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Abstract—We present an iterative optimization algorithm for
path planning. The algorithm samples smoothly deformed paths
around a current best path and then updates the best path guess
based upon a given cost function. We apply this algorithm to
the problem of finding an energy-efficient path in an underwater
environment. Results are shown for both a simulated current
environment and using a Regional Ocean Modeling System
(ROMS) ocean current data set. These results show that our
algorithm is able to plan more feasible energy-efficient paths
than current methods.

I. INTRODUCTION

When operating in underwater environments, a number
of disturbances can effect Autonomous Underwater Vehicle
(AUV) operation. One such disturbance is ocean currents,
which can either help or hinder the AUV from reaching
its goal destination. Further, ocean current maps are quite
coarse and potentially inaccurate, making fully offline path
planning difficult, as blindly executing these plans can result
in undesired and potentially dangerous behavior.

Previous work in energy efficient path planning has primar-
ily looked in two directions. Both Witt and Dunbabin [6] and
Subramani and Lermusiaux [5] looked at varied optimization
methods; however their solutions are computationally expen-
sive and are not suitable for online applications. Alternatively,
Lee et al. [4] and Huynh et al. [1] use A* like search methods
to find paths. However the necessary discretization does not
allow the vehicle to fully utilize the currents and can produce
paths with infeasible transitions.

In this work we present an algorithm, Energy Efficient
Stochastic Trajectory Optimization (EESTO), that is capable
of calculating energy efficient paths online. EESTO builds
on previous stochastic optimization motion planners, such as
STOMP presented by Kalakrishnan et al. [2], by removing the
assumption that waypoints are equally spaced in time which
is necessary to allow fully for variations in vehicle thrust and
to plan energy efficient paths.

II. ALGORITHM

Following the notation of STOMP, our motion planning
problem is defined as finding a path from a given starting
location to a desired goal location. The trajectory, θ̃, is
discretized into N waypoints. EESTO then seeks to iteratively
optimize the equation

min
θ̃

E

[
N∑
i=1

q(θ̃i) +
1

2
θ̃
ᵀ
Rθ̃

]
, (1)

where θ̃ represents a noisy trajectory with mean θ and variance
Σ, q(θ̃i) is a state dependent cost function and R is a matrix
where R = AᵀA and A is a constant finite differencing
matrix such that θ̈ = Aθ. This selection is made so that R
approximates the control costs. To remove the assumption that
the waypoints are equally spaced in time we augment A so
that A = TD and,

D =


−2 1 0
1 −2 1 · · ·
0 1 −2

...
. . .

 T =

1/t21 0 · · ·
0 1/t22
...

. . .

 , (2)

where D is a constant center finite differencing matrix and T
is the step size which changes each iteration. At each iteration,
ti is updated based upon the average travel times found in the
previous iteration for the waypoints involved in row i of the D
matrix. We extend the waypoint formulation used in STOMP
to accommodate this extra information by including the travel
time to the following waypoint as in Kruger et al. [3].

The optimization problem in Equation 1 is solved by ap-
proximating the gradient of the cost function using a weighted
combination of explored noisy paths. These noisy paths are
calculated by sampling perturbations from a zero mean normal
distribution with covariance R−1 which are added to the cur-
rent path. In previous work this covariance could be computed
prior to execution, but here must be calculated each iteration.
EESTO calculates this inverse in a computationally tractable
way by factoring R−1 as:

R−1 = (AᵀA)−1 = D−1(T2)−1(Dᵀ)−1. (3)

Both D−1 and (Dᵀ)−1 can be precomputed and T2 is a
diagonal matrix whose inverse can be quickly calculated.

A. Cost Function
We now devise a suitable cost function for performing

energy-efficient path planning using this general framework.
Our cost function seeks to balance travel time and energy
expenditure by attempting to travel at speeds close to or greater
than the vehicle’s maximum velocity, while minimizing the
energy expended. The cost function is defined as:

q(θi) = Cs + Ce + Co (4)

Cs =


0, if Vr ≤ Vmax and Vabs > Vmax

exp(Vmax − Vr), if Vr ≤ Vmax

l + (Vr − Vmax)l2, if Vr > Vmax

(5)
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Fig. 1: Shown in (a) is the simulated environment. Shown in (b) is the energy used by the paths produced by the three planning methods. Paths produced by
EESTO are not significantly more energy efficient than those given by A*, however these paths can be more reliably executed. EESTO takes 0.77 seconds
on average in comparison to STOMP which takes 0.26s on average, and A* took 3.54s and 348.33s for grid sizes of 50x50 and 200x200 respectively.

Ce = exp(Ewith − Ewithout) (6)

where Cs is the cost due to the speed, Ce is the cost due to
the energy, and Co is the obstacle cost represented by a large
step if the waypoint is inside an obstacle. When calculating
Cs, Vr is the required velocity for the motors to provide, Vmax

is the maximum velocity the motors can provide, Vabs is the
absolute velocity that the vehicle is traveling, and l is some
large number selected to introduce a step cost when the motors
are required to provide a speed that they cannot achieve. Ce

is calculated as the difference in energy cost when the given
waypoint is present and when it is not. The energy cost is
calculated in the same manner as in [6], where the drag force
is assumed to dominate the inertial forces and as such the
energy cost is:

E = cdV
3
r t, (7)

where cd can be equal to the actual drag coefficient or used to
tune the cost function, and t is the travel time for the relevant
section of the path.

III. PRELIMINARY RESULTS

A. Simulated Environments
The simulated ocean current environment can be seen in

Figure 1 (a). The ocean current velocities range from 0m
s

at (5,5) to 1m
s along the edges, representing half of the

vehicle’s maximum speed. Figure 1 (b) shows the results for
100 statistical runs for both EESTO and STOMP as well as
the energy cost for the path produced by a simple A* search.
While the approximated energy costs for A* and EESTO are
quite close, the paths produced by EESTO, seen in Figure
1 (a), can more realistically be carried out on an actual
vehicle because they do not require sharp changes in direction.
Additionally, the mean run time for EESTO is 0.77 seconds,
which allows for both multiple instances of the algorithm to
be run and the lowest energy path selected when initially
planning, as well as dynamic replanning as the environment
is sensed more accurately.

B. Simulated Real World
EESTO was also used to plan a roughly 30 kilometer path

off the coast of California using data from the ROMS ocean
current data set for January 21, 2013. The path evolution and
the final path found can be seen in Figure 2. The path in Figure

Fig. 2: Paths planned by EESTO using historical ocean current data. Red
paths are the solutions found at the end of each iteration. The final path is
represented in blue.

2 represents a standard path around the island produced by
EESTO. The algorithm is able to both avoid the obstacle of
the island, in an average of 35 iterations, and correctly identify
that the vehicle can leverage the stronger currents north of the
island to use less energy when traveling.

IV. CONCLUSION

We have presented a new algorithm for motion planning
that can respect travel time variations. This algorithm is able
to produce energy efficient paths while avoiding much of the
necessary discretization introduced by A* like algorithms, with
results from both simulated and real world scenarios.

Our current work is looking at how to use this algorithm
more effectively in an online manner alongside execution.
EESTO works by improving existing paths and so is ideally
formulated for online path optimization and is computationally
efficient enough that dynamic replanning of paths based upon
environmental sensing is feasible. Additionally, this formula-
tion could lead to a principled way of allowing for the trade off
between exploration and exploitation when there is uncertainty
in predictions.
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