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Abstract—In this paper we present a simulated annealing-
based method for planning efficient paths with a tether which
avoid entanglement in an obstacle-filled environment. By eval-
uating total path cost as a function of both path length and
entanglements, a robot can plan a path through multiple points
of interest while avoiding becoming entangled in any obstacle.
In simulated trials, the robot was able to successfully plan
non-entangling paths in an obstacle-filled environment. These
results were then validated in pool trials on a SeaBotix vLVB300
underwater vehicle.

I. INTRODUCTION

Offshore energy generation from the motion of the ocean’s
waves requires the use of fixed emplacements known as
Wave Energy Converters (WECs). These devices, which are
constantly perturbed by waves, require routine inspections and
maintenance to prevent buildup of marine life on the WEC,
in addition to mechanical wear and tear. Currently, this is
provided either by human divers or by Remotely Operated Ve-
hicles (ROVs), which are teleoperated by a human controller.
Control of ROVs is difficult, and automating portions of it,
such as navigation to an inspection site, would significantly
ease the control burden on the operator.

Underwater inspection involves navigating a ROV or an
Autonomous Underwater Vehicle (AUV) on a path which
passes through a series of goal points, and returning to the
start. At each point of interest along the path, the robot may
need to stop to make an observation, or take a sample. A tether
connecting the robot to a continuous power supply can extend
the mission duration of an AUV indefinitely. The tether also
provides a reliable communications link with a base station,
and a safety mechanism, preventing the robot from being lost
at sea. However, a tether is not without drawbacks. Tethers
limit the operational range of the robot, requiring them to stay
within some distance of the base station. This range is further
limited by the presence of obstacles, as the tether can become
wrapped around them. In severe cases of entanglement, where
the robot is unable to disentangle itself from the obstacle, it can
even prevent the robot’s recovery. To address this, we propose
a simulated annealing based algorithm which is capable of
planning non-entangling paths.

In Section II we discuss related works in the area of tethered
robotics, as well as the concept of a homotopy class, a method
for describing a curve. Section III describes our algorithm
for planning non-entangling paths. In Section IV we discuss
the results from testing our algorithm, both in a simulated
environment, and in a series of pool tests.

Fig. 1: An example of a trajectory modification which avoids tether entan-
glement. By modifying the path subsection between g2 and g3 (shown with
a solid line) to the dotted line, the overall path length may be increased,
however, the entanglement with O3 is eliminated, as O3 is no longer inside
the bound of the trajectory.

II. BACKGROUND

For autonomous underwater inspection tasks, close prox-
imity to obstacles has led previous research, such as that by
Kim and Eustice [3], to focus on untethered AUVs to avoid
the entanglement risk posed by a tethered vehicle. Existing
research in the domain of tethered robots by Kim et al. [4]
has focused on planning paths where the length of the tether is
the primary constraint, restricting the paths the robot is able
to take to its goal. We consider the additional constraint of
avoiding entanglement as the robot plans through multiple
goal points, by avoiding paths which encircle obstacles. While
it is possible for the robot to reverse its path to avoid any
entanglement, as was done by Shnaps and Rimon [7] to obtain
maximum coverage by a tethered robot, such a behavior can
greatly extend the mission duration, reducing the overall area
which can be inspected in a reasonable amount of time.

A. Homotopy Classes

A homotopy class describes a set of curves between two
points. Two curves share the same homotopy class, (i.e. are
homotopic) if they share the same end points and one can
be continuously deformed into another without encountering
any obstacles. For example, in Figure 1, the dotted and solid
curves between g2 and g3 do not share the same homotopy
class although they do share the same endpoints, since the
continuous deformation between them passes through O3.

In order to characterize homotopy classes, Bhattacharya
et al. [2] developed a descriptor, called an H-signature, which



Fig. 2: Demonstration of H-Signature Calculation. 1) Representative Points
and their rays are constructed within obstacles O1, O2, and O3. 2) Path
between g1 and g2 is traced and intersections with rays from (1) are recorded.
“O2, O−1

2 , O2, O1, O3” 3) H-Signature reduced to “O2, O1, O3”

uniquely describes a homotopy class given a start and end
point. The H-signature is computed by selecting representative
points inside each obstacle, then drawing a parallel ray from
each point. To determine the H-signature of a curve, the curve
is traced, beginning at its start point. Each time the trace
intersects one of the rays, a symbol corresponding to the ray
and direction of intersection is added to the H-signature. This
process is demonstrated in Figure 2. A positive crossing of the
ray emanating from the nth obstacle is considered to be from
left to right, and is denoted as “On”. The inverse crossing,
from right to left is denoted as “O−1n ”. The H-signature is
then reduced by removing adjacent elements with opposite
signs along the same ray. This process is repeated until no
more elements can be removed. The resulting H-signature is
a homotopy invariant which uniquely identifies the homotopy
class of a curve.

III. ALGORITHM

A. Problem Formulation

Our proposed algorithm attempts to find the shortest non-
entangling path for a tethered AUV, given a map of the world
which contains obstacles O = {o1, o2, ..., on}. Each obstacle
oi is defined as a vertical projection from a circle on R2 to
R3.

The map also contains m goals G = {g1, g2, ...gm} where
gi ∈ R3. The initial deployment point of the robot is also its
first goal g1. A trajectory T is a complete circuit of these goal
points, ultimately returning to the initial deployment point. T
consists of two parts. The first is an ordering of goal points G
such that the final goal is the same as the initial deployment
point, Torder = {g1, g2, ...gm, g1}. The second component of
T is the set of homotopy classes of its sub-paths h1, h2, ...hm.
The total length of the path, LT is the sum of all the lengths
of the sub-paths, and the total entanglement ET is the number
of obstacles entangled in the tether.

Briefly, we also need to consider the nature of an entan-
glement. Since the completed trajectory is a loop starting and
ending at g1, obstacles may be divided into an interior and
exterior set. Any obstacles in the interior set are considered
to be entangled in the tether, while obstacles in the exterior
set are non-entangled. There exists a simple test for whether a
given trajectory T is entangled in any obstacles. We compute
the H-Signature of the entire trajectory T by combining the
H-Signature of each of its sub-paths, and then reducing the
combined H-Signature as described in Section II-A.

We seek to plan a trajectory T which satisfies the following:

T ∗ = argmin
T
{LT |H-Signature(T ) = ∅}. (1)

We assume that the length of the tether is large compared
to the size of the environment, and so it imposes no constraint
on the configuration space of the AUV. The problem can
be seen as an extension of the Traveling Salesman Problem
(TSP), with the additional constraint that the path be non-
entangling. We propose a simulated annealing based method
which approximates the optimal solution.

B. Simulated Annealing

Simulated annealing is a stochastic optimization algorithm,
which performs search in multidimensional space and is robust
to entrapment in local optima [5]. Initialized with some
random state, x, at each iteration of the algorithm, a successor
state x′ is generated. As a successor state, x′ is created by
mutating x through some function. This successor state is
compared to the previous state with some evaluation function.
If the mutated state has the higher score, it becomes the new
state. If it has a lower score, it becomes the new state with
the probability shown in Equation 2:

p = e−(s−s
′)/θ, (2)

where s and s′ are the scores of the state and mutated state, θ
is the temperature, which decreases over time, making it less
likely that an inferior state becomes the successor state.

We initialize the trajectory with a random ordering of the
goal points. The path between each consecutive pair of goal
points (gi, gi+1) is planned using A*. During the mutation step
of the simulated annealing process the first and last points in
this trajectory remain fixed, building on the assumption that the
robot is tethered to some fixed base station. At each iteration
of the optimization process, a trajectory can undergo one of the
two types of mutations chosen at random. The first of these,
goal-swapping, swaps the order of two goals on the trajectory.

T ′ = {g1, ..., gi−1, gj, gi+1, ..., gj−1, gi, gj+1, ..., g1}.

This mutation can either raise or lower the overall trajectory
length and entanglement of the path. To ensure that the
resultant path is entanglement-free, we use a second method of
mutation, path-inversion. During path-inversion, a subsection
of the trajectory between a pair of adjacent goal points is
inverted around an obstacle without altering the order of



(a) Path length at each iteration while running simulated an-
nealing

(b) Number of entanglements at each iteration while running
simulated annealing

Fig. 3: Average Path Length and Entanglement for a sample path. The configuration of obstacles and goals is the same as shown in Figure 5. Averages are
taken over 20 trials. As the number of optimization iterations increase, the number of entanglements rapidly decreases, while the overall path length remains
roughly constant. Initial marginal increases in path length are a result of taking longer paths to eliminate entanglements.

the goal points. The subsection of the path is re-planned
through an additional sub-goal placed on the opposite side
of an obstacle. This inversion alters the homotopy class of the
subsection. The result of a path-inversion mutation is shown
in Figure 1.

Each trajectory is evaluated by a cost function shown
in Equation 3, which evaluates each trajectory on both its
entanglement and its overall length:

C(T ) = k(ET + 1) ∗ LT . (3)

ET is the number of obstacles which are entangled by the
trajectory T , Lt is the total length of the planned trajectory,
and k is a constant factor. In testing, we found that using a
large value for k caused the algorithm to eliminate entangle-
ments more quickly.

IV. EXPERIMENTAL TESTING

A. Simulation

Our algorithm was tested in simulation in both randomly
generated environments and environments representative of
likely deployment locations. The representative environments
were modeled on optimal Wave-Energy-Converter layouts
developed by Beels et al. [1]. The randomly generated worlds
had between 5 and 10 obstacles and between 5 and 10 goals
distributed uniformly in the world. In a series of simulated
trials, our entanglement-aware planner was compared against
a Greedy-TSP planner and a Greedy Backtracking planner.
The Greedy-TSP planner selects the closest goal which it has
not travelled to at each step. The Greedy Backtracking planner
also travels to the closest goal, but then retraces its path back
to the start position, ensuring no entanglements. Our method
found paths which were on average longer than the greedy
planner. However, these paths eliminated all entanglements,

Fig. 4: Comparison of simulated annealing approach with Greedy-TSP and
Greedy-Backtracking baseline.

while the greedy solver, having no explicit representation of
the obstacles, typically had a large number of entanglements.

B. Pool Trials

The tether behavior was not explicitly modelled in the
simulator. Instead, we relied on the assumption that the tether
was flexible, and would follow the path of the vehicle. The
only way that an entanglement could occur, then, is when
the robot’s path completely encloses one or more of the
obstacles. In order to test this, we implemented the planners on
a SeaBotix vLBV300 underwater vehicle [6] equipped with the
Greensea INSpect GS3 Inertial Navigation System, a Teledyne
Explorer DVL, and a Tritech Gemini multibeam sonar. The
SeaBotix vehicle can be controlled via a series of waypoints
provided through a Robotic Operating System (ROS) interface
with a command station.



(a) Non-Entangling Path (b) Greedy Path

Fig. 5: An example obstacle and goal layout for a tethered vehicle. The white circles represent goal locations (all of which lie on the water’s surface). The
red buoys act as obstacles and indicators of entanglement. The black line shows the planned path for the AUV, and the direction of travel along that path.

Fig. 6: Seabotix vLBV300 Underwater Vehicle

We conducted a series of field trials in two different buoy
configurations, a sample of which is shown in Figure 5. The
robot was tasked with planning a route which passes through
each of the white goal points. Figure 5a shows a route planned
by the vehicle using our non-entangling method. The path
shown in 5b shows a path through the goals planned by the
greedy planner. In these trials, we observed that the tether
became entangled when the robot completed an encirclement
of an obstacle, but when performing our non-entangling path,
the obstacles did not become entangled.

V. CONCLUSION AND FUTURE WORK

In this paper we demonstrated a method allowing a tethered
AUV to plan and execute paths which avoid tether entangle-
ment in an obstacle-filled environment. In simulated trials, we
found that our method plans longer paths than a greedy TSP
solution. However, these paths eliminated all entanglements.
Furthermore, these paths were consistently shorter than the
naive non-entangling paths. Our method was then tested on
the SeaBotix vLBV 300 in a pool, where it was successfully
able to navigate the obstacle field. A sample path the vehicle
executed is shown in Figure 5.

This work is still ongoing, as we plan to extend our algo-
rithm to three dimensional environments, and use a sampling-
based planner to improve the algorithm’s performance, partic-
ularly in larger environments. Further future directions for this
work is to incorporate the affects of disturbances to the tether,
such as offshore currents or waves, and to test in environments
where the length of the tether does impose a constraint on the
motion of the AUV.
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