ,
represent rooms, while edges, e ∈ E, represent connections
between rooms [4, 10]. Semantic features for these envi-
ronments are easy to determine using names of rooms like
“kitchen”. However, in unstructured field robotic domains
finding viable semantic features is challenging. Fortunately,
scientifically significant ocean features, such as upwelling
fronts provide nameable locations to use as semantic features
for planning.

In this paper we use homotopic constraints to allow the user
control over the path the robot takes rather than only the goal
and start locations. Two robot paths are defined to be in the
same homotopy class if they share start and end points and
there exists a continuous and invertible transformation between
them [3]. Previous works have used homotopy classes during
robot planning [12, 16]. We use the h-signature, a homotopy
invariant, to constrain paths to particular homotopy classes.
Bhattacharya et al. [3] shows using an homotopy augmented
graph, standard graph search algorithms, such as A*, are still
valid for any admissible function valid in the standard graph.
We use these results to apply the homotopy augmented graph
to the informative path planning problem.

C. Upwelling front detection

Traditionally, human experts are used to create bounding
boxes around upwelling fronts from satellite sea-surface tem-
perature images. These images are then used to guide robotic
exploration. Once deployed, robots can automatically detect
upwelling fronts using stratification of the water temperature
[28]. In our work we use the output of the Regional Ocean
Modeling System (ROMS) [20] along with a convolutional
neural network to automatically detect upwelling fronts before
robot deployment. Our labeled data representation and prob-
lem domain are similar to Rao et al. [18]. In their paper they
use data collected from an underwater unmanned vehicle as
input to a learned network classifying benthic habitats from
bathymetry patches. In our work we extend the patches of
overhead data to coast-aligned slices of salinity data, which
was found to outperform patches for detecting upwelling
fronts.

Putting each of these three main contributions together
we present our combined framework to ground language
instructions into a robot plan.

III. METHODOLOGY

In order to transform a language instruction into a robot
plan, we ground the instruction into constraints and an objec-
tive function which are then used by a planning algorithm.
By then utilizing a semantic homotopy augmented graph that
considers both points of interest and hazard nodes, a robot plan

routing

(parataxis)

left

(nmod)

island

(nmod)

of

(case)

front

(obj)

the

(det)

the

(det)

the

(det)

upwelling

(compound)

to

(case)

Sample

(root)

Fig. 2: Universal Dependency Tree for the command “Sample the upwelling
front, routing to the left of the island.” The two main branches of the tree
correspond to the topological feature of interest and its corresponding routing
constraint.

can be generated with topological and navigational constraints
relating to these features. Two different types of planners
are implemented to show the generalizability of the language
instruction parsing to both route-following commands and
information gathering commands.

A. Grounding language instructions

Language instruction grounding is broadly defined as map-
ping language instructions to real-world robot plans [2]. An
example of a grounding in the phrase “Sample the upwelling
front, routing to the left of the island” is the word ‘routing’
which maps to a constraint on the way that the robot travels
through the world. To build these groundings from a language
instruction to a set of robot constraints, we use the Stanford
Parser to create a Universal Dependency (UD) tree [11, 14].
Universal dependencies is a framework for annotation of gram-
mar across languages. These annotations are used to parse the
different words of the instruction into groundings for actions,
physical features, modifiers of features, and constraints.

Once complete, this process results in a tree structure with
the head of the sentence as the root of the tree. Each node
in the tree represents a syntactic word in the sentence, with a
dependency relationship to the node’s parent. The dependency
relationship indicates the structure of the sentence, which is
used to determine the type of groundings for each word.
Several key dependency relationships in robot instructions and
how each is handled are given below.
• Root Node (root): Match the main verb to a planner.
• Adjectival and Adverb modifiers (amod, advmod):

Attach the word as a modifier to its parent node to be
used to differentiate between possible groundings.

• Object, Oblique nominal, nominal modifier, conjunct,
parataxis (obj, obl, nmod, conj, parataxis): Object
nodes require grounding via the GroundNoun function
to features in the environment.

• Compound: Compound words are merged with their
parent.

Once the UD tree is generated, we use a breadth-first
search to iterate through each node in the tree. At each
node, depending on its dependency relationship, we ground

the word using a lookup table of possible meanings using the
GroundFromList function described below. This function
maps a word to a particular semantic feature in the envi-
ronment or a semantic action (e.g. Move, Sample), modifier
(e.g. Left, North), adposition (e.g. to, from), argument (e.g.
routing), or function (e.g. gradient magnitude). During this
process, most nodes are attached to their parents as arguments
modifying the grounding.

The root of the UD tree is the action word whose grounding
is the particular action planner (e.g. route following or infor-
mation gathering) that is used to plan the final robot behavior.
The remainder of the groundings provide this planner with
its objectives and constraints. For example in the UD tree
shown in Figure 2, “routing to the left of the island” imposes a
constraint on the planner, while “the upwelling front” provides
the objective.

While iterating through each node of the tree a mapping is
required between each obj / obl / nmod / conj / parataxis
node in the tree and the specific physical feature or features
in environment it refers to. This mapping if performed by the
function GroundFromList(UDNode, list). This function is
given a list of possible groundings and a particular word to
ground. Each grounding in the list has a unique name and a set
of keywords which describe the grounding (e.g. “Shaw Island”
is the unique name and keywords would be “island”, “shaw”).
Each keyword is a member of a Wordnet synset, which means
it has a semantic meaning behind that keyword [13]. During
a search for a given word (e.g. “isle”), the algorithm first
searches through the list to find any exact matches of the name.
Failing to do so, the algorithm then looks for exact keyword
matches, (e.g. if instead looking for the word island, would
find all groundings with the keyword “island”). If this search
also fails, then the algorithm uses the Resnik [19] revised Wu
and Palmer [26] method of measuring semantic relatedness.
If this distance is greater than the user-defined parameter then
that feature matches with the tested keyword and is added to
the possible grounding list. In practice we found that setting
this threshold to 0.875 produced good mappings from words
to groundings.

After mapping words using the GroundFromList func-
tion, a word may ground to multiple features if it does not
uniquely map to a single feature. For example, the phrase
“upwelling front” may result in a list of possible groundings if
there is more than one upwelling front in the environment. The
grounding modifiers derived from an object node’s children
can be used to help to identify a mapping to a single feature.
The parse function applies modifier functions on lists of
groundings (e.g. the “leftmost” or “southern”), and resolves
groundings to strict constraints on the action’s planner. This
function also checks for the validity of groundings (e.g. a
reward function passed to a Move action is marked as invalid).
Finally, the number of groundings for each node is checked. If
the word is plural multiple groundings are allowed, otherwise
if multiple groundings remain, a graceful failure is enacted
which asks the user to clarify which of the groundings is
correct. This failure mode can occur either if the framework

Island

h-sign = {-}

h-sign = {0}

h-sign = {+}

Island

 > 0 left

h-sign = {+}

Start

Goal

Fig. 3: Left: H-signature signs for a single obstacle. Right: Selecting the h-
signature {0} for the routing constraint (island, right) using the straight line
h-signature between start to goal to determine the opposite h-signature.

misunderstands something or if the user does not fully specify
the grounding.

B. Semantic homotopy augmented graph

The result of applying groundings to the parsed mission
command statement is a set of relational constraints on actions
(e.g. “to the left of the island”). An intuitive way to apply
these constraints to paths within the planning domain is to
understand the constraints as identifying a particular homotopy
class of trajectory between the robot’s current position and
its goal. To build a plan for the robot incorporating these
constraints, we turn to homotopy augmented graphs [3]. The
homotopy augmented graph expands a roadmap, such as a
Probabilistic Roadmap (PRM) [7], in R2 with an additional
dimension that contains information about the homotopy class
of trajectory required to arrive at a particular vertex on the
graph. The homotopy information is encoded in a h-signature,
a variable which uniquely describes the topological class of a
given trajectory belongs to.

In our planning problem, topological features can fall in one
of two classes, and depending on the mission specification, a
given geographic or oceanographic feature can fall in either
category (though never both at the same time). The first of
these feature classes is hazards: features which should be
avoided, and which act as the obstacles in the environment
which partition it into different topological trajectory classes.
The second type of features are points of interest. These
features are named points of interest of our mission, and must
be included as vertices of the homotopy augmented graph.

When planning with a topological constraint, the first step
is to construct our homotopy augmented graph. We begin this
process by adding all points of interest as vertices, and then
transitioning to randomly sampling the environment to con-
struct a PRM. Then, we construct our homotopy augmented
graph using the method described in [3], using the locations
of the hazards as the representative points of obstacles. Once
the homotopy augmented graph is constructed, the function
translate(routing constraints) is used to translate the con-
straints from the mission description into a desired h-signature.
It is guaranteed that route instructions to the left will have
either the h-signature {+} or {0} for a single feature, and right
instructions will have either the h-signature {-} or {0}. To
translate the route constraint each plan needs to select whether
left or right has the h-signature {0}. This is done by checking
the h-signature and the direction of the straight line path from
the start to the given goal. If the direction matches the given

mission description, then that h-signature is used otherwise the
opposite signature is used (see Figure 3). Finally, we use A*
to plan the shortest path along the homotopy augmented graph
to the next point of interest in the desired homotopy class.

C. Constrained information gathering algorithm

In this paper a modified formulation of the Informative
Path Planning problem is used [21]. The standard formulation
is interested in finding an optimal path for a robot which
maximizes the information gathering reward function, subject
to a cost budget. We reformulate it to look for an optimal path
subject to both cost, goal, and homotopic constraints given by
the language instruction. The formal optimization problem is
given below:

P∗ = argmax
P∈S

I(P) s.t. C(P) ≤ B and PH-sign = H (1)

where P is a path, S is the set of all obstacle free paths, I(·)
is the information reward function, C(·) is the cost function
for the budget B, and H is the desired H-signature of the
optimization. For this work the path P is defined as a set of
waypoints (x0, x1, ..., xn), xi ∈ R2. The cost function C(·)
can have a wide range of possible functions such as energy of
path, time, or distance. Additionally the information reward
function I(·) can be different functions, such as summing
directly over temperature or the gradient magnitude of the
salinity field. The cost function and information field is
selected from the language groundings.

Planning for the constrained information gathering problem
is performed on the semantic homotopy augmented graph.
Using this graph allows easy checking of the homotopy
constraint added to the planning problem. As the informative
path planning problem is an NP-hard problem [22], a Monte-
Carlo Tree Search (MCTS) is used, to refine the search in the
tree to areas of higher reward [8]. The MCTS is selected as
expansion and rollout function can be forced to always provide
paths that meet the desired constraints

In general each node of the search is defined as n =
(location, h-signature), where the successors are every edge
connected to the node. For the constrained search, expansion
is only desired in directions which can still meet the homotopy
and goal constraints. To check this constraint, a precomputed
list of the lowest cost path which meets the constraints for
every node, n is performed. This precomputation can be
performed using Dijkstra’s algorithm rooted at the goal node
in O(N logN) time, where N is the number of nodes in the
semantic homotopy augmented graph which grows with both
the number of sampled points and the number of hazards in
the environment.

During expansion of the MCTS algorithm each node can be
checked to ensure that the cost of the path plus the shortest
pre-computed path is less than the total budget. During the
rollout stage of the MCTS algorithm, random actions are
selected until B < C(P) + C(Ppre) and the tree from the
last viable node plus precomputed path is returned as the full

N
E Towards Coast

Up

Fig. 4: Patch versus slice data representation. Blue dashed line is a patch
centered on query point along surface of ocean. Red dashed line is a slice of
the ocean with stretched terrain following lines.

sequence. This reduces the search space to areas of only viable
expansion. Additionally, the approximate rewards from each
rollout stage is a closer approximation of good rewards on that
sub-tree due to the precomputed path forcing reasonable paths
from the rollout function.

D. Automatic semantic feature detection

In order to have features for the planning and grounding
framework, semantic features need to be detected from the
environment. The key idea behind the automatic semantic
feature detection is to extract salient scientific features, in our
case upwelling front positions, from the environment. These
scientific features are then used within the language grounding
framework. Real-world upwelling fronts are subject to large
amounts of noise making detection challenging. To perform
the detection we compare the performance of a CNN and
Support Vector Machine (SVM).

The network architecture we selected to perform the up-
welling front detection is a small supervised CNN with three
convolutional layers, and two fully connected layers. Each
convolutional filter is 3x3 with no pooling between layers.
The data for the network was salinity generated by the
Regional Ocean Modeling System (ROMS) for the Oregon
Coast [20]. We tried two different representations of the input,
see Figure 4. The first representation is an overhead patch
representation extracted from a grid of surface salinity. The
second representation is coast oriented depth slices. These
slices find the point nearest to the coast to the query point and
orient the slice in that direction. This representation has the
benefit of directly encoding the direction of the coast into the
data making it both robust to orientation change and adding
depth information. Both representations have a single label
output indicating if the center of the slice/path is an upwelling
front.

IV. RESULTS

The results are broken into two sections: results for the
grounding framework and results for the automatic upwelling
front detector. To demonstrate the grounding framework, two
results are shown. The first shows the number of valid robot
plans generated from a list of language instructions. Second,
example paths are generated by the grounding framework and
gives examples of how paths with different constraints are
generated. To demonstrate the upwelling front detection, a test
dataset labeled by experts is classified using our approach.

TABLE I: Human-Generated Path Results

Type Valid Required
Clarification

UD tree
failures

Other
Failures

Route
Following 9 (69.2%) 0 (0%) 0 (0%) 4 (30.8%)

Information
Gathering 3 (33.3%) 1 (11.1%) 2 (22.2%) 3 (33.3%)

Overall 12 (54.5%) 1 (4.5%) 2 (9.1%) 7 (31.8%)

These results are compared with a SVM for both proposed
data representations.

A. Grounding language instructions

To show the validity of the grounding framework twenty-
two language instructions were collected from a mailing
list of robot researchers at Oregon State University. The
request asked for example mission descriptions from a given
semantic map. Of the twenty-two total instructions, thirteen
were route-following instructions, and the remaining nine were
information-gathering instructions. Before providing the lan-
guage instructions, each researcher was given simple written
directions on creating valid language instructions using the
environment shown in Fig. 5. Once collected, each instruction
was evaluated to determine if the resultant path matched the
constraints in the instruction. As can be seen in the results in
Table I, overall we were able to successfully and accurately
interpret over half of the language instructions.

We found that the framework works best on the relatively
simpler route-following instructions. All of the failures our
framework experienced on route-following instructions oc-
curred when users tried to specify paths using words that our
system lacked grounding rules for, such as “in between” and
“at the midpoint of”. The information-gathering instructions
were more complex, requiring the additional specification
of an information objective function. This resulted in a de-
crease in the overall number of successful paths, with three
valid paths generated, and a fourth generated following that
prompted the user for additional clarification of an ambigu-
ous grounding. The ambiguous grounding was automatically
discovered by having multiple candidate groundings for a non-
plural location, and requested the user to directly select a
location. Of the failure cases, three were the result of missing
grounding rules similar to the route-following failures, while
one instruction included the phrase “that upwelling front”
which could not be grounded. The final three failures were
due to the Stanford parser outputting invalid UD trees, with
two of the mistakes being misinterpreting compound words
such as “current field” and “magnitude reward”.

Exemplar paths of mapping language instructions to robot
plans are shown in Fig. 5. These paths demonstrate the same
set of constraints for both information gathering tasks and
move to tasks Fig. 5a and 5d. In Fig. 5b and 5e different move
to commands are demonstrated with both via and homotopy
constraints. Finally, two information gathering tasks, shown in
Fig. 5c and 5f, were demonstrated with opposite homotopy
constraints to show how the constraints impact the output

(a) Sample the upwelling front to the north, routing
to the right of the sandbar. Use the gradient of the
salinity field.

(b) Move to the upwelling front to the south,
routing to right of the sandbar and to the left of
the island.

(c) Sample the upwelling front to the south, routing
to the left of the island. Use the gradient of the
temperature field.

(d) Move to the upwelling front to the north,
routing to the right of the sandbar.

(e) Move to the upwelling front to the south of
Shaw island, via the upwelling front to the north.

(f) Sample the upwelling front to the south, routing
to the right of the island. Use the gradient of the
temperature field.

Fig. 5: Example paths generated from languages instructions. Figures (a) and (d) show the differences between the sample command and move command
with the same constraints. Figures (b) and (e) show move to commands with different constraints. Figures (c) and (f) show the same sample command with
only a different h-signature constraint.

Fig. 6: ROC curves for SVM and CNN upwelling front detectors using the
patch and slice data representations. Shows the CNN classifier on the slice
data representation is the best.

information gathering plans.

B. Upwelling front detector

Expert labeled data is used to train and test the upwelling
front detector The labeled data used to train the upwelling
front detector came from several Slocum glider deployments
done by Oregon State University between 2011 to 2013. The
data collected was hand-labeled by expert oceanographers with
upwelling front positions. We then extracted patches and slices
from ROMS model output at each label. Since upwelling
fronts occur relatively rarely in the ocean, there is a significant
imbalance in the data. To prevent bias during training the
minority upwelling front data was oversampled.

Our data was split into training, validation, and test sets.
The test and validation sets were each a complete deploy-
ment chosen at random from all of the deployments in the

dataset. Results of the upwelling front detector for both data
representation are shown as Receiver Operator Characteristic
(ROC) curves for the test data in Figure 6. These results show
that the classifier performance relies on the data representation
more than the particular classifier since representing the data
as a slice data outperformed the patch representation for both
classifiers.

V. CONCLUSION

In this paper, we have presented a framework for generating
robot plans from language instructions. This framework is well
suited for field robotic applications where acquiring a large
corpus of language instructions to robot plan constraints is
infeasible. By using a semantic homotopy augmented graph,
we are able to generate robot plans following topological
constraints derived from natural language instructions. Finally,
we presented an automatic upwelling front detector which can
detect the locations of upwelling fronts from ROMS model
data. Combined with the semantic language groundings, this
detector forms a complete system for information gathering
plans to be generated from language instructions. We demon-
strated this system with instructions collected from a set of
novice users. Future directions for this work include improving
the ability of the system to fail gracefully in the case of either
over or under-specified language instructions. We would like
to investigate ways of improving the language understanding
of novel instructions without relying solely on hand-designed
rules for applying groundings to the UD tree. Finally, we
would like to investigate ways to handle temporal constraints
beyond the current spatial constraints.

REFERENCES

[1] Peter Anderson, Ayush Shrivastava, Devi Parikh, Dhruv
Batra, and Stefan Lee. Chasing ghosts: Instruction
following as Bayesian state tracking. In Proc. Advances
in Neural Information Processing Systems, pages 369–
379, 2019.

[2] Dilip Arumugam, Siddharth Karamcheti, Nakul Gopalan,
Edward C Williams, Mina Rhee, Lawson LS Wong, and
Stefanie Tellex. Grounding natural language instructions
to semantic goal representations for abstraction and gen-
eralization. Autonomous Robots, 43(2):449–468, 2019.

[3] Subhrajit Bhattacharya, Maxim Likhachev, and Vijay Ku-
mar. Topological constraints in search-based robot path
planning. Autonomous Robots, 33(3):273–290, 2012.

[4] Adam Borkowski, Barbara Siemiatkowska, and Jacek
Szklarski. Towards semantic navigation in mobile
robotics. In Graph Transformations and Model-Driven
Engineering, pages 719–748. Springer, 2010.

[5] Danqi Chen and Christopher D Manning. A fast and
accurate dependency parser using neural networks. In
Proc. 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 740–750, 2014.

[6] Thomas M Howard, Stefanie Tellex, and Nicholas Roy.
A natural language planner interface for mobile manip-
ulators. In Proc. 2014 IEEE International Conference
on Robotics and Automation (ICRA), pages 6652–6659.
IEEE, 2014.

[7] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H
Overmars. Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. Proc. IEEE
transactions on Robotics and Automation, 12(4):566–
580, 1996.

[8] Levente Kocsis and Csaba Szepesvári. Bandit based
monte-carlo planning. In Proc. European Conference on
Machine Learning, pages 282–293. Springer, 2006.

[9] Thomas Kollar, Stefanie Tellex, Deb Roy, and Nicholas
Roy. Toward understanding natural language directions.
In Proc. 2010 5th ACM/IEEE International Conference
on Human-Robot Interaction (HRI), pages 259–266.
IEEE, 2010.

[10] Matteo Luperto, Alberto Quattrini Li, and Francesco
Amigoni. A system for building semantic maps of
indoor environments exploiting the concept of building
typology. In Robot Soccer World Cup, pages 504–515.
Springer, 2013.

[11] Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
The Stanford CoreNLP natural language processing
toolkit. In Association for Computational Linguistics
(ACL) System Demonstrations, pages 55–60, 2014. URL
http://www.aclweb.org/anthology/P/P14/P14-5010.

[12] Seth McCammon and Geoffrey A Hollinger. Planning
and executing optimal non-entangling paths for tethered
underwater vehicles. In Proc. IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 3040–

3046, 2017.
[13] George A Miller. WordNet: An electronic lexical

database. MIT press, 1998.
[14] Joakim Nivre, Marie-Catherine De Marneffe, Filip Gin-

ter, Yoav Goldberg, Jan Hajic, Christopher D Manning,
Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia
Silveira, et al. Universal dependencies v1: A multilingual
treebank collection. In Proc. Tenth International Confer-
ence on Language Resources and Evaluation (LREC’16),
pages 1659–1666, 2016.

[15] Daniel Nyga, Subhro Roy, Rohan Paul, Daehyung Park,
Mihai Pomarlan, Michael Beetz, and Nicholas Roy.
Grounding robot plans from natural language instructions
with incomplete world knowledge. In Proc. Conference
on Robot Learning, pages 714–723, 2018.

[16] Florian T Pokorny, Majd Hawasly, and Subramanian
Ramamoorthy. Topological trajectory classification with
filtrations of simplicial complexes and persistent homol-
ogy. The International Journal of Robotics Research, 35
(1-3):204–223, 2016.

[17] Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. Stanza: A python natural
language processing toolkit for many human languages,
2020.

[18] Dushyant Rao, Mark De Deuge, Navid Nourani-Vatani,
Stefan B Williams, and Oscar Pizarro. Multimodal
learning and inference from visual and remotely sensed
data. The International Journal of Robotics Research, 36
(1):24–43, 2017.

[19] Philip Resnik. Semantic similarity in a taxonomy:
An information-based measure and its application to
problems of ambiguity in natural language. Journal of
Artificial Intelligence Research, 11:95–130, 1999.

[20] Alexander F Shchepetkin and James C McWilliams.
The regional oceanic modeling system (ROMS): a split-
explicit, free-surface, topography-following-coordinate
oceanic model. Ocean Modelling, 9(4):347–404, 2005.

[21] Amarjeet Singh, Andreas Krause, Carlos Guestrin,
William J Kaiser, and Maxim A Batalin. Efficient plan-
ning of informative paths for multiple robots. In Proc.
International Joint Conference on Artificial Intelligence,
volume 7, pages 2204–2211, 2007.

[22] Amarjeet Singh, Andreas Krause, Carlos Guestrin, and
William J Kaiser. Efficient informative sensing using
multiple robots. Journal of Artificial Intelligence Re-
search, 34:707–755, 2009.

[23] Stefanie Tellex, Thomas Kollar, Steven Dickerson,
Matthew R Walter, Ashis Gopal Banerjee, Seth Teller,
and Nicholas Roy. Understanding natural language
commands for robotic navigation and mobile manipula-
tion. In Proc. Twenty-fifth AAAI Conference on Artificial
Intelligence, 2011.

[24] Mycal Tucker, Derya Aksaray, Rohan Paul, Gregory J
Stein, and Nicholas Roy. Learning unknown groundings
for natural language interaction with mobile robots. In
Robotics Research, pages 317–333. Springer, 2020.

http://www.aclweb.org/anthology/P/P14/P14-5010

[25] Erik Wijmans, Samyak Datta, Oleksandr Maksymets,
Abhishek Das, Georgia Gkioxari, Stefan Lee, Irfan Essa,
Devi Parikh, and Dhruv Batra. Embodied question an-
swering in photorealistic environments with point cloud
perception. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition, pages 6659–6668, 2019.

[26] Zhibiao Wu and Martha Palmer. Verbs semantics and
lexical selection. In Proc. 32nd annual meeting on
Association for Computational Linguistics, pages 133–
138. Association for Computational Linguistics, 1994.

[27] Yanwu Zhang, Michael A Godin, James G Bellingham,
and John P Ryan. Using an autonomous underwater
vehicle to track a coastal upwelling front. IEEE Journal
of Oceanic Engineering, 37(3):338–347, 2012.

[28] Yanwu Zhang, Carlos Rueda, Brian Kieft, John P Ryan,
Christopher Wahl, Thomas C O’Reilly, Thom Maughan,
and Francisco P Chavez. Autonomous tracking of an
oceanic thermal front by a wave glider. Journal of Field
Robotics, 36(5):940–954, 2019.

	Introduction
	Related Works
	Language grounding
	Semantics and Homotopy
	Upwelling front detection

	Methodology
	Grounding language instructions
	Semantic homotopy augmented graph
	Constrained information gathering algorithm
	Automatic semantic feature detection

	Results
	Grounding language instructions
	Upwelling front detector

	Conclusion

