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Unmanned aerial vehicle (UAV) technology has grown out of traditional research

and military applications and has captivated the commercial and consumer markets,

showing the ability to perform a spectrum of autonomous functions. This technology

has the capability of saving lives in search and rescue, fighting wildfires in environ-

mental monitoring, and delivering time dependent medicine in package delivery. These

examples demonstrate the potential impact this technology will have on our society.

However, it is evident how sensitive UAVs are to the uncertainty of the physical world.

In order to properly achieve the full potential of UAVs in these markets, robust and ef-

ficient planning algorithms are needed. This thesis addresses the challenge of planning

under uncertainty for UAVs. We develop a suite of algorithms that are robust to changes

in the environment and build on the key areas of research needed for utilizing UAVs in

a commercial setting. Throughout this research three main components emerged: mon-



itoring targets in dynamic environments, exploration with unreliable communication,

and risk-aware path planning.

We use a realistic fire simulation to test persistent monitoring in an uncertain en-

vironment. The fire is generated using the standard program for modeling wildfire,

FARSITE. This model was used to validate a weighted-greedy approach to monitor-

ing clustered points of interest (POIs) over traditional methods of tracking a fire front.

We implemented the algorithm on a commercial UAV to demonstrate the deployment

capability.

Dynamic monitoring has limited potential if if coordinated planning is fallible to

uncertainty in the world. Uncertain communication can cause critical failures in co-

ordinated planning algorithms. We develop a method for coordinated exploration of a

multi-UAV team with unreliable communication and limited battery life. Our results

show that the proposed algorithm, which leverages meeting, sacrificing, and relaying

behavior, increases the percentage of the environment explored over a frontier-based

exploration strategy by up to 18%. We test on teams of up to 8 simulated UAVs and 2

real UAVs able to cope with communication loss and still report improved gains. We

demonstrate this work with a pair of custom UAVs in an indoor office environment.

We introduce a novel approach to incorporating and addressing uncertainty in plan-

ning problems. The proposed Risk-Aware Graph Search (RAGS) algorithm combines

traditional deterministic search techniques with risk-aware planning. RAGS is able to

trade off the number of future path options, as well as the mean and variance of the

associated path cost distributions to make online edge traversal decisions that minimize

the risk of executing a high-cost path. The algorithm is compared against existing graph



search techniques on a set of graphs with randomly assigned edge costs, as well as over

a set of graphs with transition costs generated from satellite imagery data. In all cases,

RAGS is shown to reduce the probability of executing high-cost paths over A*, D* and

a greedy planning approach.

High level planning algorithms can be brittle in dynamic conditions where the en-

vironment is not modeled perfectly. In developing planners for uncertainty we ensure

UAVs will be able to operate in conditions outside the scope of prior techniques. We

address the need for robustness in robotic monitoring, coordination, and path planning

tasks. Each of the three methods introduced were tested in simulated and real environ-

ments, and the results show improvement over traditional algorithms.
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Chapter 1: Introduction

Unmanned aerial vehicle (UAV) technology has grown out of traditional research and

military applications and has captivated the commercial and consumer markets, show-

ing the ability to perform a spectrum of autonomous functions. This technology has the

capability of saving lives in search and rescue, fighting wildfires in environmental mon-

itoring, and delivering time dependent medicine in package delivery. These examples

demonstrate the potential impact this technology will have on our society. However,

it is evident how sensitive UAVs are to the uncertainty of the physical world. In or-

der to properly achieve the full potential of UAVs in these markets, robust and efficient

planning algorithms are needed.

As humans, we are are able to adapt to our physical environment with speed and

ease. Our natural adaptability to reason out planning decisions is a skill we often take

for granted. In our day to day lives, our world often surprises us, and yet we are able

to adapt and recover. One of the biggest challenges UAV technology faces is dealing

with the randomness and uncertainty involved with navigating the physical world. The

ability of UAVs to reliably perform tasks is largely dependent on either a structured

environment, or a robust planner. In robotics, achieving the ability to withstand adverse

conditions comparable to humans has proven difficult. It is challenging for a robot to

make planning decisions robust to the variability of the physical world. Roboticists

have turned to using agile robots and planners to react quickly enough, or structuring
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the environment to the capabilities of the robot.

We propose to bridge gaps in existing traditional robotic planning methods and the

robustness required to operate in the unpredictable physical world. It is our hope that

this work will help bring robots out of research laboratories and into positions of de-

pendability in industry.

1.1 Thesis Statement

Prior research has provided a solid foundation of planning algorithms for coordination

tasks, environmental monitoring, and especially path planning. While this body of work

is comprehensive there exists a gap in extending standard methods towards considering

the uncertainty of the physical world. This thesis addresses the challenge of planning

under uncertainty for UAVs. We develop a suite of algorithms that are robust to changes

in the environment and build on the key areas of research needed for utilizing UAVs in

a commercial setting. Throughout this research three main components emerged: mon-

itoring targets in dynamic environments, exploration with unreliable communication,

and risk-aware path planning.

Robotic monitoring has become a main research topic in recent years, and caused

robots to play a more integral role in collecting environmental data. Some monitoring

tasks have proven difficult to automate due to challenging environments. For instance,

one of the main issues in combating wildfires is monitoring the progression of the fire

as it spreads. Live fire frontier monitoring by UAVs can help make rapid decisions

regarding resource allocation and fire management. However, moving targets make
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it arduous to use traditional monitoring techniques. Monitoring planners capable of

tracking dynamic points of interest make for more robust planners to a world that is

constantly changing. We use a realistic fire simulation to test persistent monitoring in an

uncertain environment. The fire is generated using the standard program for modeling

wildfire, FARSITE. This model was used to validate a weighted-greedy approach to

monitoring clustered points of interest (POIs) over traditional methods of tracking a

fire front. We implemented the algorithm on a commercial UAV to demonstrate the

deployment capability.

The operating time of UAVs are typically limited by the capability of their batter-

ies. This makes it challenging to complete complex exploration tasks without the use

of multiple UAVs. However, obstacle dense environments can be restrictive to wireless

propagation and make it difficult to communicate between UAVs. Coordinated planning

improves exploration efficiency and motivates the need for adaptive, heterogeneous be-

havior. Previously, unreliable communication has caused critical failures for coordina-

tion planners. While recent work allows for intermittent connectivity [1], we address

the problem where the environment is unknown and reconnectivity can’t be planned

for. Unreliable communication for coordination is demonstrated in the exploration do-

main, and shown to provide significant improvements over planners not able to share

information. Our multi-robot coordination algorithm provides sophisticated meet, relay

and sacrifice behavior to adjust for limitations on communication and battery life. We

showed this behavior in simulation and with a team of two UAVs capable of multi-robot

exploration in indoor environments. The contributions of this work enhance proficiency

in managing unreliable communication for coordination.
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Graph theory is an expanding field, and graph search algorithms have proven to be

extremely useful tools in optimization, computer science, and robotics. Path planning

has an extensive volume of literature associated with it, largely in graph search. Discrete

graph search planners like A* and sampling-based methods like RRT* have emerged

as standards in the field of robotics. The planners operate on known state and transi-

tion costs, which are sometimes difficult to obtain in the physical world. We build on

this work by developing a planner over probabilistic representations of transition costs.

By introducing this simple extension, high-level planners may provide robust paths to

changing environmental conditions. The main novelty of this work is the introduction of

a nonmyopic graph search algorithm for risk-aware planning. Risk-Aware Graph Search

(RAGS) is a mechanism for deciding when to be conservative and when to be aggres-

sive. With edge costs modeled as normal distributions, we can derive a principled way

of leveraging information further down a path. The result is a lower probability that the

executed path results in a high cost.

The main contributions of this thesis pertaining to robust planning decisions in un-

known, uncertain, and dynamic environments are as follows:

• Improving monitoring capabilities of dynamic frontiers by leveraging the realistic

fire simulator, FARSITE, and demonstrating the Weighted-Greedy algorithm on a

UAV.

• Introducing a state machine for coordinating with unreliable communication, and

simulating on teams of up to 8 UAVs. In addition, demonstrating on a team of 2

custom UAVs.
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• Introduce risk-aware graph search (RAGS), a dynamic planning algorithm that

plans over uncertain transition costs and demonstrating over satellite imagery for

low flying UAVs in obstacle dense environments.

1.2 Thesis Summary

The following chapter, Chapter 2, introduces the fundamentals of normal (Gaussian)

distributions, data clustering, and graph search. A review of the literature on conven-

tional approaches to planning shows that prior work does not have methods for dealing

with uncertainty. A history in coordination, monitoring, and path planning algorithms

are presented. Chapter 3 explores robotic monitoring of dynamic frontiers. This section

expands on how the uncertain environment can cause challenges in identifying regions

to monitor. The problem domain is motivated and the related research is examined. A

simulated wildfire is used to test the algorithm in addition to field experiments with a

UAV. Chapter 4 investigates multi-robot coordination and presents a method for dealing

with uncertain communication, specifically for the exploration domain. State of the art

research is presented, and the problem is formally introduced. A solution is developed

and tested in simulation and experiments. Chapter 5 introduces the planning problem

with uncertain transitions. This chapter develops a more generalized framework for

modeling and planning under uncertainty. We give theoretical analysis of the algorithm

as well as simulated random testing and experiments on real satellite imagery. Lastly,

Chapter 6 summarizes the contribution of each chapter and identifies directions for fu-

ture research.
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Chapter 2: Background

“Uncertainty arises if the robot lacks critical information for carrying out its task. It

arises from five different factors: environment, sensors, robots, models, and computa-

tion” Thrun et al. [2].

2.1 Basic Theory

This thesis builds on a range of work that includes: graph search, environmental mon-

itoring, and probabilistic planning. This chapter develops the reader’s understanding

of probability in robotics. The beginning of this chapter introduces basic probability

theories, while the latter section surveys the state of the art robotic planning algorithms

using these theories.

2.1.1 Normal (Gaussian) Distributions

Techniques in this thesis use estimation and decision making in continuous spaces. In

probability theory a random variable can characterize a continuous set of values to rep-

resent the space. A continuous random variable can be modeled by a probability density

function (PDF). Probability density functions come in many different shapes (Normal,

Poisson, Uniform, etc.), with the most common being normal (Guassian) distributions.

Normal distributions are common continuous probability models used to represent



7

real-valued random variables, for example: sensor measurements. The normal (Gaus-

sian) distribution is the most common continuous probability model and random vari-

able x is defined by a mean µ and variance σ2 in the following equation:

p(x) = (2πσ2)−
1
2 exp

{
−(x− µ)2

2σ2

}
(2.1)

This is often represented by N (µ, σ2) and will show up many times later in this

thesis.

2.1.2 Clustering

Uncertainty is represented and managed in many different ways. Just as a Gaussian

function can represent an independent random variable, so can clustering be used to

represent groupings of noisy data.

Clustering is the process of organizing objects based on their similarities. Grouping

divides objects into smaller, more representational groups. An object is more similar

to the objects in its own group as opposed to other groups. There are many types of

clustering techniques; however, in this work, centroid-based clustering is used.

In centroid-based clustering the clusters are represented by a central vector, which

may not necessarily be a member of the data set. K-means clustering [3] is an example

of centroid-based clustering and uses a fixed number of clusters (K). The algorithm

optimizes the squared distances from the centroid to each object in the cluster.
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2.1.3 Graph Search

A graph is used to model a pairwise relationship between objects and is made up of

vertices (nodes) and edges. A graph G = (V , E) is made up of a set of vertices V

connected by a set of edges E . In robotics graphs are often used to model states of a

robot in the world. Searching through the possible states from a source to a goal is the

traditional method for generating a plan. A generic form of a graph search algorithm is

presented in Algorithm 1. The difference between graph search algorithms is the method

by which the next node to expand is selected.

Algorithm 1 Generic Graph Search (Graph, Start, Goal)
open set← []
closed set← []
next node← start
while next node isn’t goal do

closed set += next node
open set += successors of next node, not in closed set
next node← select from open set
remove next node from open set

return next node

2.2 Standard Approaches

The focus of this work is to expand traditional planning methods to account for uncer-

tainty in the environment. The following sections will introduce prior work relevant to

deploying robots in the physical world, and the most prevalent techniques used today.

Additionally, each section will contain a review of recent work in incorporating uncer-

tainty into the planners. The three main topics include coordination planners, monitoring



9

algorithms, and path planners.

2.2.1 Coordination Planners

Coordination of multiple robots was initially studied in the 1980’s [4] and since ex-

panded into famous examples like Amazon’s autonomous warehouse and the world

robotic soccer competition RoboCup. Research directions have expanded into task plan-

ning, motion planning, exploration, and communication.

Multi-robot coordination methods can be separated into two general categories: (1)

decentralized approaches and (2) centralized approaches. Centralized planners require

a single global controller that gives plans to each agent. While these planners are gener-

ally more efficient, they often fail if communication is not guaranteed or if the planners’

knowledge of the environment is incorrect. In contrast to centralized approaches, de-

centralized planners scale better and are robust to uncertain communication. However,

a decentralized planner can be suboptimal with respect to the global objective if the

agents only consider their local knowledge. This limited knowledge can lead to varying

communication schemes between decentralized planners to coordinate tasks.

Communication can be categorized into explicit or implicit communication. Each

communication model has different coordination challenges. Explicit communication

allows each robot to exchange information directly with other robots. In contrast implicit

communication shares information through the environment. As an example of explicit

coordination, Hollinger and Sing design a periodic connectivity framework for search,

survey and cover problems [1].
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2.2.2 Monitoring Algorithms

Work on autonomous information gathering began with early work in sequential hy-

pothesis testing [5], which focused on determining which experiments could efficiently

classify the characteristics of an unknown. This line of research developed into more

general approaches and evolved into the field of active perception [6]. Similar insights

led to using optimization techniques on robotic information gathering problems. It is

important to note that persistent monitoring is different than the coverage problem be-

cause it manages surveillance over a changing environment where each target must be

visited infinitely often and cannot be fully covered by the monitoring agents.

Traditional monitoring algorithms began with examining the sweep coverage prob-

lem as seen in [7] and [8]. Sweep coverage is different than static coverage in that

each point of interest in sweep coverage is time-variant as long as a coverage period is

guaranteed. Fortunately, research has been directed towards minimizing the uncertainty

of the environment monitored. Specifically, Cassandras et al. developed algorithms

for minimizing long-term information uncertainty [9, 10], which is critical to robotic

monitoring autonomy.

2.2.3 Path Planners

Planning is finding a set of actions that transitions from an initial state to a final goal

state. States are the configuration of the agent in the world, while transformation be-

tween each configuration is the action of an agent. There is a cost correlated with each

transition, the cost may be energy, time, distance, or some other metric. A planner finds
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a path (series of actions) between the initial and desired goal states. This path can be

optimal, where the cumulative sum of all costs is the lowest over all possible paths. A

planner is considered optimal if it will always find the lowest cost path. In addition, a

planner that always finds a path in finite time (if it exists) is considered to be complete.

There are several approaches to finding paths given some representation of the envi-

ronment. There are two types of environmental representations: discrete and continuous

[2]. In discrete space, path planners are deterministic and divide the environment into

an interval-based graph structure. By using a discrete representation the dimensionality

of the planning problem is reduced. Not only does this simplify the planning problem,

it also allows the quality of the solution to be bounded by the level of discretization.

In continuous space, sampling-based planners have emerged as the most commonly

used planners [11]. In sampling-based path planners the environment is randomly sam-

pled and a path is incrementally refined. Informed methods of sampling and connecting

the paths, like in RRT*, can guarantee optimality as well.

For additional reading on heuristic-based path planners Ferguson et al. [12] provide

a clear and concise overview. An in depth review of sampling-based methods is pre-

sented by LaValle [11], and a summarized review of these algorithms will be presented

in the following few sections.

2.2.3.1 Discrete Space Planners

In 1959 Dijkstra’s search algorithm for finding the shortest path between nodes on a

graph was published [13]. The basic premise of Dijkstra’s algorithm is to expand the



12

search by visiting the next closest neighbor from the source until reaching the goal. The

search is over nodes on a graph with edges of fixed and known costs connecting the

neighboring nodes.

A simple extension to this is directing the search towards the final desired state by

using a heuristic. A heuristic is a metric for roughly estimating the quality of a guess,

it is in no way guaranteed to be accurate [14]. A heuristic is considered admissible

if it never overestimates the cost from any state to the goal, this is important because

it guarantees that the final path is optimal. By using a heuristic in combination with

Dijkstra’s algorithm the search will be guided towards states closer to the desired state,

saving time and computing power by potentially limiting the number of states explored.

This algorithm is one of the most popular search algorithms, known as A* [15]. A*

can efficiently find an optimal path between two discrete states as long as the heuristic is

admissible, and there are known transition costs between each state. A notable limitation

to this algorithm is planning over changing transition costs.

Dynamic A* (D*) [16], and the more efficient version D* Lite [17], were introduced

as adaptable versions of A*. These planners are able to work with uncertain, changing

graphs. The D* Lite algorithm behaves like A* but saves graph information after a

plan is found. The saved information reduces computational complexity if replanning is

needed due to unknown obstacles, or changing edge costs in the environment.
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2.2.3.2 Sampling-Based Planners

An alternative approach to planning, are sampling-based techniques. The major draw to

sampling-based planners is their ability to efficiently create plans in high-dimensional

spaces and operate in continuous space. These algorithms sample the configuration

space (C-Space) of the planning problem, where C-Space is the collision free region

accessible by the robot. The generic form of a sampling-based planning algorithm is

described in Figure 2.1.

Figure 2.1: sampling-based planning philosophy diagram demonstrating the separation of sam-
pling/searching and collision detection. Image taken from Planning Algorithms, LaValle [11].

One of the first sampling-based algorithms is known as probabilistic roadmap (PRM).

A probabilistic roadmap (PRM) randomly samples the configuration space, connects

neighboring points, tests for collisions, and finds a path from the start state to the goal

state [18]. This method is probabilistically complete, meaning it will find a solution if

one exists, as long as it can sample the free space infinitely. An asymptotically optimal

version, known as PRM*, uses a variable connection radius that scales log(n)/n where

n is the number of samples.

Similar to PRMs, the rapidly exploring random trees (RRT) method builds a con-

nected graph by sampling the space, however this graph is connected after each sam-

pling. As each point is sampled the graph is extended a fixed distance towards the point
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then checked for collision. When the goal state can be connected to the graph, a path

is found [19]. RRT* is the asymptotically optimal version of RRT, where connections

are updated to new nodes if they result in a shorter path to the node than the previous

connections [20]. Many different sampling methods exist presenting interesting and

efficient variants of these base algorithms.

All these sampling-based planners make assumptions that the robot is operating on

a known state, and transition functions. To address the problem of motion planning

in the presence of state uncertainty, Bry and Roy introduced a novel sampling-based

motion planning method [21]. The Rapidly-exploring Random Belief Tree algorithm

ensures a bounded probability of collision by balancing reduction of uncertainty with

low cost paths. This addresses half of the problem, the other half is the uncertainty of

representing the environment.

2.3 Summary

The concepts overviewed in this chapter provide a platform of understanding for re-

search in planning under uncertainty. Each subsequent chapter will explore a different

gap in the current research, and bring concepts introduced in this chapter to address

those challenges. First, a significant weakness in monitoring research is how to effec-

tively monitor moving point of interest. We will build on current research by investigat-

ing how to effectively monitor these dynamic points, specifically along a fire frontier.

Second, using multiple vehicles can provide more coverage, better efficiency, and add

robustness to the system, however an unaddressed challenge to using multiple robots is
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dealing with unreliable communication. We will cover this gap with a communication

framework, specifically for the challenging indoor exploration domain. Third, when

these systems are planning paths through uncertain environments and terrain the paths

are often unreliable and slow. A clear gap in planning research is incorporating path un-

certainty. We will build on current path planning research by using traditional methods

of planning while incorporating uncertain traversal cost into the planner.
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Chapter 3: UAV Planning for Dynamic Wildfires

One of the benefits of UAVs is that they provide sensing capabilities other ground based

platforms lack. These robots are being implemented in various domains, but specifically

show promise in applications hazardous for humans. In the future, aerial monitoring and

inspection tasks will likely be a primary sector in commercial markets. Real world ap-

plications for monitoring are likely not all stationary targets. We begin by investigating

the challenge of monitoring dynamic points of interest. We specifically study the uncer-

tainty around monitoring a wildfire frontier. Studying wildfires has an obvious benefit

when considering the human cost spent combating them.

One of the main issues in combating wildfires is monitoring the progression of the

fire over time [22]. Live fire frontier monitoring can help produce quicker decisions

and result in better resource allocation and fire management [23]. During wildfires, the

information available to the Incident Commander (IC) is critical. Current methods of

tracking a fire involve a human pilot flying several miles away from the fire and verbally

reporting to the IC what trends they see in the fire. Satellite imaging is also available but

is often rendered useless by smoke. In 2012, there were a total of 67,774 fires, destroying

9.3 million acres, and costing over $1.9 billion to suppress in the U.S. alone [24].

This chapter develops different hotspot monitoring algorithms to gather important

information for the Incident Commander (IC) managing the wildfire. This research

The work from this chapter was published in Field and Service Robotics 2015.
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Figure 3.1: Wildfire simulation example (red areas correspond to hotter areas of the fire). We propose
a weighted-greedy algorithm for optimizing the monitoring trajectories of aerial vehicles in wildfire sce-
narios.
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aims to improve a UAV’s effectiveness in gathering valuable information for the IC. To

simulate wildfires, a program developed by the Department of Agriculture and Forest

Service is used. FARSITE is a free program used by the U.S. Forest Service, National

Park Service, and more specifically ICs, to predict the fire’s behavior using data on the

topography, weather, wind, moisture, and fuel [25]. FARSITE exports various character-

istics of the fire; while our simulation (FLAME) uses fireline intensity data (BTU/ft/s).

Other fire metrics like flame length, and rate of spread are also incorporated. See fig-

ure 3.1 for a fireline intensity map of a simulated fire.

Wildfires are highly unpredictable, acting as a unique dynamic frontier. Dynamic

monitoring has been explored [26, 27], but fire frontier monitoring is a largely unex-

plored domain. Our simulator (FLAME) models a dynamic fire frontier and uses tech-

niques like Mini-Batch K-Means Clustering to achieve a similar problem formulation as

related monitoring research.

Tracking the most volatile locations on the fireline will give valuable information for

the IC. These hotspots will be intelligently monitored by the UAV, using algorithms for

minimizing the time hotspots are left unmonitored.

While wildfires were the chosen domain, this research is not limited to wildfires.

Similar application domains with dynamic frontiers include: algae blooms, pollution

spills, and military battles [28, 29]. These similar domains can also be analyzed using

the techniques developed in this chapter.

The main novelties of this chapter include: (1) a simulation (FLAME) which uses

realistic fire modeling software for accurate fire characteristics, (2) a novel fire tracking

algorithm which outperforms existing methods, (3) the first investigation into adaptive
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monitoring of hotspots along a dynamic frontier, and (4) hardware experiments demon-

strating the ability to implement our work with existing technology. Taken together,

these contributions provide a new approach to the general problem of monitoring dy-

namic frontiers.

The remainder of this chapter is organized as follows. First, we establish the current

state of related research (Section 3.1). Following that, we overview the problem and

assumptions we made during our investigation (Section 3.2). Next, we describe the sim-

ulation and a novel approach to frontier monitoring (Section 3.3). Finally, the algorithm

is described in detail in (Section 3.4), the simulation results are presented (Section 3.5),

and the hardware experiments are discussed (Section 3.6).

3.1 Related Work

Robotic systems are becoming more commonly used as mass data-gathering tools by

scientists [26, 30, 31]. Robots are already collecting large datasets on environmen-

tal change. Algae blooms, pollution, and other climate variables are application do-

mains for persistent monitoring techniques. Persistent/adaptive monitoring in robotics

is currently a growing research topic. Prior work has explored different approaches

to monitoring stationary and dynamic feature points. While these adaptive sampling

techniques focus on optimizing uncertainty levels in static [9, 32, 33] and in dynamic

environments [34, 26], prior work often focuses on systems in obstacle-free environ-

ments. Some research has examined collision avoidance [35, 36], but adaptive sampling

along dynamic frontiers remains an ongoing research problem.
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In [37], fire frontier tracking was integrated into a simulation for determining UAV

tracking accuracy of the fire perimeter. Our baseline uses the same method of UAVs

follow a circular path around the fire. However, our metric is to track the most active

parts of the fire. We compare the baseline against our weighted-distance algorithm.

Our research presents the first investigation into adaptive monitoring of hotspots along

a dynamic frontier. We span the domains of hotspot monitoring and dynamic frontier

tracking to evaluate path planning techniques in our FLAME simulator. This line of

work allows us to test new algorithms in real-world scenarios.

3.2 Problem Formulation

We will now formally introduce the problem domain and the assumptions we made. We

will also introduce the metric we use to evaluate our algorithm against the baseline.

We assume that GPS and communication between the IC and the vehicle are always

available. This means the UAV can always localize itself and never needs to return

to the starting location to transfer collected data. We assume the UAV always has the

simulated fire frontier in order to find the hotspot locations. Additionally, the UAV is

assumed, for comparison purposes, to have unlimited endurance.

Each hotspot has a corresponding time since last tracked by the UAV and the maxi-

mum time its been left untracked (φ) in the past. The sum of φ of all hotspots was chosen

as the metric to evaluate the effectiveness of an algorithm. In this chapter, fireline in-

tensity is used as the crucial information needed by the IC. The intensity is monitored

through the clustering into hotspots, directly relating to the goal of providing the IC with
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up-to-date information about the fire progression.

J(t) =

hotspots∑
i=0

φi , (3.1)

The goal is to minimize the metric J(t), which corresponds to timely hotspot moni-

toring, through an optimized trajectory for the UAV.

3.3 FLAME Simulation

We will now explain our simulation and how we developed each of the different compo-

nents. Figure 3.2 should be used as a reference of the state transitions in the simulation.

There are two aspects to the weighted-greedy algorithm, (1) picking which hotspot to

go to, and (2) how to get there.

Fire data is generated using FARSITE, the wildfire simulator currently used by ICs

during wildfire management [25]. The data is exported in the form of time of arrival, and

a measurable characteristic of the fire. In this work we use the fireline intensity at each

location. As stated above, the task is to minimize the sum of max time untracked (φ)

over all hotspots. At mission start, the UAV must first find the fire and begin identifying

the hotspot regions.

Tracking a hotspot is done by calculating the distance between a previous set of

hotspots relative to a new set. To determine when a hotspot moved as the fire progressed,

a threshold is implemented. If a hotspot is not within the distance threshold of any

previous hotspots, it is then classified as a new hotspot. Even after careful tuning, this

approach can still lead to some untracked hotspots where the hotspot existence is too
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Fire Progressionstart Extract Frontier

Find Clusters

Track HotspotsFind Path CostAlgorithm

Update Pose Baseline Planner

Figure 3.2: State diagram of FLAME
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short for any response by the UAV.

To identify hotspots, all points along the frontier with a fireline intensity above

a normalized threshold are parsed using a clustering technique called Mini-Batch K-

means [38]. K-means clustering was chosen because it directly relates the number of

interest points (how active the fire is) to the number of cluster centers (hotspots). The

desirable amount of clusters (K) changes as the fire evolves. We actively determine the

K value for adaptive hotspot extraction with the following formula,

K =
√
N/2, (3.2)

where K is the number of centers, and N is the number of interest points.

FLAME uses A* path planning for generating paths from the UAV to hotspot loca-

tions around the fire. This method works better for estimating path cost compared to

a simple Euclidean distance estimate due to the spherical tendency of the fire spread.

Other similar methods were explored to increase efficiency, such as Jump Point Search.

Jump Point Search gives respectable speed gains in environments with large open spaces,

however the UAVs path remained mostly along the fire frontier. Methods like wall-

following could provide faster simulation times, but lack expandability to more complex

frontiers, and provide less accurate path costs. Due to the shape of the fire, any benefits

of these alternatives were determined to be inconsequential. It was therefore determined

to use the A* search algorithm as the UAV’s path planner.

A cost map is passed to the A* algorithm, and is generated by applying a blur to the

map of the fire up to that point in time and assigning a high cost to areas within the fire.
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This helps ensure the path generated for the UAV is not within dangerous proximity of

the fire, but can still be navigated close enough to monitor the hotspots. The algorithms

were tested over seven different fires generated in FARSITE. The baseline and proposed

weighted-greedy algorithm are described in pseudocode in Algorithms 2 and 3.

3.4 Algorithms

The proposed algorithm is evaluated against a baseline in the following tests. The fol-

lowing sections will describe each algorithm and how it was implemented in the FLAME

simulation. The first monitoring technique described is used as the baseline compari-

son. It exemplifies current tactics utilized in real world wild fire monitoring, and prior

research into UAV fire monitoring [37]. This is compared to our proposed approach, a

weighted-greedy algorithm that moves to the hotspot that has remained untracked the

longest with a tunable parameter weighting the distance of the hotspot from the UAV.

Figure 3.3 should be used as a reference for the difference between the two algorithms

behaviors.

3.4.1 Baseline

The baseline model travels parallel to the dynamic fire frontier. Calculating a 90 degree

transformation of the vector from the UAVs current location to the nearest point on

the fire frontier gives the travel vector of the UAV. Maximum and minimum distance

thresholds are imposed on the UAV so it can then move along the frontier monitoring

hotspots while maintaining a safe distance from the fire. We use this as a baseline
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(a) UAV monitoring the fire using proposed
algorithm identifies and tracks the most im-
portant part of the fire.

(b) UAV monitoring the fire by constantly cir-
cling will continue regardless of the state of
the fire.

Figure 3.3:

comparison based on the work of [37].

3.4.2 Weighted-Greedy

The weighted-greedy algorithm checks the untracked time of every live hotspot, calcu-

lates the distance to it, and targets the hotspot with the highest score. Unlike the baseline,

the weighted-greedy algorithm makes target decisions based on the current state of the

hotspots.

This is done using the following formula where H is the target hotspot, T is the

untracked time of each hotspot and C is the path cost to each hotspot:

H = argmin
h
Th − α ∗ Ch (3.3)

The proposed algorithm accounts for the distance to each hotspot when choosing
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Algorithm 2 Baseline Algorithm
1: Inputs: UAV Location, frontier
2: for all points in frontier do
3: points.distance =

√
(points.x - UAV location.x)2 + (points.y - UAV location.y)2

4: closest point = min(points.distance)
5: vector to nearest = ([UAV location.x - closest.point.x], [UAV location.y - clos-

est.point.y])
6: normalized vector = vector to nearest / distance to nearest
7: if dist to nearest > max distance to fire then
8: travel vector = vector to nearest
9: else if dist to nearest < min distance to fire then

10: travel vector = -vector to nearest
11: else
12: travel vector = (-vector to nearest.x, vector to nearest.y)
13: path = travel vector

Algorithm 3 Weighted Algorithm

1: Inputs: hotspots{location, time untracked}, α, UAV location
2: for all h in hotspots do
3: h.path, h.path cost = ASTAR(h.location, UAV location)
4: h.score = h.time untracked − α ∗ path cost(h)
5: if hotspot.score > target hotspot.score then
6: target hotspot = h
7: path = target hotspot.path

the targeted hotspot. The weighting factor α is a parameter evaluated in figures 3.4, 3.5,

and 3.6. The use of a weighting factor addresses some sub-optimality of using just

a greedy algorithm. The weighting parameter helps intelligently pick a hotspot that

may not be the longest untracked but is closer to the vehicle. A greedy algorithm will

immediately move towards the hotspot with the longest time left untracked, disregarding

any nearby hotspots that may not have been untracked for nearly quite as long.
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3.5 Results

Using our FLAME simulator, we can compare our proposed weighted-greedy approach

with traditional methods of monitoring wildfires or dynamic frontiers. The simulation

was run on an Intel i7-4702HQ processor with 8 Gb of RAM. The UAV’s decision and

planning methods took an average of .74 seconds to complete. This is fast enough for a

UAV to implement in the field (see section 3.6).

In comparison to the baseline, the weighted algorithm provided substantial improve-

ment over the course of the trials. The plots in Figures 3.4, 3.5, and 3.6 show the perfor-

mance of the two monitoring algorithms performance with different parameter settings.

As previously discussed, the weighting parameter (α) is multiplied by path cost to the

hotspot location. The hotspot cutoff β is the normalized threshold for a spot along the

fire to be considered an interest point. This directly affects the total number of hotspots.

Tests run with a lower β will generate a higher number of hotspots for the UAV to track.

Time on the x axis begins at first cluster appearance during the simulation. The y axis

shows the results of the comparison metric J(t).

The averaged score over the seven fires are depicted as the bold lines. Around each

line, the standard error of the mean is represented by the shading. Figure 3.5 shows the

simulation results with a hotspot threshold β = .35. The plot shows the results with a

corresponding α value of .5. Our proposed algorithm performs significantly better than

currently used approach.

In figure 3.4 the simulation is run with a β equal to .25. The β value (.25) is the

lowest used and figure 3.4 shows the performance of both algorithms in an environment
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with the corresponding large set of hotspots.

(a) Weighting parameter α = .5 Hotspot Threshold β = .25
Figure 3.4: Wildfire simulation, where the comparison metric is J(t) or the sum of max time untracked of
all hotspots. Lower is better. The weighting parameter α is set at .5. The normalized threshold β, for a
spot along the fire to be considered an interest point, is set to .25. A lower β corresponds to more hotspot
locations. Error bars are one SEM.

Figure 3.6 depicts the simulation results with a hotspot threshold β at .45. This trial

uses the highest β (fewest number of hotspots), and shows the performance with α value

at .5. The standard error of the mean (SEM) for both algorithms is significantly higher

in this test environment.

The results demonstrate the weighted-greedy algorithm’s ability to outperform the

baseline in environments with only few clusters, or many clusters. In all cases presented

here the proposed algorithm showed significant improvement over traditional wildfire

monitoring methods. Our algorithm better tracks the dynamic regions of a dynamic

frontier, providing valuable data to the IC.

An interesting characteristic of the frontier monitoring is that it may be simplified
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(a) Weighting parameter α = .5 Hotspot Threshold β = .35
Figure 3.5: Wildfire simulation, where the comparison metric is J(t) or the sum of max time untracked of
all hotspots. Lower is better. The weighting parameter α is set at .5. The normalized threshold β, for a
spot along the fire to be considered an interest point, is set to .35. A lower β corresponds to more hotspot
locations. Error bars are one SEM.

into a 1-dimensional problem. Each timestep the UAV must decide between two op-

tions, if it wishes to move clockwise or counter-clockwise. Further investigation into

leveraging this characteristic may be worthwhile.

3.6 Hardware Experiments

To demonstrate the feasibility of the proposed algorithm, we implemented the algorithm

on a live test. To test on hardware we set up the FLAME simulation as a ground station

that acted as live satellite data would for a real fire. The algorithm then sent a live stream

of coordinates to a UAV to monitor the fire. While a real fire was not used for purpose

of this test (for safety reasons), we are able to demonstrate that a UAV can effectively
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(a) Weighting parameter α = .5 Hotspot Threshold β = .45
Figure 3.6: Wildfire simulation, where the comparison metric is J(t) or the sum of max time untracked of
all hotspots. Lower is better. The weighting parameter α is set at .5. The normalized threshold β, for a
spot along the fire to be considered an interest point, is set to .45. A lower β corresponds to more hotspot
locations. Error bars are one SEM.

perform these tasks.

We converted FLAME into a ROS package to use the MAVROS plugins [39]. MAVROS

acted as a communication bridge between FLAME and the flight controller on the UAV.

This allowed us to update the UAV’s path in time with the simulation. We used a teth-

ered IRIS+ quadcopter as the platform for these experiments, see Figure 3.7. We ran

the experiment for over 10 minutes, about half the max flight time of the vehicle. The

experiment was performed outdoors in about a 60ft x 60ft area. The simulation coordi-

nates were scaled and transformed to GPS degrees to support sending waypoints. We

present the path of the vehicle around the fire in figure 3.8.

The UAV successfully followed the trajectories generated in the simulation to the

best locations along the fire to monitor it as it spread. This illustrates our ability to be-
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(a) A 3d view of our flight log in Google
Earth showing the flight distance and tra-
jectories.

(b) Experiment set up, computer run-
ning live simulation and IRIS+ flying
autonomously (tethered).

Figure 3.7: Experimental setup and flight log results.

(a) The UAV first starts off a safe dis-
tance away from the fire and must
travel to the frontier.

(b) Upon reaching the frontier and
identifying a hotspot the UAV stays
outside the burn area as it grows.

(c) The UAV moves from one hotspot
to another to reduce the untracked
time.

(d) Final fire size and flight log of
our field experiments.

Figure 3.8: Four images demonstrating the algorithm path planning during field tests.
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gin introducing robotic monitoring into these dynamic monitoring situations and gather

valuable data from it.

3.7 Discussion

In this chapter, we have introduced FLAME, a simulation developed for testing moni-

toring techniques on a dynamic frontier, or more specifically a wildfire. The two algo-

rithms tested in the simulation have demonstrated that there is significant benefit in a

weighted-greedy approach for selecting hotpot waypoints over the baseline method of

flying around the fire frontier. Using Mini-Batch K-Means Clustering for identifying

hotspots, our proposed weighted-greedy algorithm optimized for J(t), the sum of max

untracked time of all hotspots. Three different normalized hotspot thresholds (β) (.25,

.35, .45) were used. Results showed the weighted-greedy algorithm with significant

improvements over the baseline.

These algorithms depend on global knowledge of the fire, or more specifically where

the hotspots are. Future work will include implementing a probabilistic model of hotspot

locations and studying the exploration/exploitation trade-off for tracking and updating

the model. In this chapter we assume the UAVs have unlimited flight time. However,

the cost of flight with limited endurance is an important factor. Additionally, hotspots

are not all equal, and things such as risk to critical areas will need to be considered.

Continuation of the project will also focus on implementation of multiple UAVs and

the introduction of common fire monitoring challenges, including smoke and adverse

weather conditions.
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Chapter 4: Coordinated Exploration under Unreliable Communication

In the previous chapter, we only considered a single UAV in the planning problem; now,

we will build on that work by planning with multiple UAVs. Coordinating more than one

UAV involves a stream of communication. The reduced cost and increased reliability of

autonomous vehicles and sensing technology has made it possible to field multi-robot

teams capable of mapping unknown environments. High-impact applications include

urban search and rescue, military reconnaissance, and underground mine rescue oper-

ations. However, with unreliable communication coordination algorithms often break

down. We used the challenge of coordinated exploration to address unreliable commu-

nication in unknown environments.

The algorithm presented here is applicable across multiple domains, but is primarily

motivated by the use of UAVs to explore indoor environments (e.g., buildings, caves,

and mines). In such environments, clutter and rubble often make the use of ground

vehicles impractical, and fixed-wing aircraft are not appropriate because of tight spaces

and obstacles. Small autonomous rotorcraft (e.g., quadcopters) are capable of highly-

agile operation within confined spaces and are not impeded by ground obstacles [40].

As such, they are uniquely suited for the previously noted exploration tasks.

A key limitation of small autonomous rotorcraft is that they typically have limited

battery life (often on the order of tens of minutes) [41]. This limitation restricts their

The work presented in this chapter was published in the International Conference on Robotics and
Automation 2015.
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Figure 4.1: Unmanned aerial vehicle (UAV) flying in an indoor environment. Our proposed algorithm
allows UAVs to “sacrifice” themselves by continuing to explore even when they do not have sufficient
battery for returning to the base station. The resulting information is then transmitted back to the base
station through the use of relay UAVs.

operating lifespan and makes it challenging to complete complex exploration missions

in a limited amount of time. The use of multiple rotorcraft is one method of overcoming

this limitation, their combined flight time may be sufficient to complete the mission.

However, many indoor environments create restrictions on communication between ve-

hicles (e.g., WiFi range and signal strength limitations), which makes it difficult to com-

municate between team members. Finally, these scenarios of interest do not allow for

instrumenting the environment with wireless access points or cameras as a means of

improving communication or localization. The combination of these factors motivates

the design of multi-robot coordination techniques that allow for adaptive, heterogeneous

behavior to improve the exploration efficiency of the team.

The proposed algorithm utilizes four states – explore, meet, sacrifice, and relay – to

improve exploration efficiency in communication-based coordination scenarios. When

in the explore state, a robot uses an existing frontier-based exploration algorithm to

generate it’s goals. When in the meet state, a robot returns to a previous location in
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attempt to rendezvous with team members. Subsequently, in the sacrifice state, a robot

continues exploring even when it no longer has sufficient battery life to return to the

base station. Once the robot has nearly exhausted its battery, it may land to act as a

communication relay.

The proposed algorithm is the first to provide heterogeneous exploration capabilities

with limitations on communication and battery life. The key novelties of this chapter are:

(1) a multi-robot coordination algorithm that provides sophisticated relay and sacrifice

behavior to adjust for limitations on communication and battery life, and (2) the design

and implementation of a team of low-cost autonomous rotorcraft capable of multi-robot

exploration in indoor environments. The contributions of this work enhance proficiency

in managing unreliable communication for coordination.

The remainder of this chapter is organized as follows. A discussion of related work

in multi-robot exploration is shown in Section 4.1, highlighting the need for an adaptive,

heterogeneous approach. The next section will formulate the multi-robot exploration

problem (Section 4.2) and present the proposed coordination algorithm (Section 4.3).

Following this, simulations demonstrating the benefit of our proposed approach versus

a frontier-based exploration algorithm are presented (Section 4.4). We demonstrate an

implementation on a team of custom-built autonomous quadcopters (Section 4.5) and

finally, we conclude and discuss avenues for future work (Section 4.6).
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4.1 Related Work

The research in robot coordination in this chapter focuses on the difficulties of real-

world environment mapping with autonomous robots. There is often unreliable com-

munication between robots, making coordination difficult. While previous research has

focused on exploration algorithms [42, 43] and maintaining mesh networks [44, 45], we

focus on coordinating with unreliable communication. Additionally, power limitations

cause difficulty when implementing previous research on physical systems [41]. Finite

power limits the usefulness of exploration robots in large environments. Our research

addresses these limitations in developing an optimized control algorithm.

Prior work has examined a number of algorithms for coordinating robots to ex-

plore environments, including using stochastic differential equation solutions [46]. Path

planning for aerial vehicles has also been considered in conjunction with state estima-

tion [47, 48]. Coordination algorithms have been applied to autonomous ground vehicles

in real-world environments [49]. However, these prior works do not consider heteroge-

neous behaviors that allow for improved efficiency with unreliable communication and

limited battery life. Our work is designed to bridge this gap.

The proposed algorithm is compared to a frontier-based exploration baseline [42].

While there is extensive research in exploration algorithms, frontier-based exploration

was chosen because it allows for fully distributed operation. Prior work has shown that

frontier-based algorithms perform competitively with alternative approaches for indoor

exploration tasks [50]. Notably, the proposed algorithm may use any exploratory al-

gorithm, such as market-based approaches [51], as its core baseline (see Section 4.3).
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Previous research [42] requires each robot to return home for collection of its map of the

environment. This constraint wastes precious energy since robots are returning through

explored areas. A key contribution of this work is the ability to build on a core explo-

ration algorithm by adding heterogeneous relay and sacrifice behaviors to improve the

efficiency of operation.

4.2 Problem Formulation

We are given the task of coordinating a team of robots to navigate an unknown environ-

ment and maximize exploration for their given battery life. We assume the robots are

able to communicate intermittently, limited by obstacles or range. We also assume that

sacrificing robots for a gain in exploration is acceptable. The robots only have commu-

nication with the base station when they are in range. To be useful, at least one robot

must return to the base station at a pre-specified location.

More formally, we are given K robots with limited battery life. We denote the

battery life for robot k as Bk. A robot may stop moving (land) to conserve battery. The

goal is to explore the maximal area of a bounded unknown environment and then relay

that information back to a base station. We assume that the environment is 2.5D, in that

the area that must be mapped is 2D, but the robots may fly some distance above the

ground.

Our assumptions on the robots and environment closely follow those described in [42].

We assume a bounded planar workspaceW ⊆ R2. The workspace is divided into free

regionsWfree and obstacle regionsWobs. The partition of the workspace into obstacle
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and free is initially unknown to the team. The areas with unknown and known partition

status to a robot k at time t are denoted as Wk
unknown(t) and Wk

known(t), respectively.

The goal is to reveal the maximal subset Wknown and relay that information back to a

base station.

Each robot is modeled as a disk of radius p, whose configuration qk is described

by its Cartesian center. The particular kinematics of the robots are not considered in

order to focus on the coordination algorithm. Each robot is path controllable (i.e., it

can follow any path in its configuration space with arbitrary accuracy). The robots are

equipped with an omnidirectional sensor which allows them to explore (and map) the

environment around them.

The optimization problem can be stated as follows:

P = arg max
P∈Ψ

Ar(P) s.t. |Pk| < BK ∀k, (4.1)

where Ψ is the space of possible team paths, Ar(P) is the area explored and communi-

cated back to the base station by a set of trajectories P , and |Pk| is the battery consumed

by a trajectory Pk for robot k.

4.3 Coordination Algorithm

First, we assign the robots sequential identification numbers. We define four possible

states for an individual robot: explore, meet, sacrifice, and relay. The current state is

dependent on the robot’s ID number, remaining battery life β, battery required to return

homeB, time since the last meeting with any other robot t, and predicted distances from
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other robots.

All robots begin in the exploration state. This state uses a frontier-based exploration

strategy, as described in [42, 43], though any algorithm could be substituted. The basic

idea is for the robots to build their own local maps and extract “frontiers” between the

explored space and the unknown space. The heuristic of moving to the closest fron-

tier is used here, which has been shown to provide competitive performance with other

heuristics [50]. The robots share their maps and merge them using existing map merg-

ing techniques (see Section 4.5). If two robots move towards frontiers that are near

each other, we impose a conflict resolution step where the robot with the higher prior-

ity ID number takes the frontier, and the other robot chooses the next-closest frontier.

Collision avoidance is handled in a similar manner where the robot with the lower pri-

ority stops or lands and allows the higher priority robot to pass. This approach allows

for fully distributed operation, correlating with our thesis objective of robust planning

under uncertainty.

After a constant time T (set as a parameter), a robot will transition into the meet state.

In this state, a robot will attempt to travel into communication range of another robot

to transmit map information and to update its internal state of other robots’ locations.

If it is able to meet with a robot, it will negotiate relay and sacrifice roles. The robot

with the lower ID of the two marks itself as a relay and the higher ID robot marks itself

as the sacrifice. These flags will be used when the robots decide to enter the relay or

sacrifice state. Any meeting with another robot occurring at a later time will overwrite

these flags.

If a robot is not a relay, it will transition into the sacrifice state when it determines
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Explorestart

Sacrifice
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Figure 4.2: State diagram for the proposed adaptive exploration algorithm. The explore, meet, sacri-
fice, and relay states allow for heterogeneous behavior that adjusts for limitations on communication and
battery life.

it has just enough battery to make it back to the last position it sighted its relay. It will

then travel to that location in an attempt to meet with the relay. Should it not find its

relay at the predicted position, it will revert to an exploration mode in a final attempt to

locate the robot. If a robot is a relay, it will eventually reach a point at which it has only

enough battery to travel to the base station. At this point, the robot will land (or go into

a hibernation state) to conserve battery while it waits for its sacrificial robot to locate it.

Once the relay is found by the sacrificial robot, it will travel back to the base station.

These state changes are made independently of other robots’ states, which leads to a

fully distributed architecture. Algorithm 4 gives a summary of the proposed algorithm,

and Figure 4.2 shows a state diagram for the explore, meet, sacrifice, and relay states.
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Algorithm 4 Exploration coordination algorithm
1: Inputs: current battery β, time between meetings T
2: t← 0
3: while β > 0 do
4: B ← battery required to go home
5: Transmit with nearby robots
6: if β ≤ B then
7: if is relay then
8: Land until sacrifice robot meets
9: else

10: Travel to last meeting location
11: else if t ≥ T then
12: Travel to last meeting location p
13: if robot found then
14: Update relay and sacrifice flags
15: else if at p then
16: Revert to exploration
17: t← 0
18: else
19: Explore local frontiers
20: t← t+ 1

4.4 Simulated Results

Simulations were used to test the proposed coordination algorithm. Simulations were

run over two maps (shown in Figure 4.3) with varying battery levels and starting posi-

tions. The quadcopters are capable of moving at a speed of 1 m/s in simulation, and the

parameter T was empirically set to one minute.

We compared the proposed algorithm to a baseline frontier-based exploration ap-

proach [42]. The frontier-based exploration approach is equivalent to remaining in the

“explore” state and then returning to the base station once battery is low. Thus, the simu-
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Figure 4.3: Left: Simple environment map used for multi-robot exploration trials. The environment is
approximately 50 m × 50 m. Right: More complex environment map used for multi-robot exploration
trials (120 m × 40 m).

lations demonstrate the improvement from utilizing the meet, sacrifice, and relay behav-

iors. Figure 4.4 shows the results of these simulations demonstrating that the proposed

algorithm is able to explore a greater percentage of the map than the baseline algorithm

under varying conditions. The improvement of the proposed algorithm ranges from 5%

to 18%. We note that in all cases the proposed algorithm provides some improvement

over the frontier-based exploration baseline.

In the complex environment, the improvement from the sacrifice, meet, and relay be-

havior increases as the number of robots increases. This result is expected since increas-

ing team sizes means that more robots can be sacrificed for additional exploration. We

show the results for a large team (8 robots) in the simple environment, which provides

substantial benefit over the frontier-based exploration baseline. These improvements

demonstrate that the proposed algorithm provides advancement in both cluttered envi-

ronments (e.g., office buildings) and more open environments (e.g., caves). Leveraging

shared information allows coordinated planners to outperform independent algorithms

through the simple extension of being robust to communication dropout.
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(a) Complex Environment, 2 robots (b) Complex Environment, 2 robots

(c) Complex Environment, 4 robots (d) Complex Environment, 4 robots

(e) Simple Environment, 8 robots (f) Simple Environment, 8 robots

Figure 4.4: Simulated algorithm performance. Each data point is an average of 200 simulation runs with
random starting points. Error bars are one standard error of the mean.
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4.5 Experiments on Autonomous Quadcopters

The proposed algorithm was demonstrated in an office environment using two autonomous

quadcopters. The system used to test our robot coordination algorithm is described be-

low. Design requirements are identified as follows. All processing must be performed

onboard the system, and the system must be capable of full autonomy once in the air.

Each robot must be able to communicate and coordinate with additional robots. We also

design for low cost (less than $1,500 per robot). Existing robots are either substantially

more expensive or require an instrumented environment [41].

The system must have sufficient computing power to run vision and planning algo-

rithms in real-time. A Gigabyte Brix i7-4500 was chosen to meet our power, weight, and

computational performance requirements. A PX4FMU was used for flight stabilization,

and a PX4Flow camera for optical flow measurements. An Asus Xtion acted as the main

onboard camera, and provided RGB and depth images.

4.5.1 Software Architecture

The software architecture is split into two systems: the high-level processing running on

the onboard computer and the low-level flight stabilization on the flight control board.

The onboard computer runs the Robot Operating System (ROS) [39] on top of Ubuntu

13.10. The OpenNI ROS package interfaces directly with the Xtion camera to publish

RGB and depth information, which is processed by the RGBDSLAMv2 package. The

latter package localizes the vehicle in its environment and produces a point cloud map of

the area. To improve the usability of this map, the point cloud is passed to the OctoMap
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Figure 4.5: Software architecture for the custom-built autonomous quadcopter system.

package to produce a 3D probabilistic occupancy tree. Then the ROS navigation stack

is used for 2D path planning and frontier exploration.

The flight control board accepts local velocity commands from the onboard com-

puter over the MAVLink protocol. It then interprets these commands based on its in-

ternal velocity estimate provided by the flow camera and inertial measurement unit.

Beyond this point, the flight control software is treated as a black box.

4.5.2 Experiments

We successfully demonstrated the key components of our proposed algorithm on a team

of two quadcopters. A sacrifice-relay hand-off was implemented using one sacrificial

quadcopter (denoted as SQ) to perform frontier based exploration in a new room while a

relay quadcopter (denoted as RQ) traveled to a meeting location and then returned with

data of the explored room. A colored OctoMap of the passage that RQ mapped is shown

on the left in Figure 4.6, and the additional explored area mapped by SQ is shown on
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Figure 4.6: Left: Colored OctoMap from relay quadcopter, leading to unexplored area. Right: Colored
OctoMap from sacrificial quadcopter showing additional explored area. Bottom: An overview of the
testing area.

the right.

The experiment proceeded as follows: (1) both RQ and SQ started at the same home

base location; (2) SQ and RQ were both moved manually (due to safety considerations

in the experiment space) to the entrance of the unexplored area where RQ landed as

a relay; (3) SQ was flown to a stable altitude and switched to autonomous frontier-

based exploration until it registered that it was nearly out of battery; (4) SQ landed and

transmitted its map data to RQ, (5) RQ was returned to the home base with the gained

map information from both SQ and RQ. This proof-of-concept demonstration shows
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successful exploration and mapping capabilities on the quadcopter hardware as well as

a successful hand-off of information between UAVs acting in the relay and sacrifice

roles. Additional hardware experiments are shown in this chapter’s supplemental video

attachment.

4.6 Discussion

This chapter has demonstrated coordinated exploration using a multi-UAV team with

unreliable communication and limited battery life. Our results show that the proposed

algorithm, which leverages meeting, sacrificing, and relaying behavior, increases the

percentage of the environment explored. By capitalizing on relay behavior, the mapped

environment returned to the base station was shown to be more complete than a standard

frontier-based exploration strategy. This was also demonstrated with a team of two

autonomous quadcopters, which were designed to be low-cost, fully autonomous, and

capable of operating without pre-installed infrastructure.

It is important to note that the mapping capabilities of the quadcopters use off-the-

shelf algorithms available in the ROS package. It may be beneficial to improve the

mapping capabilities using more sophisticated distributed smoothing and mapping ap-

proaches [52]. Additional future work lies in examining the effect of parameter selection

in various types of environments (e.g., tunnels, caves, mines, etc.). Finally, this schema

can be readily scaled up to larger team sizes, vast teams could be used to achieve explo-

ration in larger-scale environments.
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Chapter 5: Risk-Aware Graph Search

“Risk: A state of uncertainty where some possible outcomes have an undesired effect or

significant loss,” Hubbard [53].

While the previous chapter dealt with unreliable communication, the underlying path

planning problem is still fragile to the environmental model. When planning in unstruc-

tured environments there is a greater need for fast, reliable path planning methods ca-

pable of operating under uncertainty. Planning under uncertainty allows for robustness

when faced with unknown and partially known environments. We introduce a method,

Risk-Aware Graph Search (RAGS), for finding paths through graphs with uncertain edge

costs. Our method bridges the gap between traditional search methods [15], [17] and

risk-aware planning [54, 55].

Graph theory is an expanding field, and graph search algorithms have proven to be

extremely useful tools over a variety of domains. Traditionally, graphs are composed of

nodes and edges, with a node representing some state and an edge representing the tran-

sition between states. Effectively searching through a graph with known edges has been

extensively researched and applies across disciplines in robotics, computer science, and

optimization. We aim to expand the capabilities of graph search algorithms by allow-

ing for uncertainty in traversal costs, while avoiding the blowup in computation from

The work presented in this chapter was published in the International Conference on Robotics and
Automation 2015, Workshop: Beyond Geometric Constraints.
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more expressive frameworks (e.g., POMDPs). Our novel approach searches over uncer-

tain edge costs with known distributions. This formulation allows for computationally

efficient methods of reducing the risk of traversing paths with high cost.

Traditional graph search methods (such as A* and D*) search over deterministic

costs [15], [17] when traversing a graph. Often the traversal between states can be

the biggest unknown. For instance, imagine that you are going from your house to the

grocery store, you know which intersections you will drive through but without knowing

future traffic conditions, you cannot know how long it will take to go down each street.

Assuming known traversal costs ignores valuable information, which could help you

avoid delays. There have been several recent developments in risk-aware planning based

on this intuition [54, 55], but much work involving uncertainty-based planning remains

strictly concerned with the belief state of the robot’s location [21], [56].

The main novelty of this chapter is the introduction of a nonmyopic graph search

algorithm for risk-aware planning. RAGS is an online planning mechanism that incor-

porates live feedback for deciding when to be conservative and when to be aggressive.

With edge costs modeled as normal distributions, we can derive a principled way of

leveraging information further down a path. The result is a lower probability of the

executing a path with a high cost.

We compare our method to A*, D*, and a greedy approach. The algorithms are

compared by searching from start to goal through a number of random connected graphs.

The results show that RAGS performs similarly to A* in terms of mean path cost, but it

substantially reduces the number of high cost runs compared to all other tested methods.

These results confirm the effectiveness of a risk-aware planning approach.



50

In addition to testing over random graphs, we designed a validation using satellite

imagery. By applying a series of filters to satellite data, we are able to extract potential

obstacles that may impede a robot moving through the map. To deal with the imprecise

nature of obstacle extraction, we can utilize the benefits of RAGS to find paths that are

less likely to be substantially delayed. We show examples of different cases in which

RAGS finds preferable paths. The algorithm is run over 64 satellite images taken from

a broad set of landscapes. The resulting path costs over the image database confirms the

benefit of the RAGS algorithm in a real-world planning domain.

The remainder of this chapter is organized as follows. First we review related work

and research in probabilistic planners (Section 5.1). We then introduce the path search

problem with uncertain traversal costs (Section 5.2). We next derive a method for quan-

tifying path risk (Section 5.3) and present a way to reduce the search space by removing

dominated paths (Section 5.4). In Section 5.5 we discuss RAGS and show comparisons

to existing search algorithms. We then highlight the utility of RAGS by demonstrat-

ing its effectiveness for planning through various terrain captured from satellite imagery

(Section 5.6). Finally, we draw conclusions and propose future directions for this line

of research (Section 5.8).
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5.1 Related Work

5.1.1 Optimal Path Planning

Optimal path planning is described as the process of generating a series of waypoints

from a starting location to a desired goal, typically under constraints and a metric. Con-

straints are often environmental restrictions, such as avoiding obstacles or respecting

torque limits. Metrics are usually some form of cost function like minimum time or en-

ergy. It is common to discretize the search space to create a discrete planning problem.

Heuristic search techniques have become popular for this kind of deterministic planning

[15], [17]. On the other hand, sampling-based planning algorithms have become widely

used for their ability to solve problems in high-dimensional continuous state spaces [57].

Many of these classical path planning algorithms are discussed in [11], and [58]. These

algorithms are well suited to problems with deterministic actions and a well-defined

search space, but are not well adapted to dealing with planning under uncertainty.

Some of the most-used graph search algorithms include breadth-first-search, depth-

first-search, A* and Dijkstra’s [11]. These search methods have bounds on time and

space complexity. Dijkstra’s and A*, are both complete and optimal, which have led to

their wide use across domains. However, when dealing with nondeterministic graphs,

these guarantees are no longer applicable. Unfortunately this makes them difficult to in-

corporate into a stochastic environment without making restrictive assumptions or con-

straining the available information [59].
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5.1.2 Belief Space Planning

There are a number of graph structures that do incorporate uncertainty, such as Partially

Observable Markov Decision Processes (POMDP) [60], and belief trees [21]. Each

of these take a different approach from the risk graphs used in this chapter. While

the POMDP framework is known to be general enough for a large set of sequential

decision processes, the problem can quickly become intractable for a large search space.

POMDPs can be used to represent the same environmental uncertainties but with our

framework we can avoid these computational challenges. We incorporate the uncertainty

in the edge cost to represent the unknowns of transitioning from one state to another.

This creates a less expressive framework than POMDPs, but allows for efficient planning

and determination of paths that have high likelihood of yielding a low cost.

In belief trees the nodes represent belief of the systems state, similar to POMDPs.

Bry and Roy [21] perform planning over possible trajectories of a robot’s uncertain state.

By bounding the probability of collision in the belief tree the planner can search for a

safe trajectory for the robot to navigate with uncertain localization. This probabilis-

tic planning benefits from a collapsed search space, making it more tractable than the

POMDP framework.

5.1.3 Planning Under Uncertainty

Planning under uncertainty is a challenging problem in the field of robotics. In fact,

an underlying assumption in many existing planning algorithms is that the search space

is not stochastic. By taking this approach researchers have developed many powerful
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algorithms like RRT* [20] that perform efficient point to point planning; however, these

do not account for uncertainties in the search space. Recent work is now exploring ways

of incorporating uncertainty back into planners in field robotics applications [54, 61].

The importance of probability in robotics is the ability for performance to degrade

gracefully when encountering uncertainty. Notable work has been done on incorporating

uncertainty from sensors into the state estimation of the system, [56], [62]. Chaves et

al, [63] explore risk aversion in belief space planning by incorporating measurement

uncertainty into an active SLAM framework. While in [64] the authors minimize the

path length with respect to a lower bound on the probability of success. This is similar to

work by [65] which instead bounds the average risk. These algorithms define reasonable

ways of assigning a value or function for trading off between risk and a primary search

objective like distance. Significant effort has gone into developing methods for dealing

with multiple independent heuristics in a search space [66]. In our work, we derive a

formula for reducing the risk of a path based on the uncertainty of the traversal costs

themselves.

5.2 Problem Formulation

We now formulate the path search problem with uncertain edge costs and introduce

notation that will be used throughout the chapter. General nomenclature is provided in

Table 5.1.

Consider a graph G = (V , E) where the cost of traversing edge E ∈ E is drawn from

a normal distribution N (µE, σ
2
E). The cost of a path P ⊂ E is the sum of the edge
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TABLE 5.1: NOMENCLATURE

A,B, · · · sets of random variables {Ai} , {Bj} , · · ·
Ai random variable drawn from N{µAi

, σ2
Ai
}

i iterator from 1 to m
j iterator from 1 to n
k iterator from 1 to n, k 6= j
m size of A
n size of B
cAi

sample of random variable Ai
cAmin

min
Ai∈A

cAi

traversal costs, each of which are normally distributed. Thus the total path cost is drawn

from N (µP , σ
2
P), where µP =

∑
P µE and σ2

P =
∑
P σ

2
E .

Given any pair of start and goal vertices in the graph, Vs, Vg ∈ V , the task is to

traverse the graph along the path of least risk. More precisely, the path of least risk

retains the highest probability of traversing the least-cost path to goal as each vertex

transition is executed from Vs to Vg.

The decision at each vertex can be formulated by considering the next available tran-

sitions and their associated path sets. For example, say edge connections exist between

the current vertex Vt and each of the vertices in the set Vt+1 = {A,B,C, · · · }; fur-

thermore, m acyclic paths exist from vertex A to Vg, while n acyclic paths exist from

vertex B to Vg, etc. Let A be the set of random variables Ai, i = {1, · · · ,m}, where

Ai ∼ N
(
µAi

, σ2
Ai

)
represents the cost distribution of path i from vertex A to Vg, see

Figure 5.1. Let cAi
be a sample of the random variable Ai and let cA0 be a sample of

the random variable representing the cost of transitioning between Vt and A, then the



55

A1 

A2 

B1 

B2 

Bn 

Am ~ ! µAm
,σ Am

2( )

~ ! µBn
,σ Bn

2( )

Start Goal 

A 

B 

!

!

A0 

B0 

Figure 5.1: Setup of pairwise comparison for sequential look-ahead planning. Given the path cost distribu-
tions, we can directly compute the probability that traveling from Start to Goal through A will ultimately
yield a cheaper path than traveling via B.

lowest-cost path from Vt to A and onwards to Vg has cost:

cAmin
= cA0 + min

Ai∈A
cAi
. (5.1)

Similar statements can be made for path sets B, C, · · ·. To traverse the path of least-

risk, each edge transition must select the next vertex V ∈ Vt+1 such that the following

probability holds,

P
(
cVmin

< c(Vt+1\V )min

)
≥ 0.5. (5.2)

We note here that since the path cost distributions are derived from the same graph,

then pairwise comparisons between the available path sets obey a total ordering of pref-
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erence. That is, given

P (cAmin
< cBmin

) = γ,

P (cAmin
< cCmin

) = ε,

then,

γ ≤ ε⇒ P (cBmin
< cCmin

) ≥ 0.5,

with equality iff γ = ε. Thus |Vt+1| − 1 pairwise comparisons are needed to solve for

the next vertex V using (5.2).

5.3 Quantifying Path Risk

The pairwise comparison P (cAmin
< cBmin

) describes the probability that the lowest-

cost path in the set A is cheaper than the lowest-cost path in the set B. This probability

can be expanded to,

P (cAmin
< cBmin

) =

∞∫
−∞

P (cBmin
= x) · P (cAmin

< x) dx. (5.3)

We can now express each term in the integral according to the path cost distributions of

each respective set. Let,

f(x,A) = P (cAmin
< x) ,

g(x,B) = P (cBmin
= x) .
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Figure 5.2: The plot of f(x,A) for seven path sets. A0 has a single path with mean cost 20 and variance
52, while A1 and A2 have two and three times as many paths (of equal means and variances) as A0,
respectively. Each of A3 : A6 have two paths, one which is identical to the path in A0, and a second with
lower mean cost, higher mean cost, lower variance, or higher variance, respectively.
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Since each of the path costs are drawn from normal distributions, then

f(x,A) = 1−
m∏
i=1

1
2
erfc (d(Ai)) , (5.4)

g(x,B) =
n∑
j=1

 1√
2πσBj

exp
(
−d(Bj)

2)· n∏
k=1
k 6=j

1
2
erfc (d(Bk))

 , (5.5)

where d (·) = x−µ·√
2σ·

.

As an aside, note that f ′(x, ·) = g(x, ·). Thus, using integration by parts, we can

show that

P (cAmin
< cBmin

) = 1− P (cBmin
< cAmin

) ,

confirming that these two events are indeed complementary.

Equations (5.4) and (5.5) give some intuitive insight into the calculation of path risk.

This formulation performs a trade-off between the number of available paths in each set

and the quality of the paths in each set, the latter represented by the means and variances

of the path cost distributions. For example, f(x,A0) calculates the probability that the

best path in A has a path cost less than x, the plot of f(x,A) is shown in Figure 5.2

for µA0 = {20} and σA0 = {5} as well as six other path set variants. From (5.4), we

note that as m → ∞, f(x,A) → 1, ∀x ∈ (−∞,∞) and this is shown in the plots of

f(x,A1,2). Path set A1 has twice as many paths (of equal means and variances) as A0,

while A2 has three times as many. The curves show a trend towards an earlier and more

rapid transition to 1 as m increases; however it is also apparent that adding more paths

results in diminishing returns in terms of driving f(x,A)→ 1, ∀x ∈ (−∞,∞).
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Other trends can be observed when adding paths of varying path cost distributions

to the path set. A3 includes a second path with lower mean and equivalent variance to

A0. The corresponding f(x,A3) is shifted significantly to the left of f(x,A0), causing

the transition towards 1 to occur much earlier. On the other hand, the addition of a

second path with higher mean and equivalent variance results in almost no change to

the curve, as shown by the overlap between f(x,A4) and f(x,A0). Adding a path with

equivalent mean but a lower variance results in the plot of f(x,A5), which shows a

much more rapid transition to 1 compared to either f(x,A0) or f(x,A1). However, the

addition of a path with equal mean and higher variance increases the overall uncertainty

associated with the path set, as shown by the shallower gradation in the probability

curve. Furthermore, this means that although the transition towards 1 begins at lower

values of x, as x→∞, f(x,A6)→ 1 more slowly than for f(x,A1) or f(x,A5).

This analysis motivates a bounding approach that compares the values of path cost

means and variances to retain only the most relevant paths for the calculation of (5.3).

Bounding the path set is especially desirable since the computation of each pairwise

comparison has complexityO(n2m), where n and m are the sizes of the path sets under

consideration.

5.4 Non-Dominated Path Set

Existing graph search algorithms such as A* use a total ordering of vertices based on

the calculated cost-to-arrive to find a single optimal path between defined start and goal

vertices. However, an implementation of RAGS requires two sweeps of the graph, since
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an initial pass is required to gather information regarding the cost-to-go at each node

for quantifying the path risk at execution. If all possible acyclic paths between start and

goal are to be considered, then this initial pass is exponential in the average branching

factor of the search tree. In an effort to reduce this computation, we introduce a partial

ordering condition based on the path cost means and variances to sort the priority queue

and terminate the search. This bounds the set of resultant paths to be considered during

execution by accepting only those that exhibit desirable path cost mean and variance

characteristics.

As discussed in Section 5.3, the addition of paths with higher mean costs to the

existing path set results in little improvement in the overall risk of committing to that

set. Similarly, adding paths with higher variances on the path cost results in a slower

convergence of f(x,A) to 1 as well as greater uncertainty regarding the true path cost

outcomes for the set. Thus, an intuitive bounding condition is to only accept paths

with lower path cost means and/or lower path cost variances. Furthermore, the same

condition can be applied to the cost-to-arrive distributions during search to provide a

partial ordering for the node expansions.

In practice, the partial ordering considers whether a path is dominated by an existing

path, either in the open or closed set. For any two paths, A and B on the graph G,

A < B ↔ (µA < µB) ∧
(
σ2
A < σ2

B

)
. (5.6)

That is, if both the mean and variance of the cost of pathB are greater than those of path

A, then path A is said to dominate path B. This is a similar method to the one described
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Figure 5.3: Comparison of the executed RAGS path vs. the A* path, which is planned based on
the edge cost means only. The edge cost distributions are displayed next to each edge. The RAGS
path {Vs, B,C, Vg} is in blue, while the A* path {Vs, A, Vg} is shown in red. RAGS trades off the
slightly higher mean path costs associated with traversing to B against the fewer number of avail-
able path options of traversing to A. The risk associated with each consecutive traversal decision was
[41.85%, 29.62%, 47.16%].

in [21]. Using (5.6) to sort the priority queue guarantees that all non-dominated nodes

are expanded before any dominated nodes are considered, and only non-dominated paths

to the goal vertex are accepted. This also allows the search to terminate once all paths in

the open set are dominated by paths in the accepted set. Thus the set of accepted paths

from the initial search through the graph is referred to as the non-dominated path set.

5.5 RAGS Dynamic Execution

Given the non-dominated path set, path execution can occur by conducting edge tran-

sitions at each node to select the path set of least risk according to (5.2). A benefit of

this construction is that local updates to the path cost information can be dynamically

incorporated into the path execution step by adjusting the input values to (5.3). For ex-
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Algorithm 5 RISK-AWARE GRAPH SEARCH

// INITIAL SWEEP

1: Initialise open, closed← ∅
2: Vs ← start, Vg ← goal
3: N .append(Vs)
4: open.push(N ) . Place the start node in the open set
5: while open 6= ∅ do
6: N0 ← open.pop() . Current search node
7: Vt+1 ← getNeighbors(N,G)
8: for V in Vt+1 do
9: N ← N0.append(V )

10: if newNeighbor(V ) ∧ nonDom(N , closed) then
11: if V = Vg then
12: closed.push(N )
13: else
14: open.push(N )
15: if ¬nonDom(open.top(), closed) then
16: break

// PATH EXECUTION

17: GND ← closed . Directed graph formed by
18: N ← ∅ non-dominated path set
19: V0 ← Vs
20: while V0 6= Vg do
21: N .append(V0)
22: Vt+1 ← getNeighbors(N,GND)
23: Vordered ← ComparePathSets(Vt+1,GND) . From (5.3)
24: V0 = Vordered.pop()

ample, in the comparative experiments discussed in the following sections, the true edge

transition cost becomes available for all neighbouring edges to the current node. This

information is included into (5.3) by directly substituting the known value of cV0 into

(5.1). The pseudocode for the complete RAGS algorithm is provided in Algorithm 5.

A simple example comparing RAGS to an A* search over the mean edge costs is
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(a) (b)

Figure 5.4: A sample search graph is shown in (a). The mean cost is the sum of the Euclidean distance
plus a random additional cost. Edge variances are represented using grayscale on the graph. The darker
the edges the less variance there is on the cost. The executed RAGS path shown in (b) demonstrates the
ability of the algorithm to account for both the path cost distributions as well as the available path options
to goal. Not only does it favor traversing edges with balanced mean costs and variances, it also maintains
a high number of path options towards the goal.

shown in Figure 5.3. Five possible paths between Vs and Vg exist with path cost distri-

butions shown in Table 5.2 below:

TABLE 5.2: PATH COST DISTRIBUTIONS

Path µ σ2

Vs, A, Vg 150 15
Vs, B, Vg 152 10
Vs, B, C, Vg 151 12
Vs, B, C,D, Vg 153 8
Vs, B, C,D,E, Vg 154 7

The path via A has the lowest path cost mean and is selected according to the A* crite-

rion. However, taking into account all available paths and their cost distributions allows

RAGS to calculate the risk associated with committing to any edge traversal. For exam-
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(c)

Figure 5.5: Path search results over 100 samples of three graphs with uncertain edge costs; edge cost
variances are drawn uniformly between 0 and {5, 10, 20} for the three graphs (a)-(c), respectively. The
difference in cost of the executed path and the true optimal path as a percentage of the optimal path cost
is shown. Note that the true optimal path cost can only be calculated in hindsight.

ple, when deciding between traversing to A or B, the risk associated with choosing B is

in fact lower (41.85% vs. 58.15%). This is due to the larger number of path options that

remain available by following this route, as well as the lower uncertainty associated with

those paths. The final path executed by RAGS is shown in blue in Figure 5.3, the set of

visited vertices are {Vs, B, C, Vg} and the associated risk at each consecutive traversal

decision was [41.85%, 29.62%, 47.16%].

5.5.1 Comparison to Existing Search Algorithms

We compared RAGS against a naı̈ve A* implementation, a greedy approach, and D*.

During path execution the true costs of immediate neighboring edges became observ-
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able. Naı̈ve A* finds and executes the lowest-cost path based on the mean edge costs

and does not perform any replanning. The greedy search is performed over the set of

non-dominated paths and selects the cheapest edge to traverse at each step, while D*

initially plans over the mean costs and updates the plan at each step given the new edge

cost information.

The search algorithms were tested on a set of graphs generated with a uniform ran-

dom distribution of 100 vertices over a space 100 × 100 units in size, and connected

according to the PRM* radius [20]. Edge costs were represented by normal distribu-

tions with mean equal to the Euclidean distance between vertices plus an additional cost

drawn from a uniform random distribution over [0, 100]. The variance of each distribu-

tion was drawn from a uniform distribution over [0, σ2
max], where σ2

max = {5, 10, 20}

for the three separate sets of experiments. Note that a minimum cost of the Euclidean

distance was enforced in the following experiments. The start vertex was defined at

Vs = (0, 0), with the goal at Vg = (100, 100). Figure 5.4a gives an example of a ran-

domly generated graph, with edge variance shown in greyscale (darker lines having a

smaller variance). In Figure 5.4b the RAGS path is shown in blue.

In Figure 5.5 we show the results for 100 trials, where each trial drew new edge

costs from the same distribution as described above. Naı̈ve A* performs well in the

mean but is prone to substantial outliers of more expensive paths, especially as the edge

uncertainty increases due to any edges with high variance along the path. RAGS is

able to mitigate against such outliers by choosing safer routes with lower variances and

RAGS does not require the true neighboring edge costs to formulate a path. However, like D*, it
is able to incorporate this information into its path execution and this is demonstrated in the following
results.
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more path options, demonstrating the benefit of risk-aware planning. The performance

of greedy search decays as the edge cost variances increase, this trend can be attributed

to the fact that the greedy algorithm performs search over the non-dominated path set,

which becomes less representative of the true optimal path as the variances in the edge

costs increase. At low cost variances the non-dominated path set is a tighter represen-

tation of the optimal path set but this bound becomes looser as cost variances increase.

Due to the myopic nature of its planning, greedy is fallible to arriving at vertices with

few path alternatives that all turn out to have high costs. RAGS does not suffer from the

same performance decay since it accounts for the full path-to-goal cost distribution at

each decision instance. D* exhibits similar myopia to greedy. However, since it does

not restrict its search to the non-dominated path set, its performance does not decay

dramatically as cost variances increase.

TABLE 5.3: PATH SEARCH AND EXECUTION TIME (S)

σ2
max RAGS A* Greedy D*

5 2.06± 0.85 0.42± 0.18 0.81± 0.41 1.51± 0.46
10 2.53± 1.51 0.37± 0.13 0.69± 0.34 1.46± 0.45
20 2.92± 1.99 0.36± 0.11 0.70± 0.23 1.48± 0.53

The computation time averaged over 100 samples of 20 different graphs is presented

in Table 5.3. Graph search and execution was calculated on a 2.1GHz Intel Core i7

laptop. As expected, both A* and greedy planning execute significantly faster than either

RAGS or D*. The initial A* search is faster than any of the other tested algorithms since

it returns only a single path which it then executes. Similarly, the greedy execution-time
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decisions require only the comparison of immediately neighboring edge costs. The main

increase in computation time over A* is due to the initial sweep for the non-dominated

path set. Even so, this overhead is comparatively small when considering the size of

the non-dominated set. On average, this set contained 69 paths and took 0.13s longer to

compute than the A* path.

Aside from the initial search, the dynamic replanning of D* is another contributor to

its planning time since it is triggered whenever a change is detected in the graph. In this

set of trials, new edge information is available at every step and so the graph search must

be constantly updated. In general, however, D* is shown to search and execute faster

than RAGS in these trials, with variation in computation time driven by the differing

number of steps taken to reach the goal.

As discussed in Section 5.3, the computation time of RAGS is heavily influenced by

the pairwise risk comparison at each execution step and thus is sensitive to the branching

factor of the non-dominated path set. Although this set is pruned as edge transitions are

executed, causing path traversal decisions to increasingly become faster to compute, the

RAGS execution decision (5.3) actively attempts to maintain a large set of future path

options. Despite this, these computation times suggest that real-time implementation on

board a platform is feasible, and future work will investigate methods for improving the

computational speeds of the algorithm.
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5.6 Satellite Data Experimental Setup

We also apply RAGS to a real world domain using satellite data. In robotic path planning

there is often prior information available of the environment, but this information is not

necessarily reliable. An example of this is low resolution overhead satellite imagery, for

estimating terrain traversability. In these trials, we use available satellite images, along

with some filtering, to extract potential obstacles for a ground robot or a low-flying UAV.

To convert the imagery into a useful mapping of obstacles, we perform a series of filters

to provide a correspondence between obstacle density and pixel intensity. The satellite

images are first converted to grayscale and are then blurred using a Gaussian filter. We

then increase the contrast of the image. Finally, we erode and then reconstruct the image

to better identify trees and obstacles.

After the filtering process the images provide a rough estimate of obstacles that could

force the vehicle to slow down or fly around. In Figures 5.6-5.8, the brighter the pixel,

the more likely there is to be an obstacle. The satellite information is too pixelated to

provide fully reliable information, but we can use the imagery as an estimate of the

obstacles in the environment. To do this we calculate the mean and variance of the pixel

intensity values over an edge and use these to characterize the edge cost distributions.

Similar to the previous comparison trials, the mean intensity is added to the Euclidean

distance to provide a spatial scaling. Using the same method as before, we randomly

sample the space to generate a connected graph. The edges are assigned distributions,

and then RAGS searches through the graph for a path from the top left start vertex to the

bottom right goal vertex. Actual values of the edge costs are drawn from the distribution
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Hindsight Optimal: 3808.66.38

A*: 4132.94

RAGS: 4020.56

Figure 5.6: Paths of RAGS, A*, and the global optimal (known only in hindsight) are shown in the figure
with the final path costs. The goal is to traverse from the top left start vertex to the bottom right goal
vertex. The empty field is a test case showing that both algorithms plan straight through as expected in
uniform, obstacle-free environment.

as the simulated robot moves through the terrain.

5.7 Results

Using satellite imagery in three distinct scenarios we tested the algorithm against A*.

Figures 5.6, 5.7, and 5.8, give visual reference to the benefits of RAGS. In Figure 5.6

the paths through an empty field are straight from start (yellow triangle) to goal (orange

circles). As expected there is little variance in edge costs, and the trajectories for RAGS

and A* are quite similar. Analyzing the paths found in Figure 5.7 is more interesting.

Here we see the benefit of RAGS in obstacle-dense environments. The path from start to
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Hindsight Optimal: 3572.53

A*: 4301.06

RAGS: 3718.20

Figure 5.7: A path is planned through a densely cluttered environment. Here we can see RAGS plans
around the main tree cluster, where there are more low cost paths, before traveling through a less cluttered
region to the goal. RAGS takes advantage of the wide open region instead of looking for a single cheaper
narrow track that may exist through a cluster of trees.
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Hindsight Optimal: 3135.38

A*: 3310.53

RAGS: 3255.21

Figure 5.8: The RAGS path is shown traveling straight through the cluster of trees and then taking advan-
tage of the direct route through the wide open space. A* finds a path that does not navigate completely
around the trees and so incurs additional traversal costs on top of taking a less direct route. The costs after
execution show that RAGS is actually a cheaper path due to balancing the risk of finding a path through
the scattered trees that connects to a more direct path to goal. This demonstrates the benefit of RAGS,
knowing when to take risks and when to act conservatively.
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goal is blocked by a large cluster of semi-permeable forest. A* executes a path through

the center of the cluster that has a low cost in the mean but does not allow for easy

deviations if the path is found to be untraversable. On the other hand, the path executed

by RAGS demonstrates the nonmyopic nature of this algorithm. RAGS selects a path

that travels part way around the cluster to minimize the portion of the path within the

dense section of the forest. Values are drawn from the edge distributions to calculate

what would have been the optimal path in hindsight. The optimal path (known only

after execution) is shown in black, and we can see that it follows a similar trajectory as

RAGS.

The final test case can be seen in Figure 5.8, where a small cluster of trees stands

between a direct path from the start to the goal. In blue, RAGS plans a path through the

trees that is able to take advantage of the clearing in the center. In this example, RAGS

is able to assess the risk of taking the shorter, more direct route through the trees and

compare this to the expected cost of traveling around the cluster. In comparison, the A*

solution finds a less direct route to the goal, however it does not navigate completely

around the trees and so incurs additional traversal costs on top of taking a longer path.

Experiments were run over a set of 64 satellite images such as the ones shown above.

The images are of fields with trees of varying tree densities and may also contain houses

or other built structures. Images were captured at different resolutions as well as at

different altitudes. The majority of the data have tree clusters scattered around the image

to provide interesting path planning dilemmas. The compiled results are shown in a box

plot of percent above the hindsight optimal, see Figure 5.9.

From the comparison on the three sets of randomly generated graphs in Section 5.5
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Figure 5.9: Results from satellite data experiment, using 64 images. Box plots represent the path cost
percentage above what would have been the optimal path, as calculated in hindsight. The same trends
in performance are seen as with the simulated graphs. RAGS accounts for uncertainty in traversing the
world, balancing risk of travel time (cost) to outperform comparative algorithms.

we showed that as edge variance increases so does the relative performance of RAGS.

This is accounted for by the fact that the other planning algorithms are merely searching

over the single heuristic of mean traversal cost. If variance is low then this can be enough

to solve for a path that is close to the optimal solution. However, Figure 5.9 reveals that

real world data sets can contain significant noise and it is valuable to account for that

variability during planning.
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5.8 Discussion

In this chapter we have introduced a novel approach to incorporating and addressing

uncertainty in planning problems. The proposed RAGS algorithm combines traditional

deterministic search techniques with risk-aware planning. RAGS is able to trade off

the number of future path options, as well as the mean and variance of the associated

path cost distributions to make online edge traversal decisions that minimize the risk of

executing a high-cost path. The algorithm was compared against existing graph search

techniques on a set of graphs with randomly assigned edge costs, as well as over a set

of graphs with traversability costs generated from satellite imagery data. In all cases,

RAGS was shown to reduce the probability of executing high-cost paths over A*, D*

and a greedy planning approach.

Our next step will be to implement the RAGS algorithm in an information optimiza-

tion domain. In this case, edge cost probability distributions will represent environ-

mental information, and paths will be generated based on the amount of information the

vehicle may collect in different parts of the map. Additionally, we will investigate meth-

ods to reduce the computational complexity and memory requirements of the algorithm

for implementation on a robotic platform.
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Chapter 6: Conclusions and Future Directions

In this thesis we build on key areas of research to incorporate uncertainty when oper-

ating in the physical world. We demonstrate the robustness of each algorithm in both

simulated and real environments. A summary of the work done in this thesis follows:

• Fire fighting is challenging, dangerous, and unpredictable work. The ability for

UAVs to monitor the fire frontier could mitigate some of these challenges, as-

sist firefighters in their invaluable work, and potentially save lives. Using clus-

tering techniques allowed us to identify regions of interest in noisy real world

data. Adaptive monitoring to the changing world is a challenging problem, and

beyond filtering the variability modeling, it will be fundamental to future moni-

toring work. The work was demonstrated on a UAV flying over a simulated fire

using the fire simulation, FARSITE, a standard in the community.

• The robust communication method showed gains up to 18% over traditional frontier-

based exploration in percent map explored. In the typical exploration problem, if

UAVs are coordinating their movements they are limited to staying within com-

munication range or must operate as completely independent agents. Beyond al-

gorithmic improvements, we also demonstrated the capability of deploying sys-

tems in the physical world. We implement our algorithm on a team of two custom

UAVs.
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• This thesis also introduces RAGS, a risk-aware dynamic planning algorithm that

adds uncertainty into transition costs associated with graph search algorithms.

RAGS was shown to reduce the probability of executing high-cost paths over

A*, D* and a greedy planning approach. This work was simulated over satellite

imagery for path planning a low flying UAV through obstacle dense environments.

6.1 Future Work

While there have been many compelling examples of robots operating successfully in

the unstructured world, there is still a great deal of work left to be done. Each proposed

algorithm presented in this thesis has its own list of potential improvements.

Monitoring a wildfire frontier requires tracking the fire fronts changes. One method

is targeting the most dynamic regions of the frontier, which due to their dynamic nature

are difficult to plan for. This approach can be improved with better models of how

the regions move. A possible approach is to use a Recursive Bayesian Estimation to

track these points of interest. Recursive Bayesian Estimation is a standard approach for

continuously estimating a likely state: Probabilistic state estimation of dynamic POIs

will allow for more informed monitoring.

Another possible improvement is to model the entire frontier. For the dynamic fron-

tier domain, modeling with a Gaussian process would improve the frontier prediction.

Gaussian processes are used in a variety of research applications to solve regression

problems. A Gaussian process model of a wildfire would provide a continuous model

of uncertainty along the frontier. This would provide a robust method of tracking un-
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certainty and planning for monitoring regions of high uncertainty. Frontier monitoring

would benefit from further research on incorporating a Gaussian process model.

In a multi-UAV coordination domain, communication restrictions are both environ-

ment and system dependent. The proposed coordination state machine would be im-

proved with optimized parameter selections based on environmental conditions. Param-

eters such as time between meetings, and battery percent to enter sacrifice-relay mode

need generalized approaches that are generated from information of the system and en-

vironment. When exploring an unknown area there is often geometric information about

the environment that can be used to infer when communication may be re-established.

This idea of guessing geometry of unknown areas could be extended to modeling com-

munication. Coordinated exploration would benefit from further research on incorpo-

rating inference techniques.

The risk planner, RAGS, could be improved with a faster integration approximator

for concatenating child paths. Linear programming has been used to approximate nor-

mal distributions with some success and would be worth exploring. This may provide

a computational speed up but will not address the algorithm’s memory requirements.

The risk-aware planning algorithm would adapt well to the informative path planning

problem (IPP). Information gathering paths could be planned by using a similar algo-

rithm to RAGS and an estimated reward map with mean and variance. The algorithm

would have to optimize over uncertainty of information gained of all paths less than a

set travel budget. The approach introduced for developing RAGS could guide design of

an algorithm for informative path planning and warrants further research.

The algorithmic contributions in this thesis have given researchers a strong founda-
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tion to continue analysis of uncertainty in path planning for UAVs. Leveraging these

results, we achieve robust planning algorithms capable of operating in the dynamic,

uncertain physical world.
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