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Abstract— In this paper we present a novel approach to
searching a graph with probabilistic edge costs. By incorporat-
ing uncertainty information into the graph search we perform
risk-aware planning. We present the results through a simple
search domain, and report the improved results compared
to traditional single heuristic search techniques (A*, D*, and
greedy).

I. INTRODUCTION

Robots are becoming more integral to our everyday lives,
but the transition into the unstructured world from the
laboratory environment has proved challenging. With this
transition there is a greater need for quick, reliable path
planning methods, specifically under uncertainty. Planning
under uncertainty allows for robustness in unstructured envi-
ronments. We introduce a method, Risk-Aware Graph Search
(RAGS), for finding paths through graphs with uncertain
edge costs. Our method bridges the gap between traditional
search methods and risk-aware planning.

Effectively searching through a graph with known edges
has been extensively researched, and applies to many differ-
ent applications. We aim to expand the graph search utility
by allowing for uncertainty in the graph with risk-aware
planning. Our novel approach searches over uncertain edge
costs with known distributions, to find the best paths when
there are no optimal path guarantees.

Traditional graph search methods (such as A* and D*)
search over deterministic costs [1], [2] when traversing a
graph. This approach ignores valuable information when
dealing with uncertainty in edge costs. While there has been
some work on risk-aware planning [3] [4], most work that
does involve uncertainty is strictly concerned with the belief
state of the robot’s location [5] [6].

The main novelty of this paper is the introduction of a
nonmyopic graph search algorithm for risk-aware planning.
We present the search results of our method, compared to
A*, D* and a greedy implementation. The results show that
RAGS is more reliable than these existing methods.

II. ALGORITHM

RAGS leverages the confidence of edge costs to lower the
probability of a poor path cost. There are two major steps
to accomplish this, the first is to perform an initial search to
find the set of non-dominated paths (Section II-A). Following
this, we perform risk-aware planning during path execution
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Fig. 1: Setup of one-to-one comparison for sequential look-ahead planning.
Given the path cost distributions, we can directly compute the likelihood
that traveling from Start to Goal through B will ultimately yield a cheaper
path than traveling via A.

as information of the neighboring edge costs are updated
with the actual cost (Section II-B).

A. Bounding

Search algorithms like A* use total ordering of vertices
in a graph based on cost to find a single optimal path.
This is necessary because a point can have an infinite set
of paths to it on a graph. Unfortunately we can’t use the
same technique because we are searching over two objectives
(cost and variance). Instead we impose a partial ordering
using Equation 1, which allows us to minimize the search
space without pruning an optimal path. Equation 1 checks
if a partial path is dominated. A path is dominated if both
objectives are worse, as in Equation 1. If this is the case we
no longer consider that path. This is a similar method as the
one described in [5].

A < B ↔ (A.c < B.c) ∧ (A.σ2 < B.σ2) (1)

Where A and B are partial paths, A.c is the cost (euclidean
distance + additional cost) and A.σ2 is the variance of path
A cost.

B. Risk Comparison

Once the possible paths are generated, we must determine
the best route to take. This means we need a way to compare
each neighbor. We can compare by calculating the probability
of a better path existing at that neighbor, which is calculated
by integrating the paths associated with that neighbor.

Consider the setup in Fig. 1, the probability that a cheaper
path exists from Start to Goal via vertex B over vertex A can
be computed by considering the following: The probability
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Fig. 2: Three plots showing search results over a PRM, with edge variances drawn uniformly between 0 and {5, 10, 20} respectively.

that the best path from A to Goal has cost x is
m∑
i=1

P
(
cAi = x; cAj > x,∀j 6= i

)
=

m∑
i=1

 1

σAi

√
2π

exp
(
−d (Ai)2

) m∏
j=1

1

2
erfc (d (Aj))

 ,

(2)

where cAi
is the cost of the path from A to Goal through

path i, and d(·) = x−µ
σ . The probability that at least one

path from B to Goal has cost less than x is

1− P (cBi > x,∀i = {1, . . . , n})

= 1−
n∏
i=1

1

2
erfc (d (Bi)) . (3)

If the cost of traveling from Start to A or B is cA0
and cB0

,
respectively, then the probability that traveling from Start to
B will yield a cheaper path to the Goal is the integral of the
product of (2) and (3) over all possible values of x,∫ ∞
−∞

m∑
i=1

P
(
cAi

= x; cAj
> x,∀j 6= i

)
·

[1− P (cBi
> (x− (cB0

− cA0
))) ,∀i = {1, . . . , n}] dx.

(4)

III. EXPERIMENT SETUP

The search algorithms were tested on a set of graphs gener-
ated with a uniform random distribution of 100 vertices over
a space 100 x 100 in size, and connected according to the
PRM* radius [7]. Edge costs were represented by normal dis-
tributions with mean equal to the Euclidean distance between
vertices plus an additional cost drawn from a uniform random
distribution over [0, 100]. The variance of each distribution
was drawn from a uniform distribution over

[
0, σ2

max

]
, where

σ2
max={5, 10, 20} for the three separate sets of experiments.

Note that a minimum cost of the Euclidean distance was

enforced in the following experiments. The start vertex was
defined at (0, 0), with the goal at (100, 100).

We compared RAGS against a naı̈ve A* implementation, a
greedy approach and D*. During path execution the true costs
of immediate neighboring edges become observable. Naı̈ve
A* finds and executes the lowest-cost path based on the mean
edge costs and does not perform any replanning. The greedy
search is performed over the set of non-dominated paths and
selects the cheapest edge to traverse at each step, while D*
replans over non-dominated paths at each step given the new
edge cost information.

IV. RESULTS

In Figure 2 we show the results for 100 trials, where
each trial draws new edge costs from the same distribution.
This distribution is generated for each plot as described in
Section III. In these plots the variance of the edge costs
increases (left to right) and we can see the overall trend of
RAGS with a lower mean and variance in final path cost.
Naı̈ve A* also performs well but is more prone to outliers
of more expensive paths (especially as the edge uncertainty
increases), due to any edges with high variance along it’s
path. RAGS mitigates against skewed results like A*’s by
choosing safer routes with lower variances, demonstrating
the benefit of risk aware planning. Greedy does quite poorly
because it does not look ahead and is fallible to traversing
paths with high costs/variances and few path alternatives. D*
also shows its fallibility to getting stuck along paths with
high variance similar to A* and greedy.

V. CONCLUSION

In this paper we present a novel algorithm for searching
through graphs with uncertain edge costs. The results of our
work show that RAGS reduces the risk of a higher path cost,
by doing risk-aware planning.
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