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Abstract— We present a coactive algorithm for learning
a human expert’s preferences in planning trajectories for
information gathering in scientific autonomy domains. The
algorithm learns these preferences by iteratively presenting
solutions to the expert and updating an estimated utility
function based on the expert’s improvements. We apply these
algorithms, in the context of underwater data collection, using
a pair of risk and reward maps. In simulated trials, the
algorithm successfully learns the underlying weighting behind
a utility map used by a human planning trajectories. We also
present experimental trials demonstrating the algorithm using
a temperature and depth monitoring task in an inland lake with
an autonomous surface vehicle. This work shows it is possible
to design algorithms for autonomous navigation with reward
functions that capture the essence of a human’s preferences.

I. INTRODUCTION

When robotic vehicles collaborate with humans, true au-
tonomy relies on the robot having a clear understanding of
its goals and the tradeoffs it faces when making decisions.
When a robot is assisting a human, the robot’s goals must
often mimic those of the human. One example of this is
in planning trajectories for underwater robots performing
scientific monitoring. The robot must autonomously navigate
the environment while maintaining the same goals as a
human scientist.

When planning trajectories for underwater gliders during
such robotic data collection tasks [6, 17], a scientist implic-
itly balances several environmental variables, such as risk
of collision (seen in Fig. 1), uncertainty in ocean currents,
and the location of points of interest. While current planning
algorithms can account for all of these variables, it is difficult
to learn the correct tradeoffs between them [14]. In this
work, we study applying a coactive learning algorithm to
learn a human path planner’s weighting of the variables
involved in choosing a trajectory. In this way, we can create
an autonomous system that generalizes to different problems
while still capturing the scientist’s expert knowledge and
experience.

In this paper, we adapt the coactive learning algorithm
[13] to learn a human expert’s preferences in the domain of
robotic path planning, modeled specifically after planning for
underwater scientific data collection. The algorithm attempts
to learn the expert’s judgment of the utility of a set of paths.
This learned utility function can then be used to create a path
mimicing that which the human would have planned.
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Fig. 1: An autonomous underwater glider [18] that was damaged by ship
traffic. These kinds of accidents motivate the need for a better risk-aware
path planners informed by human scientists.

We present a novel addition to the coactive learning
algorithm to account for the variability in the quality of
solutions provided by the human. This allows the algorithm
to reliably learn the human’s preferences in 10-15 updates.
We then perform field trials to demonstrate that this makes
the algorithm robust and efficient enough for a human
planner to easily use in real time.

The remainder of this paper is organized as follows. We
begin by discussing related work in the fields of coactive
learning, human-robot interaction, and learning by demon-
stration (Section II). We then present the coactive learning
algorithm and the modifications needed to allow it to ac-
curately capture a human’s preferences (Section III). The
outcomes of human-in-the-loop simulations run on each
algorithm are presented to show the benefit of the proposed
approach (Section IV). We then present the results of field
trials done using our algorithm on an Autonomous Surface
Vehicle (Section V). Finally we conclude with a discussion of
the applications of this research and possible future directions
for study.

II. RELATED WORK

Much of the previous work on solving the problem of
allowing humans to teach robots has focused on finding
ways for the robot to effectively mimic the human. Re-
searchers have studied a variety of problems such as planning
driving trajectories [12] and autonomous helicoptor flight
[1]. However, most learning from demonstration problems
assume that the expert is providing optimal feedback, which
is often impossible to achieve. For example, in informative
path planning problems [5, 9], the human cannot easily find
the optimal path, but can quickly choose which paths they
prefer. In our work, we account for this limitation on human



(a) Reward map representing the value of trav-
eling in a particular area.

(b) Risk map showing the risk of traveling in a
region.

(c) Utility map generated from a weighted sum of
the risk and reward maps. Here, the target weights
of risk and reward are -10 and 30 respectively.

Fig. 2: An example path and utility field generated using the proposed algorithm after one trial. Only the utility map shown in (2c) is presented to the
expert during simulated trials. The black line represents the robot’s path through the environment after the expert has made local improvements to it. Here,
risk and reward integrated along the path are the features used in the utility function. The proposed algorithm learns the underlying weighting between the
features using coactive learning.

performance by allowing the human to merely present a
preference for a solution. In this case, the optimal solution
is never needed.

Several forms of coactive learning algorithms with theoret-
ical bounds have been studied. These include regret bounds
on the perceptron coactive learning algorithm [13] and cost
bounds on the cost sensitive perceptron and passive agreesive
algorithms [4]. However, these bounds still assume optimal
or locally optimal feedback and have not been tested directly
with human experts.

Much of the work done on coactive learning algorithms
has studied problems where both the expert and the learner
are computer programs, which solve and improve the so-
lution using different methods [4] [13]. A few studies of
using the coactive learning algorithm online with humans
have been made, most notably in learning trajectories for
robotic arms [8]. They show that the robot can successfully
learn from the human’s iterative, sub-optimal improvements
and that the coactive algorithm performs better than other
learning algorithms. Our algorithm builds upon these ideas
upon this by providing increased resistance to errors made
by the human expert and short learning times.

This work dovetails nicely with current trends in adaptive
sampling algorithms. These algorithms attempt to choose
path goals that maximize information gain, minimize predic-
tion uncertainty or minimize risk [20], [10] while minimizing
the cost of performing the tour. In these algorithms, there is
an implicit tradeoff between the various goals. Our work
allows the robot to easily learn those tradeoffs.

A preliminary version of our algorithm was presented in
our prior workshop paper [19].

III. COACTIVE LEARNING ALGORITHM

We first present the basic perceptron coactive learning
algorithm. We build upon previous work on adapting the
coactive algorithm to noisy environments [11] and present a
novel approach to dealing with sub optimal updates made by
the human expert.

A. Perceptron Coactive Learning Algorithm

The perceptron coactive learning algorithm attempts to
learn an expert’s utility function, U(〈x, y〉)→ R, for judging
a candidate solution y for a given problem x (as in [4]). We
assume that the expert’s utility function can be approximated
as a weighted linear function of the features of the candidate
solution: Û(〈x, y〉) = ~w>~φ(〈x, y〉). The ultimate goal of the
algorithm is to learn the parameters ~w that match the expert’s
method for judging the utility of a solution.

On each update of the coactive learning algorithm, the
algorithm creates a candidate solution yt based on its current
estimate Û of the expert’s utility function and presents that
solution to the expert. The expert has a set of operations,
O, that can be applied to the solution to improve it: Oi ∈
O : 〈x, y〉 → 〈x, y′〉. In path planning for instance, these
operations might involve altering the trajectory. The cost for
the update Ct is equal to the number of operations the expert
applies to improve the solution. The learning algorithm then
adjusts Û based on the difference in parameters between yt
and y′.

Algorithm 1: CoactiveLearningUpdate (problem xt,
learning algorithm’s solution yt, improved solution y′,
cost Ct)

if Ct > 0 then
~∆t := ~φ(〈xt, y′〉)− ~φ(〈xt, yt〉)
~w>t+1 = ~w>t + λt~∆t

end

Algorithm 1 shows how the weights w are updated. If the
expert has improved the proposed solution, the difference in
parameters ~∆ between the proposed and improved solutions
is calculated. This difference is then scaled by the learning
rate and added to the previous estimated weights to find the
new estimated weights.

Several variations of the coactive learning algorithm have
been proposed. In [4], Goetschalckx and Tadepalli examine
adjusting the learning rate λ. In addition to the above
perceptron (PER) algorithm with a constant learning rate,
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(a) An example of the estimated ratio of weights over a trial of
the perceptron coactive learning algorithm.
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(b) An example of the estimated ratio of weights over a trial of
the histogram coactive learning algorithm.

Fig. 3: Example plots of how the estimated weight changes over a trial in simulations of the perceptron and histogram learning algorithms. Note that the
perceptron algorithm initialy tracks the target weights relatively well until a sub-optimal update from the human expert throws it off. Comparatively, the
histogram method converges on the target ratio, discounting an initial sub-optimal update.

they also study a passive aggressive (PA) algorithm, which
adjusts lambda to ensure the solver’s most recent mistake is
corrected, and a cost-sensitive perceptron (CSPER) algorithm
where the learning rate is proportional to the number of
operations, Ct, applied.

Assuming that the expert provides a locally optimal so-
lution, they prove an upper bound on the effort required by
the expert. With T being the number of update steps, the
upper bound is O(1/

√
(T )) for the PER and PA algorithms

and a bound of O(1/(T )) for the CSPER algorithm. In [13],
a lower bound of O(1/

√
(T )) on the algorithm’s regret is

shown, assuming the expert provides an optimal solution.
However, using the algorithm with a human expert breaks

these assumptions. The solutions provided by the human are
unlikely to be locally optimal and could even be uninten-
tionally misleading. Furthermore, only the human’s incor-
rect updates to a near optimal solution change the learned
weights. This causes the weights to oscillate as update steps
are performed. One way to mitigate this issue is to present
suboptimal candidate solutions half of the time, allowing
the learned weights to be reinforced [11]. We incorporate
the essence of this solution as our learning algorithm does
not create perfect solutions while further extending it to
specifically remove the effect of incorrect or erroneous
updates.

B. Proposed Histogram Algorithm

The baseline perceptron algorithm is sensitive to subopti-
mal updates made by the human expert. To overcome this
limitation, we developed an alternate algorithm to reduce the
effect of these suboptimal updates.

Our algorithm takes all previous improved weights into
account when determining the new estimated weights. A
histogram of the new, ~wt and previously improved weights,
~w1... ~wt−1, for each feature is created. A normal distribu-
tion is fitted to the histogram. The center of the normal
distribution is taken as the new estimated weight, ~wt+1,
for each respective feature. This method excludes outliers
and prevents new updates from completely changing the

estimated weights. In this way, the algorithm is able to
continuously converge on the human experts weightings,
even when multiple incorrect estimated weights are included.

For a small number of updates it can be difficult to reliably
fit a reasonable distribution to the data. In this case the
median(~w>) provides a good estimate of the new weights.

IV. COMPARATIVE SIMULATIONS

Fig. 4: The regret (sum of deviation between target weight and estimated
weight) for each algorithm averaged over 20 trials. The standard error of the
mean for the averages are shown. The histogram coactive learning algorithm
accumu- lates regret more slowly.

The problem we examine consists of several components:
a planned trajectory of waypoints, a target vector ~w> of
feature weights for the learning algorithm to learn, and maps
representing the value of those features in a region. These
feature maps could represent real world variables, such as
temperature or PH, or abstract features, such as a “risk”
feature representing the cost of traveling in a given region
or a “reward” feature that represents the quality and value
of information gained by traveling in a given area [16, 15].

For our simulation, we assume that the expert’s utility
function is linearly composed of two features: the risk the
robot incurs and the information it gains during its tour [7].
The total risk and total information for a path are found by
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Fig. 5: An aerial view of the test area at Puddingstone Reservoir (left) with the corresponding depth map (right). A simple baseline lawnmower path
is shown over the depth map. The lawnmower path is a commonly used path for guiding AUVs in ecological monitoring missions. The depth map was
created by interpolating between depth points measured on a dense survey of the area.

finding the line integral of each respective feature map along
the path.

To test the algorithm’s ability to learn a human expert’s
weighting, the expert is presented with a path overlaid on a
map of the utility at each location in a region, as shown in
in Fig. 2. The utility map is generated by weighting these
risk and reward maps by their respective target weights and
summing them. Maps of risk and reward are generated as
a random sum of Gaussians. For all tests, we use target
weights of -10 and 30, for risk and reward respectively. This
represents a stronger preference for gathering information
than avoiding risk. Since the human expert is optimizing the
path based on a map of utility calculated using the target
weights, we can test how effectively the learning algorithm
finds these target weights.

In our tests, the algorithm used a simple greedy infor-
mation gathering path planner to generate candidate paths.
It is modeled on observations of our behavior as we plan
paths, in which we find a short path connecting areas of
high utility. First, our planner finds the peaks of a utility
map made from temperature and depth maps weighted by
the learned weights. Then, using a locally optimal traveling
salesman problem solver [2], it connects the peaks using a
path that minimizes the inverse of the utility along the path.
Thus, the planner finds a short path while still maximizing
the utility of that path.

At each update, the expert improves the path by moving
one of the points of the path. The change in the path’s
information and risk are calculated and used in the coactive
learning update to update the learning algorithm’s estimate of
the expert’s utility function. A new map and path is generated
for each coactive update.

We conducted 20 trials each for the the baseline perceptron
and histogram algorithms. Each trial consisted of performing
16 updates based solely on the provided utility maps.

As shown in Fig. 4, the histogram algorithm accumulates
regret more slowly than the perceptron coactive learning
algorithm. Additionally, it also smoothly converged towards a
set of estimated weights as each update shifts the histogram
only slightly. As seen in Fig. 3, the perceptron algorithm

is still highly susceptible to suboptimal updates made by
the human, even after many iterations. This is because
each update is valued equally and the algorithm cannot
compare the current update to previous feedback. However,
the histogram algorithm learns what the optimal weighting
is and is able to ignore or reduce the effects of suboptimal
updates.

V. FIELD TRIALS

We performed a series of trials on the algorithm using a
YSI EcoMapper autonomous underwater vehicle in a lake
ecology monitoring scenario. These propeller-driven AUVs
are able to maintain speeds of 2m/s for up to 10 hours.
As such, they are often used in ecological monitoring and
oceanographic research missions [3]. They have a wide
range of sensors. These include conductivity, temperature,
and depth sensors for ecological monitoring and a Doppler
Velocity Log and GPS unit for localization. Missions of
waypoints for the AUV to follow are uploaded wirelessly
using the standard 802.11 wireless protocol. Our field trials
were conducted in an inlet of Puddingstone Reservoir in San
Dimas, California (Lat. 34.08, Lon. -117.81).

The goal in these experiments was to demonstrate that the
coactive learning algorithm was robust enough for use in an
integrated field environment and to show that the resulting
integrated feature weights of paths planned by the human and
by the algorithm were the same in a real world scenario. To
do this we trained our algorithm to plan paths based on the
temperatures and depths along the path.

For each trial, we began by using our coactive learning
algorithm to train an information gathering planner our plan-
ning preferences. We then ran a dense lawnmower pattern
over the inlet to establish a map of temperature and depth
for the planning algorithm to use. Using the learned utility
function, the planner than ran the AUV on a path attempting
to maximize the utility of the sensed information. Due to the
depth of the inlet and to simplify the experiments, the AUV
was used on the surface using 2D trajectories.

One limitation of these experiments is that depth and
temperature are not independent features. Deeper locations



(a) Our algorithm’s planned path maximizing depth while minimizing
temperature.

(b) A human’s planned path maximizing depth while minimizing temper-
ature.

(c) Our algorithm’s planned path targeting a depth of 6 meters and a
temperature of 27◦ C.

(d) A human’s planned path targeting a depth of 6 meters and a temperature
of 27◦ C.

Fig. 6

are often colder because it takes longer for solar heating
to warm them. As such, it is not always possible to find
a path matching a given ratio of depth and temperature.
For example, if maximizing depth is weighted highly with
minimizing temperature having a smaller weight, it is likely
the planned path will appear to satisfy both features equally.

We began by running a loose lawnmower pattern, as shown
in Fig. 5. These are often used on ecological monitoring
missions as they are easy to set up, so they formed a
relevant baseline for our tests. The resulting ratio of depth to
temperature integrated along the path was 1.157, significantly
different than the human’s targeted ratio. Additionally, this
path is significantly longer than any of the targeted human
or computer planned paths. The commonly used lawnmower
pattern spends significant amounts of time areas of low
utility.

We then taught the algorithm to strongly maximize the
depth while minimizing the temperature and ran the mission
shown in Fig. 6a. The measured ratio of -2.48 closely
matched the learned ratio of -2.47. It also closely matched
the measured ratio from the human planned mission in Fig.
6b of 2.45.

We also taught the algorithm to target specific depths
and temperatures. We targeted depths close to 6 meters and
temperatures very close to 27 degrees Celsius, weighting the
depth more strongly. We again ran a computer planned and
a human planned mission, shown in Figs. 6c and 6d. The
algorithm learned a weight ratio of 2.56. The measured utility
ratios were 1.564 for the computer’s path and 1.495 for the
human’s path. While these are not exactly the same, they

are still quite close. Additionally, the achievable ratio was
limited by the correlation of the temperature and depth in
the lake.

Finally, we tried to train the algorithm to follow the 6
meter depth contour by strongly preferring paths at that
depth. The algorithm learned a weight of 19.34 for the utility
of sampling a 6 meter depth and a weight of only 1.97
for the utility gained from sampling a 27.7 degrees Celcius
temperature. As shown in Fig. 7, the algorithm successfully
planned a route that closely follows the 6 meter depth contour
line.

For each trial, we compared the ratio of the temperature
and depth features sensed along the path for the human and
algorithm planned paths to the learned weights. Even with
our rudimentary path planner, the ratios matched well, with
just a small amount of variability due to inaccuracies in path
following and changing water temperatures. This shows that
in a real-world mission, the algorithm is able to plan paths
that follow the same preferences as a human expert’s.

VI. CONCLUSION AND FUTURE DIRECTIONS

We successfully applied our histogram coactive learning
algorithm to path planning using a human expert, showing
that the algorithm can learn and mimic a human expert’s
priorities. Over several trials, using a set of target weights, we
found that the algorithm’s estimated weights would converge
on the target weights in a reasonable amount of time for use
with a human expert. We also demonstrated the algorithm in
field trials, showing that the algorithm can quickly and easily



Fig. 7: A contour following path generated using our coactive learning
algorithm. The algorithm was trained by consistently preferring paths around
6 meters of depth. It learned a weight of 19.34 for depths around 6 meters
while ignoring other depths and temperature features with weights of less
than 2.

learn the human’s preferences and plan paths that perform
similarly to human planned paths.

Further work needs to be done in testing the algorithm on a
range of human experts to comprehensively evaluate the use
of coactive learning for learning human preferences. Other
path parameters should be added in order to more closely
match the human’s intentions and account for possible path
parameters. Ultimately, we hope to be able to learn a
human’s preferences in trajectory planning without complete
knowledge of the underlying parameters used.
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