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In shared autonomy, a robot and human user both have some level of control in order

to achieve a shared goal. Choosing the balance of control given to the user and the

robot can be a challenging problem since different users have different preferences and

vary in skill levels when operating a robot. We propose using a novel formulation of

Partially Observable Markov Decision Processes (POMDPs) to represent a model of the

user’s expertise in controlling the robot. The POMDP uses observations from the user’s

actions and from the environment to update the belief of the user’s skill and chooses

a level of control between the robot and the user. The level of control given between

the user and the robot is encapsulated in macro-action controllers. The macro-action

controllers encompass varying levels of robot autonomy and reduce the space of the

POMDP, removing the need to plan over separate actions. As part of this research,

we ran two users study, developed a method to automatically generate macro-action



controller values, and applied our user expertise model to provide shared autonomy on

a semi-autonomous underwater vehicle.

In our first user study, we tested our user expertise model in a robot driving simula-

tion. Users drove a simulated robot through an obstacle-filled map while the POMDP

model chose appropriate macro-action controllers based on the belief state of the user’s

skill level. The results of the user study showed that our model can encapsulate user

skill levels. The results also showed that using the controller with greater robot auton-

omy helped users of low skill avoid obstacles more than it helped users of high skill.

We designed a controller value synthesis method to generate the variables that con-

trol the levels of autonomy in the macro-action controllers. We found differences in

how the users drive the robot using a decision tree generated from the data recorded in

the first user study, and we used these differences to program simulated user “bots” that

mimic users of different skill levels. The “bots” were used to test a range of variables

for the controllers, and the controller variables were found from minimizing obstacles

hit, time to complete maps, and total distance driven from the simulated data.

For our second user study, we looked at users’ satisfaction without robot autonomy,

with the highest amount of autonomy, and with the autonomy chosen by our expertise

model. We found users we classified as beginners ranked the autonomy more favorably

than those ranked as experts.

We implemented our expertise model on a Seabotix vLBV300 underwater vehicle

and ran a trial off the coast of Newport, Oregon. During our trials, we recorded a user

driving the vehicle to predetermined waypoints. When beginner actions were performed,

the user expertise model provided an increased level of autonomy which either increased



throttle when far from waypoints or decreased throttle when close to waypoints. This

demonstrated an implementation of our algorithm on existing robot hardware in the

field.
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1 Introduction

When deploying robots in the field, there are many advantages to using shared auton-

omy, where both the human operator and the robot have some level of control. Direct

teleoperation may be tedious or difficult, and assistance from the robot can greatly re-

duce the burden on the human user. However, different users may have varying needs

when it comes to the level of autonomy the robot that should be provided. One way that

users are different is in their level of expertise. A novice user might need a great deal of

assistance in performing even basic tasks in order to complete the goal safely. With only

direct teleoperation, a novice may take a long time to complete a task, experience higher

levels of frustration and displeasure with the robot, and may be dangerous to themselves,

others or the robot. On the other hand, a user with more experience could accomplish

these tasks without as much assistance from the robot. In some cases, a user may be able

to accomplish a task faster without robot assistance and might even dislike the lack of

control in certain situations. Different users also have different learning curves. Some

might quickly become familiar with the system, while others might need assistance for

longer. For a robot to work for the greatest number of people, it should adapt to the

different needs and preferences of different users.

Our work presents methods that model human expertise and choose the amount of

control to share between the human and the robot’s autonomy. The goal of this work is

to develop a robotic system that can be used by a variety of users of different skill levels
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in ways that work well for them.

We chose to model expertise because there are many key differences in how a novice

operates a robot and how an expert would. In some cases, robot autonomy hinder expert

users. For example, commercial unmanned aerial vehicles (UAVs) come with auto-pilot

features that make flying the UAV much simpler and prevents crashing in most scenar-

ios. These features have enabled first-time UAV pilots the ability to fly more easily and

safely, but these features may prevent an expert user from performing more complicated

maneuvers. In some cases, if a user finds they do not want these features, they can shut

them off. Our work seeks to do this automatically. By modeling user expertise, we can

help ensure that beginner users will be able to control a robot successfully and safely.

We can also make sure that expert users will not be hindered by undesired autonomy.

We apply our work modeling expertise in the domain of marine robotics. Missions

involving teleoperated marine robots can be difficult for a number of reasons. Ships are

expensive to launch and can only hold a limited number of people. Thus operators of

marine robots are usually very highly trained and experience a high workload from long

missions [17]. Assistive autonomy can help relieve the operator of an intense workload

and require less training. Our work uses a novel expertise model on a tethered semi-

autonomous underwater vehicle to provide different levels of vehicle control shared

between the operator and the autonomy by observing how well the operator performs.
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1.1 Thesis Contributions

In this thesis, we will present the following contributions to the field of shared auton-

omy:

• A method to predict human user expertise using a Partially Observable Markov

Decision Process. We use macro-action controllers that encompass varying levels

of robot autonomy into the robot’s controllers in order to reduce the size of the

action space of our model. By using macro-action controllers in this model, we

can adjust the level of shared autonomy provided to a user based on their observed

actions and belief that they are a beginner or expert. We ran a user study of four-

teen participants in a robot driving domain. The results verified that our POMDP

model was able to predict expertise. Through this study, we found that users who

had a higher probability of being a beginner received more help when receiving

higher levels of robot autonomy than users with a lower probability of being a

beginner.

• A method for automatically generating the amount of robot autonomy in the

macro-action controllers. Through data captured from the first user study, we use

a decision tree to capture the different driving behaviors of beginners and experts.

We then programmed simulated “bots” to act as those users. By running simu-

lations with these bots, we used the results of simulations to find the controller

values that gave the beginner and the expert bots the best performance.

• A study on the differences in user’s perceptions of the robots and their perfor-

mance while receiving no robot autonomy, a high amount of autonomy, and the
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amount of autonomy chosen by the expertise model with a second user study.

This study compared the performance of the beginners and experts in a modified

domain from our first study,

• We performed a field trial with a semi-autonomous underwater vehicle using our

user expertise model. We showed the model choosing more robot assistance to

provide the driver after the driver performed beginner actions.

Overall, the contributions made in this work provide a novel method for predicting

human expertise and using that prediction to provide an appropriate level of shared

autonomy to the user.

1.2 Thesis Summary

The work done in this thesis is organized as follows. Chapter 2 provides an overview of

current methods and uses in shared autonomy. Additionally, Chapter 2 provides the fun-

damentals of the methods used in this work, the Markov Decision Process, the Partially

Observable Markov Decision Process, and extracting data using decision trees. Chapter

3 goes over the user expertise model we developed and the first user study we ran to test

it. Chapter 4 discusses our method of using user data to design Beginner and Expert

automated “bots”, and running simulations to generate robot autonomy levels used for

controllers for beginner and expert users. Chapter 5 goes over the second user study

we ran which looked to validate the results of our first study and observe user attitudes

between users of different skill levels. Chapter 6 shows how we have implemented the

expertise model on a semi-autonomous underwater vehicle and our results found from
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our first trial. Finally, Chapter 7 summarizes the contributions presented in this work

and discusses the avenues for future work.
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2 Background

This thesis builds on prior work in shared autonomy and human modeling. This first part

of this chapter introduces readers to the past work done in shared autonomy and marine

robotics. The second part of this chapter will provide the reader with background on

Partially Observable Markov Decision Process, and Decision Trees.

We developed our algorithm for finding user expertise by modeling expertise as a

Partially Observable Markov Decision Process, or POMDP. A POMDP is a generaliza-

tion of a Markov Decision Process, or MDP. This chapter will first go over the basics of

the MDP, then the POMDP [21].

2.1 Shared Autonomy

Many tasks benefit from collaboration between robots and humans, but often this col-

laboration comes with trade-offs. There are a number of ways to look at how much

control should be shared between the human and a robot including: completing the goal

optimally, reducing stress and fatigue for the human user, and maintaining human trust

and satisfaction with the robot. There are numerous different methods to go about ad-

dressing these issues. Shared autonomy can reduce the workload for a human operator

in tasks such as search and rescue [14], stable control of marine and aerial vehicles

[12, 37], or driving semi-autonomous cars [3]. The robot can do much of the work that
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would have otherwise required human teleoperation, but the user still needs to maintain

awareness and an understanding of what the robot will do. Maintaining awareness and

understanding should not increase the workload for the human [38] so there is a balance

in how much information the robot should provide a user without overloading them.

However, what level of shared autonomy is needed in different situations is not always

clear since the amount of control between the human and the robot can be very broad

[4].

2.1.1 Adaption to Users

Improving human models provides better information that can inform how and/or when

to provide robot assistance [31]. Much of the work in improving shared autonomy looks

at being able to predict the user’s intentions. Work from Dragan, Lee, and Srinivasa

[8] showed that in human-robot collaboration, the robot needs the ability to predict the

human user’s intent and must also act in an intent-expressive way that enables the human

to predict what the robot will do. Work done by Hauser [16] uses Gaussian mixture

models to predict user intention in free-form tasks and a cooperative motion planner is

used to generate trajectories based on the user’s desired task. Predicting the user’s intent

has also been shown in assistive technology such as robotic wheelchairs [7, 32] in order

to assist users with limited physical capabilities control their wheelchairs. In our work,

rather than continuously predicting the user’s actions, we use the prediction of their skill

level in order to make a generalization of what actions the user will most likely perform.

For instance, a user classified as a beginner is more likely to choose poor actions, so the
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model is used to choose an appropriate controller that provides greater assistance to the

user.

Previous work has designed robots to adapt to different users based on their past

actions. These methods work to model what the user prefers the robot to do. Robot

autonomy often can decrease the workload and improve efficiency, but some users are

unable or unwilling to cooperate with the robot. If the user is trying to work against the

robot’s actions, workload and frustration in the human will likely increase. Work done

by Nikolaidis et al. [29] models the human’s willingness to adapt to the robot’s actions

to improve the effectiveness of the team while retaining human trust in the robot. A

method proposed by Javadani, Bagnell and Srinivasa [19] is used to find how the user

reacts to assistive actions and how to choose the most assistive robot actions using the

user model. Other work has looked at how robots can learn how to work best side-

by-side with the human user. The cross-teaming method proposed by Nikolaidis et al.

[30] is used to teach a robot to adapt to the preferences of the user. This method uses

a Markov Decision Process to encode a mental model that learns the user’s preferences

in completing a certain task through training with the user. Our work similarly uses

a Partially Observable Markov Process to model the human user, but we utilize the

Markov process to find user expertise in a way that is general enough to be used on

multiple systems.
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2.1.2 Preference for Levels of Autonomy

Koo et al. [22] looked at how providing messages to a driver about how and why a

shared autonomous vehicle would act affected performance and the driver’s attitude

on the system. Work done by Storms, Chen, and Tilbury [39] tested varying amounts

of robot autonomy with a remotely operated ground vehicle with different amounts of

communication delay. In their user study, they found that users felt they were better

able to control events in the robot environment with autonomy located on the operator

side at low time delay. However, at higher delay, users preferred having autonomy

located onboard the robot over autonomy on the operator side. In our work, we looked

at whether using expertise as a measure of how much autonomy to provide was the

amount of autonomy the user prefers.

Previous work using shared autonomy has looked at the arbitration between the

user’s input and the robot’s assistance [9, 20]. Such work has found that even when

assistance from the robot decreases the task completion time, some users still preferred

feeling in control of the robot. By encompassing the user’s actions, both desirable and

undesirable, the system can choose behaviors that both optimize reaching the goal and

perform actions preferred by the user. A user study done by Takayama et al. [42] found

that using assisted teleoperation resulted in fewer obstacles hit, but increased time for

users to complete a map. The study also found that users with video game experience

found the task with assistance more enjoyable and less physically demanding.
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2.1.3 Mobile Ground Robots

Teleoperation of mobile ground robots is often used to control robots in areas that are

dangerous or impossible for humans to go into. Mobile robots have been used in search

and rescue [5] and inspection [41]. Shared autonomy can help reduce the workload of

teleoperation for the human operators as well as utilize the capabilities of the human and

robot to perform better than either could alone.

Semi-autonomous cars are an increasingly growing area of research in the field of

shared autonomy. Vehicles using shared autonomy can intervene in dangerous situations

[43] or reduce the amount of control the driver needs to provide [44]. In order for

drivers to relinquish control to an autonomous car, they will need to understand and

trust the autonomy. Work done from Koo et al. [22] looked at how providing messages

to the driver about how and why the shared autonomous vehicle would act affected

performance and the driver’s attitude on the system. Using haptic feedback in shared

autonomous cars has also been studied to improve performance when driver’s actions

conflict with the autonomous control [15].

2.1.4 Medical Robots

Shared autonomy is often used in medical robotics as well. The da Vinci [28] pro-

vides surgeons with improved visualization, enhanced dexterity, greater precision and

ergonomic comfort, and reduces opportunities for human error. Work done by Shamaei

et al. [35] has achieved shorter completion time of surgical tasks by automating repeti-

tive tasks while having the surgeon act as supervisor. Rehabilitation robotics can assist
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in physical therapy with adaptive levels of shared autonomy that decrease assistance as

the patient improves [10]. Shared autonomous wheelchairs can also improve driving for

users with limited or unstable control [7, 32].

2.1.5 Aerial Robots

Aerial robots are a quick and affordable way to perform inspection, mapping, or delivery

tasks in the air, and aerial robots are frequently bought by hobbyists. However, aerial

robots can pose a danger if poorly controlled. Assistive shared autonomy has been used

to improve the performance of the operator’s control [46] or make it possible for one

human to control multiple robots [12].

2.1.6 Marine Robots

Remotely operated vehicles (ROVs) can be used in a variety of underwater tasks includ-

ing inspection, manipulation, and data gathering. Work in providing more autonomy

to these vehicles is intended to reduce operator load and human error. Improved sens-

ing capabilities and controllers can assist operators by having the robot perform some

tasks autonomously [34]. Our work uses the semi-autonomous vehicle, the Seabotix

vLBV300 shown in Figure 6.1. The autonomous capabilities of the vehicle, station

keeping and waypoint following, can provide assistance to vehicle operators [24]. The

Seabotix vLBV300 has been used in manipulation tasks, data collection, and search and

recovery tasks. The Seabotix vLBV300 was used by Streenan and Du Toit [40], where
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they applied a model to predict diver movement underwater. Their method helps the

Seabotix vLBV300 avoid potential collisions with the diver making it possible for safer

human-robot teaming underwater.

2.2 Basic Theory

2.2.1 Markov Decision Process

An MDP is a framework used for decision making for an agent interacting synchronously

with a world. The MDP is represented as a tuple < S,A, T,R >, where S is a set of

states of the world, A is a set of actions, and T is the state-transition function. For each

state, s, and action, a, there is a probability distribution over all states. Thus, if the world

is currently in state s and action a is taken, there is a probability of T (s, a, s′) that the

state will transition to state s′. R is the reward function. At each state, there is a reward

for taking an action. If action a is taken at state s there is some reward R(s, a). In an

MDP model, the next state and the expected reward depend only on the previous state

and the action taken. This property is known as the Markov property.

The purpose of using the MDP is to find a policy π that will maximize the total

reward over a possibly infinite horizon. Thus, the goal is to maximize the equation:

∞∑
t=0

γtRat(st, st+1), (2.1)

where γ is a discount factor between 0 and 1. To find the optimal policy, various algo-

rithms are used by finding the values of equations for the policy, π, and value, V (s):
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π∗t (s) = argmax
a

[
R(s, a) + γ

∑
s′∈

T (s, a, s′)V ∗t−1(s
′))

]
(2.2)

V ∗ = max
a

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)

]
(2.3)

A commonly used method of solving a MDP is the value iteration method in which

V is continuously calculated until the difference of Vt and Vt−1 is below a set threshold.

2.2.2 Partially Observable Markov Decision Process

The Partially Observable Markov Decision Process (POMDP) is a generalization of the

MDP where the current state s is not directly observable. To optimize the actions taken

by the policy, the POMDP maintains a belief of the current state. Through observations

mapped to actions, the POMDP maintains a belief, b, of probabilities over the set of

states. The POMDP is described as the tuple < S,A, T,R,Ω, O >, where S,A, T , and

R are the components of the MDP. Ω is a set of observations the agent experiences that

provides some information about the state, and O is the set of conditional observation

probabilities for each action and resulting state. There is a probability O(s′, a, o) of

making observation o given that the agent took action a and resulted in state s.

The key to the POMDP is the belief update that results from taking an action and an

observation. The Markov property maintains that a belief over the states only requires

the previous belief state, the action taken, and the observation. Given the prior belief

b(s), taking action a, and observing o, the belief is updated by the equation:
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b′(s′) = ηO(o | s′, a)
∑
s∈S

T (s′ | s, a)b(s), (2.4)

where

η =
1∑

s′∈S O(o | s′, a)
∑

s∈S T (s′ | s, a)b(s)
. (2.5)

The POMDP can be solved as an MDP, where the set of states is the set of belief

states. We utilize this method to model the uncertainty of a human user’s expertise. We

set the states as Beginner or Expert, and so the belief will represent the certainty a user

is either a Beginner or Expert. One of the drawbacks of POMDPs is that they are often

computationally demanding to solve. For this reason, we designed our POMDP model

to use macro-action controllers, rather than solving over all possible robot actions.

2.2.3 Learning From Small Amounts of Data

When deciding how to design simulated user bots to act like Beginners and Experts,

we wanted to learn what ways the the users were different in how they controlled the

robot. Much has been done in machine learning and classification relies on having large

amounts of data, but gathering a large amount of data from humans can be difficult.

Therefore, we looked into methods of learning and classification that perform well with

small amounts of data.

One-shot learning is one such method developed to train with a smaller data set.

One-shot learning makes use of knowledge transfer, which uses the parameters used in

previous models to learn over fewer examples [11]. One-shot learning has been used
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to train neural networks for learning manipulation tasks [13] and with learning from

demonstration to play tic-tac-toe and solder [45]. One-shot learning has been successful

in reducing the amount of training needed to learn classifications.

Data can be organized into groups of similar features using clustering. Clustering

is another learning method which does not require large amounts of data. One widely

used method is K-means clustering [25]. With K-means clustering, the mean of clusters

can be found for different groups, and these means can be used as the learned averages

for the groups. Some drawbacks to K-means clustering are that it will attempt to cluster

into groups even if no difference actually exists and it relies on the assumption that the

grouping has roughly the same number in each group.

We use a decision tree to find the values to program into simulated user bots [26]. A

decision tree is a decision-making device that assigns a probability to each choice based

on the context of that decision. The decision tree provides an easy-to-parse format and

clearly represents the differences found between the Beginners and the Experts from the

data collected. Decision trees are often used to create a model that predicts the value

of a target based on input variables. We use the decision tree to find how Beginners

and Experts differ in their control, and we can then design simulated bots with those

differences. With the average values found for the differences of Beginners and Experts,

we design bots with the knowledge of how the bot would be classified in the decision

tree based on its assigned behavior.
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3 Modeling User Expertise

This chapter will present the POMDP user expertise model developed and the first user

study that was run to test its functionality. The work presented in this chapter was

published in [27].

The remainder of the chapter is organized as follows. We present the algorithms used

to model user expertise and develop a policy for choosing levels of shared autonomy

(Section 3.1). Then we present the domain that we ran the user study in (Section 3.2)

and give a description of the macro-action controllers designed with varying levels of

autonomy (Section 3.3). The study procedure is described (Section 3.4) and the results

of the study are presented (Section 3.5). Finally, we discuss the implications of the

results (Section 3.6).

3.1 Algorithm Description

3.1.1 User Model

We leverage the POMDP framework to learn a human’s level of expertise and use this

model to determine the level of autonomy to give the robot. The POMDP model is a

tuple <S,A,O,T ,Ω,R,bo,γ>. The set of states, S, encompasses the user’s level of exper-

tise. The set of observations, O, includes the observations from the environment as well

as the actions performed by the user, which reflect either expert or novice skills. These
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observations may include how many times the user came close to hitting or hit an obsta-

cle, how quickly they completed the goal, or if they are operating the robot at constant

speeds or rapidly accelerating. The actions,A, are macro-actions controllers, controllers

that encompass the level of control shared between the robot and the human. These con-

trollers are developed for users at different skill levels or as transitional controllers when

users are moving between skill levels. T , Ω, R, bo, and γ represent the conditional tran-

sition probabilities between states, the conditional observation probabilities, the reward

function, the initial belief, and the discount factor, respectively. Currently, the values

of the POMDP tuple are hand-tuned, but could potentially be learned from data. The

hand-tuned values were designed from results of pilot studies run on members of our

lab and from our own intuition on how we wanted to define expertise.

3.1.2 Shared Autonomy Policy

With knowledge of the user’s skill level, we can use controllers that will best assist the

user based on what actions they are most likely to perform. For our experiments, we

used the Approximate POMDP Planning Toolkit (APPL) as an offline POMDP solver

[1]. APPL implements the SARSOP algorithm [23] to approximately solve the POMDP.

Hand-tuned values of the POMDP tuple were input into APPL to generate a policy

offline.

We use the POMDP and the policy generated offline to update the belief of the

user’s level of expertise as they operate the robot. At each time step, the policy π is

used to select the macro-action controller a ∈ A based on the current belief state b.
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Algorithm 1 User Expertise Prediction and Controller Selection
1: procedure CHOOSECONTROLLER(π,b)
2: a← π(b)
3: while not at update condition do
4: Use macro-action controller, a
5: Record observation, o
6: end while
7: b′ = τ(b, a, o)
8: b← b′

9: return b
10: end procedure

The controller provides some level of shared autonomy to the user. When the time step

completes, the observation o ∈ O is received based on the user’s actions, the actions

taken by the controller, and the observation of the environment. The belief state is

updated based on the current belief, the controller used, and the observation given by

b′ = τ(b, a, o). The process repeats with the new belief state. The complete algorithm is

described in Algorithm 1.

3.2 Domain

For our experiments, a robotic driving simulator was created using the pygame library

of Python [36]. A picture of the simulator is shown in Figure 3.1. The user drives the

robot using the WASD keys on the computer keyboard, with “W” accelerating forward,

“S” accelerating in reverse, “A” rotating the robot counter-clockwise, and “D” rotating

clockwise. The objective of the map is to reach the goal as fast as they can.

The states of the world represent the user’s expertise and the difficulty of the map.
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Figure 3.1: Simulated driving environment used to test macro-action POMDP.

Easy maps contained fewer, more spread out, obstacles while hard maps contained a

greater number of obstacles that require finer maneuvering to avoid. The observations

in the model represented the perceived difficulty of the map and the number of times

the user collided with an obstacle. Four controllers were created that provided different

levels of assistance in avoiding obstacles. These controllers are described in more detail

below. Table 3.1 shows the states, actions, and observations chosen for our experiments.

The values of the POMDP were set so that the policy assigns users with a high probabil-

ity of being at the Expert state the “LeastHelp” controller. Those with a high probability

of being at the Beginner state are assigned the “MostHelp” controller. When the prob-

ability is distributed more evenly between Beginner and Expert, the “SomeHelp” or

“MoreHelp” controllers are assigned.
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Table 3.1: POMDP for modeling user expertise

S Beginner, Expert

A
LeastHelp, SomeHelp, MoreHelp,
MostHelp

O

No Obstacles Hit-Easy, Few Obsta-
cles Hit-Easy, Many Obstacles Hit-
Easy, No Obstacles Hit-Hard, Few
Obstacles Hit-Hard, Many Obsta-
cles Hit-Hard

3.3 Robot Controllers

The macro-action controllers can be set up for different user levels and environmental

states. By selecting macro-action controllers rather than low-level motions, the number

of actions the POMDP must solve for can be greatly reduced [2]. In a human-robot sys-

tem, some of the burden of modeling the state of the world is taken over by the human

rather than relying on the POMDP alone. Our macro-action controllers combine the ac-

tions of the user and the robot so that the POMDP requires fewer states and observations

to navigate through the environment. By encapsulating the user skill level in our model,

we can predict a range of probabilities that certain actions will be performed by the user

depending on their skill and the difficulty of the task.

The macro-action controllers were created with the possible differences between be-

ginners and experts in mind. The principal difference being that beginners would be

more likely to hit obstacles. We note that our model is general enough to incorporate

many different controllers and observations across domains, and future work could in-

corporate more complex observations of novice and expert actions.
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In order to assist the user in avoiding obstacles, the controllers use a potential field

method similar to the method presented by Crandall and Goodrich [6]. When obstacles

are within range of the robot, the controller attempts to slow the robot down and steer it

away from the incoming obstacle. To balance the control between the user and the robot,

a variableU = [0, 1] defines the amount of user influence. As the user presses the control

buttons on the keyboard, U increases. Once the button is released, U decreases. The user

influence affects both the velocity and the heading of the system with Uv representing

the user’s influence over velocity (when pressing the W or S keys to accelerate) and

with Ur representing the user’s influence over rotation (when pressing the A or D keys

to rotate). If they hold the key long enough, the user can override the robot’s actions

when it tries to slow or rotate. The variable v is the current speed of the robot, α1 is

the factor for the amount slowed when approaching an obstacle from any side, and α2 is

the variable for the amount slowed when approaching an obstacle from the front of the

robot. The speed of the robot is calculated as

vnew = v − (1− Uv)(α1 + α2)sign(v). (3.1)

The angle of rotation from the user’s control is defined as θU , the repulsion angle

from the potential field of the obstacles is defined as θR, and β is a weighting factor for

the amount of control given to the robot. Below is the final angle of rotation for the

robot leveraging both the user’s and the robot’s steering commands:

θ = UrθU + β(1− Ur)θR. (3.2)
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Figure 3.2: The effect of the POMDP macro-action controllers. vU and θU are the
velocity and rotation command from the user, θR is the robot’s rotation command, and
v and θ are the combined commands. If the user drives towards an obstacle, the force
of the robot turns away from the obstacle and slows the robot down. Since the robot is
approaching the obstacle from the side, α1 is activated, but α2 is not.

The controller’s effect on the robot’s velocity and steering is shown in Figure 3.2.

While the controllers designed for the beginner states were able to avoid obstacles, they

also took away some of the control from the user and decreased the speed of the robot.

This decrease in control may be preferred by a beginner who may require the robot to

assist them, but could slow down an expert user. The differences in the controllers are

shown in Table 3.2. These parameters were derived from testing of the simulator in pilot

trials. We found values for “MostHelp” that made it much less likely to hit obstacles, but

were not so large that the user no longer had control. Then these values were decreased

until reaching the “LeastHelp” controller that would only slightly slow down users when

approaching obstacles directly in front of the robot.
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Table 3.2: The parameters set for each of the controllers. The variable α1 controls the
decrease in speed when approaching an obstacle from the side, α2 controls the decrease
in speed when approaching an obstacle from the front, and β controls the amount to turn
away from obstacles.

Controller Parameters
MostHelp α1 = 2, α2 = 0.80, β = 2.0
MoreHelp α1 = 2, α2 = 0.60, β = 1.5
SomeHelp α1 = 1, α2 = 0.45, β = 1.0
LeastHelp α1 = 0, α2 = 0.25, β = 0.0

3.4 Study Procedure

A user study was designed to verify that (1) the POMDP model is able to make accurate

predictions of user expertise, (2) users predicted by the POMDP as more likely to be

experts perform better than the users predicted more likely to be beginners, and (3)

using the different controllers will result in differences in user performance.

Fourteen able-bodied users (6 male, 8 female, mean age 24) were recruited to par-

ticipate in the user study through emails and fliers distributed through Oregon State

University. The participants were compensated $5 USD for the 30-minute experiment.

The users were given a brief overview of the robot’s level of autonomy and how to drive

the robot using the WASD keys.

The participants were given the robot driving simulator described in Section III.

The participants were given a view similar to Figure 3.1. At the top of the screen, the

user is shown which controller they are currently using, a “best time”, and their own

time. The controller that is being used by the robot is shown to the user to give the
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robot’s autonomy some transparency. Pilot trials of the simulator showed us that when

the users were not shown which controller was being used, they would often become

frustrated when a different controller was chosen. Often they would not realize a new

controller was chosen and would drive the robot as if it would behave the same as the

last map. This often led to mistakes before the user realized the controller was different.

The user’s time and the goal time are shown to motivate the users to complete the map

quickly. The same maps were presented in the same order for every user.

The users first drove the robot through the “training maps”, 30 pre-generated maps

of varying difficulty. The initial belief state is set at the beginning of the trial with equal

probability of the user was in the Beginner or Expert state. Each user also starts with

the “SomeHelp” controller. The belief state is updated once the user completes the map,

and the controller to be used in the next map is chosen by checking the policy with the

new belief state.

After completing the training maps, the user drove through 5 “test maps”. Instead

of using the POMDP model to choose the controller, they were given either the “Leas-

tHelp” or the “MostHelp” controller. The users then ran those same 5 maps a second

time with the other controller. During the test maps, the controller used first is counter-

balanced so that half the users started with the “LeastHelp” controller and half started

with the “MostHelp” controller. Therefore, the results will not be skewed from seeing

the maps a second time. We used the controllers with the most/least autonomy in the

test maps so that we could compare how the amount of autonomy affected the users.
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3.5 Results

3.5.1 Training Maps

Figure 3.3 shows the total number of obstacles hit versus the mean probability of the

user being a Beginner during the training maps. Figure 3.4 shows the total time in

seconds to complete the training maps versus the mean probability of the user being

a Beginner. Though there is variance in the results, the plots show that the users who

have a higher probability of being a Beginner did perform worse than users who had

a lower probability. Users who had a high average probability of being a Beginner

tend to hit more obstacles and take longer to complete the maps than those with a low

average probability. The probability that the model predicts the user is an Expert over the

training maps is shown for three of the users in Figure 3.6. User 1 has a high probability

of being an Expert through most of the maps. User 2 has a low probability of being

an expert for the first 15 maps, but then the probability increases, showing that they

have improved. User 3 may have performed well on some maps, but never performed

consistently enough for the POMDP to achieve a high probability of being an Expert by

the end of the maps.

3.5.2 Test Maps

We pose three hypotheses regarding the validity of using the different controllers for

different users. We looked at the number of obstacles hit, the total time to complete

the maps, and the total amount of user input (i.e. the amount of time the user was
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Figure 3.3: The total number obstacle hits in the training maps versus the mean proba-
bility of being a Beginner.

pressing one of the WASD keys). The “MostHelp” controller was designed with the

intention of helping users avoid obstacles at the cost of slowing the robot more and

giving more control to the robot. The “LeastHelp” controller was designed for users

more skilled at avoiding obstacles. Since these users need little or no help to avoid

obstacles, there is less need to slow down or give the robot more control. Because the

robot’s autonomy was presented as the robot “helping”, the names Most, More, Some,

and LeastHelp were given to show the user how much the robot would be helping them

avoid obstacles. However, the robot’s increased autonomy also slowed the robot down

more and requires more user input to counteract if the robot tries to turn away from

obstacles against the user’s wishes. While the robot’s assistance does help to avoid

obstacles, it can also increase the time and amount of user input needed to complete the
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Figure 3.4: The total time to complete the training maps versus the mean probability of
being a Beginner.

maps. Three hypothesis were proposed.

Hypothesis 1a Using the “MostHelp” controller will result in fewer obstacles hit than

using the “LeastHelp” controller.

Hypothesis 1b Using the “LeastHelp” controller will result in shorter time to complete

the maps than using the “MostHelp” controller.

Hypothesis 1c Using the “LeastHelp” controller will result in less user input to com-

plete the maps than using the “MostHelp” controller.

A paired t-test was conducted to compare the users’ results from the test maps while

using the “LeastHelp” controller and the “MostHelp” controller. We use a p-value<0.05
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Figure 3.5: The performance using the “LeastHelp” and “MostHelp” controllers. There
is a statistically significant difference between the number of obstacle hits (3.5a) and the
total user input (3.5c). We can take away from these results is that using the “MostHelp”
controller reduces the number of obstacles hit, but using the “LeastHelp” controller
reduces the amount of user input needed to complete a map.

as a threshold for statistical significance. The results are shown in Figure 3.5. There was

a statistically significant difference in the number of obstacles hits for “LeastHelp” (M =

3.14, SD = 2.60) and “MostHelp” (M = 1.64,SD = 1.50) conditions; t(13)=2.39, p=.033.

There was also a statistically significant difference in the total user input for “LeastHelp”

(M = 55.68, SD = 18.10) and “MostHelp” (M = 71.97, SD = 25.88) conditions; t(13)

= -3.16, p = .008. There was not a statistically significant difference in the total time

for “LeastHelp” (M = 90.13, SD = 29.21) and “MostHelp” (M = 97.89, SD = 1.50)

conditions; t(13) = -1.80, p = .095. Hypothesis 1a and 1c are supported, but Hypothesis

1b is not supported. These results suggest that while using the “MostHelp” controller,

a user will hit fewer obstacles; however, when using the “LeastHelp” controller the

amount of time and user input needed to complete the map decreases. For users who are

able to avoid obstacles well on their own, the “LeastHelp” controller is more likely to

be the better fitting option.
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Figure 3.6: The POMDP’s predicted probability of being at the Expert state over the
training maps for 3 users.

We compared the results of users at different skill levels to see if the two controllers

made significant improvements for users of higher and lower expertise. We grouped

the users into “beginners” and “experts” based on the mean probability of user state

of maps 20-30 performed in the first part of the experiment. Users who had reached a

mean Expert probability above 0.9 were classified as “experts” (10 users), while those

below were classified as “beginners” (4 users). Looking at the Figure 3.6, those such

as User 1 (high probability of Expert through most of the training maps) and User 2

(showed improvement and had a high probability of Expert at end of training maps)

were classified as experts. Those such as User 3 (did not improve greatly) were classified

as beginners. We posed three more hypothesis to compare the controllers between the

different kinds of users.
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Hypothesis 2a The difference in the number of obstacles hit between using the “Mos-

tHelp” and the “LeastHelp” controller will be greater for users classified as beginners

than users classified as experts.

Hypothesis 2b The difference in the time to complete the maps between using the “Mos-

tHelp” and the “LeastHelp” controller will be greater for users classified as beginners

than users classified as experts.

Hypothesis 2c The difference in the user input to complete the maps between using

the “MostHelp” and the “LeastHelp” controller will be greater for users classified as

beginners than users classified as experts.

An unpaired t-test was conducted to compare the difference between using the “Leas-

tHelp” controller and the “MostHelp” controller for the users classified as Beginners and

Experts. Figure 3.7 shows the differences between the user types. There was a statisti-

cally significant difference in the difference of obstacles hits for Beginners (M = 3.50,

SD = 3.11) and Experts (M = 0.70, SD = 1.49); t(12) = 2.34, p = .037. There was not

a statistically significant difference in the difference of total time for Beginners (M =

-7.45, SD = 9.49) and Experts (M = -7.88, SD = 18.58); t(12) = 0.043, p = .966. There

was not a statistically significant difference in the difference in user input for Beginners

(M = -16.61, SD = 29.49) and Experts (M = -16.17, SD = 15.72); t(12) = -0.037, p

= .972. Hypothesis 2a is supported with statistical significance suggesting that for the

Beginner users, using the “MostHelp” controller provides more improvement by reduc-

ing of the number of obstacles hit. Hypothesis 2b and 2c were not supported. What

these results suggest is that users who are less skilled receive more assistance from the
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Figure 3.7: The performance from users grouped into Beginners and Experts. The error
bars show the standard deviation. The change in performance from the two controllers
is compared for Beginners and Experts. There is a statistical difference in the number
of obstacles hits (3.7a). There is not a statical difference in the total time (3.7b) and
total user input (3.7c). These results suggest that Beginners receive the most amount of
assistance in avoiding obstacles when using the “MostHelp” controller, but the reduction
of time and user input is not significantly greater for Beginners and Experts.

robot autonomy in avoiding obstacles than a more skilled user would receive. Since

Experts do not improve as much as Beginners from the increase in the robot’s control, a

controller that lets them complete the maps more quickly may be the more appropriate

controller to use.

3.6 Discussion

The results from the user trial show that our model can distinguish between users of

different skill level. Our results have shown that the users that have lower probabilities

of being an Expert hit more obstacles and take more time to complete the maps. The

results also showed that our designed macro-action controllers were able to reduce the

number of obstacles hit with the robot’s assistance, but this assistance also increased
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the amount of time to complete the maps and the amount of input the user had to give.

Though this was the case for all users, we found that the users with a lower probability

of being an Expert received more help in avoiding the obstacles than those with a higher

probability of being an Expert. There was no statistically significant difference between

the two types of users when looking at the amount of time and user input, but for Expert

users, a controller that allows the Expert to complete the maps faster should be chosen

since there is little difference in the number of obstacles hit. These results support our

idea that using a macro-action POMDP to predict user expertise can be useful when

leveraging levels of shared autonomy.
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4 Learning Controller Values for Beginners and Experts

In the previous user study, the controller values were hand-tuned. In this chapter, we

present a method to automatically generate these controller values by utilizing our col-

lected user data. With the data, we design simulated user “bots”. These bots perform

similarly to how the average Beginner and Expert users behaved. With the simulated

bots, we can run many trials with a range of variables for the different controllers. We

find which controller values minimized cost for Beginners and Experts and assign the

newly generated controllers as the macro-action controllers for the POMDP model.

Using our method, the designer can change the importance of different features for

the controller. For example, one can optimize for reducing the likelihood of hitting an

obstacle over completing a map quickly. We used the data gained from the first user

study in order to design Beginner and Expert bots. From the results of simulations done

with these bots, we determined which controller values gave the best results for varying

values of importance on time, distance, and obstacles hit.

This chapter is organized as follows. The method describing how the bots were

created and how the controller values were synthesized is presented (Section 4.1). We

next present two controllers generated from data from the first user study (Section 4.2).

Finally, conclusions and future directions are discussed (Section 4.3).
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4.1 Method

4.1.1 Designing Bots

We used the data collected from the user study performed in Chapter 3 to find auto-

generated controller values for Beginners and Experts in the robot driving domain. From

the data gathered from the user study, we used the average robot speed and the speed

variance to create a decision tree. A decision tree assigns a probability to each choice, in

our case is the user a Beginner or Expert, based on the context of that decision, the user’s

speed values. The label of Beginner and Expert were assigned to the data based on how

they were classified in the user study. This data was used to generate the decision tree

shown in Figure 4.1. On the tree, samples are the number of training samples found

within that node of the tree, and value shows how many of those samples are in each

group. The first value is the Expert users and the second values are the Beginners.

The bots were designed to match the user control used in the study and performed

certain actions based on average speed and speed variances found for Beginner and

Expert users in the decision tree. When a bot is created, i.e. before starting a simulation

in each map, the bot is assigned an average speed and variance based on the map’s

difficulty. For example, if the map is hard and the bot is an expert, there is a 60% chance

its average speed will be assigned as a value less than 6.33.

In each map, the bots are given a certain path to follow to reach the goal. Whether

the robot speeds up, slows down, or drifts depends on: the average speed for the type of

bot (Beginner or Expert), the speed variance for the bot, and if they need to turn.
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Figure 4.1: Decision tree generated from user data collected during the first user study.

Algorithm 2 shows how the bot chooses to speed up, slow down, or do nothing in an

easy map.
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Algorithm 2 Bot control in map
1: procedure BOT CONTROL MAP EASY(aveSpeed,stdSpeed)
2: if v < speed then
3: SPEED UP
4: else if v ≤ speed AND v < (speedE + stdSpeed) then
5: if RAND > speedChangeProb then
6: SPEED UP
7: else
8: Do Nothing
9: end if

10: end if
11: if Close To Obstacle then
12: if RAND > turnProb then
13: Turning = TRUE
14: end if
15: end if
16: if Turning AND v > 0 then
17: if RAND > speedChangeProb then
18: SLOW DOWN
19: end if
20: end if
21: end procedure

4.1.2 Synthesizing Controllers

After the bots have run through the simulations, the data points are used to find the

controller values for Beginners and Experts. The total distance traveled, D, the total

time for the set of maps T , and the total number of obstacles hit, H , are taken from the

simulated data from the controller settings. The variables α1, α2, and β are the controller

values that encompass the amount of assistance provided by the robot. The level of

importance of the different variables, d, t, and h, are values that when added equal 1.
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The values of these variables can be altered based on the importance of its function in

that intended controller. For instance, a controller designed for a Beginner may rank

minimizing obstacles hit over time and distance, whereas this may be opposite for an

Expert controller. Below is the minimization equation to assign the controller variables

α1, α2, and β to the new controller for either a Beginner or Expert:

NewController(Expertise) = min
α1,α2,β

[
dD̂ + tT̂ + hĤ

]
. (4.1)

4.2 Results

We designed a Beginner bot and an Expert bot using the speed values found from the

decision tree shown in Figure 4.1. The controller values of α1, α2, and β range from

(0,3), (0,1), and (0,3), respectively. Figure 4.2 plots the normalized values of the total

distance, time, and obstacles hit for each of the controller values.

Table 4.1 shows the found controller values for various values of d, t, and h. It can

be seen from the table that the Beginner bot benefited most from a α2 value of 0.75,

while the Expert had better results at 0.5. For both the Beginner and Expert bots, time

is optimized when there is no robot control.

4.3 Discussion

The work in this chapter provides a framework for automatically generating controller

values for users of different expertise levels. This method does require user data from

the system that one would want to design controllers for.



38

0.05

0.18

0.1

0.15

0.17 0.19

0.2

O
b

s
 H

it

0.25

0.18

Time

0.16

0.3

0.17

Distance

0.35

0.160.15
0.15

0.14 0.14

(a) Beginner

0

0.2

0.1

0.2

O
b

s
 H

it

0.185

0.3

0.19

0.4

0.18

Time

0.18

Distance

0.1750.17

0.16 0.17

(b) Expert

Figure 4.2: The normalized values for the total time, distance, and obstacles hit with the
bots. The red dots are found minimum for (d, t, h) = (.33, .33.33)

Table 4.1: Synthesized Controller Values

(d, t, h) Beginner(α1, α2, β) Expert(α1,α2, β)
.33, .33, .33 2, .75, 1 0, .5 , 1
1, 0, 0 2, .25, 1 1, .5, 1
0, 1, 0 0, 0, 0 0, 0, 0
0, 0, 1 1, .75, 2 1, .5, 1
0.25, 0.25, 0.5 1, .75, 2 1, .5, 1
0.5, 0.4, 0.1 2, .75, 1 0, .5, 1

So far, we have only designed controllers from the 14 subjects of the user study. Even

then, we only had the data of 4 users classified as Beginners, and the data collected was

not a comprehensive as it could have been. For example, we only had information on

the average speed, and not how it related to when a user was near obstacles or the goal.

The next chapter will present the work done on a second user study, we recorded the

data from 28 users and recorded a great deal of data at each time step including user

control and distance from obstacles and the goals. With this data, we can design more
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accurate bots, and therefore more accurate controllers.
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5 Comparing Beginner and Expert Responses to Shared Autonomy

This chapter will present our second user study. This user study was designed to expand

upon the user study done in Chapter 3. Using an expanded domain with new functional-

ities, we confirm the results of the first user study and observe subjective measures from

users of different skill levels.

The results of the first user study showed the controller with more assistance the

Beginner users hit fewer obstacles using the most assistive controller, but our tests were

unable to show if the users were satisfied with the assistance. Even if a user’s perfor-

mance increases with higher levels of autonomy, they may choose not to use it if they do

not like it. When choosing a level of shared autonomy for users, it should not only im-

prove performance, it should also provide the amount of assistance that users are more

satisfied with. These two criteria might not always match up, and the user study will

look at how often they align.

This chapter is organized as follows. First, the domain used in the user study is

presented (Section 5.1). The procedure of the user study is then provided (Section 5.2),

and the results are presented after that (Section 5.3). Finally, conclusions and possible

future directions discussed (Section 5.4).
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Figure 5.1: Robot driving scenario for the second user study.

5.1 Domain

For our experiments, we modified the pygame domain presented in Chapter 3.3. A

picture of the simulator is shown in Figure 5.1. The control of the robot is changed to

a Playstation 3 controller, with the left joystick being used to increase or decrease the

speed and the right joystick used to change the heading of the robot. The objective in

this domain is to drive to the three areas on the map marked “Goal” in any order.

The states in this domain remained the same as the one presented in Chapter 3, the

user’s expertise and the difficulty of the map. The observations in the model represented

the perceived difficulty of the map and instead of just counting obstacles hit, this model

used a total Beginner score made up of 5 different actions the user may take. These

actions include: hitting an obstacle, driving too quickly when close to a goal, having the
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front of the robot close to obstacles, moving slowly towards the goal, and not pointed

towards the goal or pointed towards an obstacle. The total combination of how often the

user performed these actions on the map contribute to a Beginner score, B. The number

of times these actions occur, bn, are given different weights, λn, indicating how much

they indicate the user is a Beginner as well as how often they potentially occur.

B =
5∑

n=1

λnbn (5.1)

5.1.1 Controllers

For this study, we expanded the capability of the macro-action controllers. Along with

slowing down when close to obstacles and turning the robot away from them, the au-

tonomous control now will also: slow the robot down if approaching a goal point quickly

(α3), increase the speed of the robot when moving slowly and far from a goal point (α4),

and will turn the robot towards the goal (β). Table 5.1 are the values for each of the

controllers used in the study. The values of α1, α2 and β are from the values found

using the controller synthesis shown in Chapter 4.

Table 5.1: The parameters set for each of the controllers.

Controller Parameters
MostHelp α1 = 2, α2 = 0.75, α3 = 1, α4 = 2, β = 1.0
MoreHelp α1 = 1.5, α2 = 0.50, α3 = 1, α4 = 2, β = 1.0
SomeHelp α1 = 0.5, α2 = 0.25, α3 = 2, α4 = 0.5, β = 0.5
LeastHelp α1 = 0, α2 = 0.0, α3 = 0, α4 = 0, β = 0.0
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5.2 Procedure

28 able-bodied users (17 male, 11 female, mean age 24.5) were recruited to participate

in the user study through emails and fliers distributed through Oregon State University.

The participants were compensated $5 USD for the 30-minute experiment. The users

were given an overview of the experiment. Participants were told how and when the as-

sistive controllers would provide assistance, that the “Adaptive” condition would choose

a controller based on their performance level and a description of the actions that were

considered Beginner actions. The users were given two training maps, the first with

“LeastHelp” and the second with “MostHelp”, in order to see how to control the robot

with the PS3 controller and how the robot would provide assistance.

After the training maps, the users drove through a series of 10 maps with three con-

ditions, for a total of 30 maps. The 10 maps were given in the same order for every

condition and for every user. The 10 maps were given in the order of the increasing

number of obstacle blocks in the map. To successfully complete a map, a user would

drive to the three areas of the areas marked “Goal” on the map. Once in the area, “Goal”

would turn yellow and the user would need to stay in the area for one second. After 1

second, the word “Goal” would disappear from that area, and the user would repeat for

the remaining two goal areas on the map. Once the user completed a map, the timer

would stop and a questionnaire would open for the user to complete. The questionnaire,

shown in Figure 5.2, asked 5 questions about the map they just completed. After fin-

ishing the questionnaire, the user went on to repeat this process for the remaining maps

in the condition. At the end of the 10 maps in the condition, the user answers a set of
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questions (5.3) about the entire set of 10 maps for that condition. The user repeated the

entire process for the other two conditions. At the end of all three conditions, the partic-

ipants were given a questionnaire (Figure 5.4) asking them to rank the three conditions

based on four statements, choosing the least and most helpful assistive actions from the

robot, and answering questions on experience with robots, video games, and the PS3

controller.

Figure 5.2: The questionnaire taken after every map in the second user study.

The participants were given the robot driving simulator described in Chapter 5.2.

The participants are given the view as shown in Figure 5.1. At the top of the screen, the

user is shown which controller they are currently using and their own time. The same

maps were presented in the same order for every user. The 3 conditions were “Leas-

tHelp”, using only the “LeastHelp” controller, MostHelp, using only the “MostHelp”
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Figure 5.3: The questionnaire taken after the 10 maps in the second user study.

controller, and “Adaptive”, using the POMDP model to choose the controller based on

the belief of expertise. The 3 conditions were counterbalanced in the study to account

for order.

5.3 Results

We grouped our subjects into those considered Beginners and those considered Experts

as shown in Figure 5.5. Those classified as Beginners had a mean probability of being
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Figure 5.4: The questionnaire taken at the end of the second user study.

at the Expert state of less than 0.85 (8 participants) and those at or above 0.85 were

classified as Experts (20). Figure 5.6 also shows the combined scores of the user’s

reported experience in robotics, video games, and with the Playstation 3 controller (the

lower the score the higher the experience levels). From this data, we do see that 5

of the users classified as Beginners did report lower experience levels, but the other 3

users actually reported high experience levels. For our experiment, what constitutes a
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Beginner or Expert is largely dependent on how the POMDP model was designed. The

users who had high experience, but still had lower Expert probabilities, were possibly

not as proficient as others at this particular task and for these metrics.
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Figure 5.5: The mean probability of being an Expert for the participants over all 30
maps. We classified Experts as being at or above 0.85 and Beginners under it.

For the statistical analysis of the results of this study, we performed non-parametric

tests on the data. We used non-parametric tests in this study because non-parametric

tests do not rely on the assumption that the data has a normal distribution [18]. While

parametric statistics compare the means of data sets, non-parametric tests compare the

medians and are better suited to relatively small amounts of data. We use a p-value<0.05

as a threshold for statistical significance, which is shown on Figures with one star. Two

stars represents a p-value<0.01 and three stars represents a p-value<0.001.
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Figure 5.6: The users’ combined ratings for their experience in robotics, video games,
and the Playstation 3 controller versus their mean probability of being an Expert. Circles
are users classified as Experts and diamonds are users classified as Beginners.

5.3.1 Performance Measures

We first hypothesize that we will see some learning effects the longer the participants

use the system. We pose three hypothesis about how performance will improve over

time.

Hypothesis 3a Drivers will complete maps more quickly the longer they drive the robot.

Hypothesis 3b Drivers will hit fewer obstacles for a given amount of time the longer

they drive the robot.

Hypothesis 3c The probability of a driver being in the Expert state will increase the

longer they drive the robot.
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Figure 5.7 shows the differences in total time to complete, total number of hits, and the

mean belief at state Expert for each set of ten maps in the order they were completed.

Figure 5.7a shows that the amount of time to complete the map decreases after the

first set of maps. There is a statistically significant decrease between the first 10 maps

(MDN = 388.20) and the second 10 maps (MDN = 343.97); p = 0.006. There is

also a statistically significant difference between the first 10 maps and the last 10 maps

(MDN = 354.17), p = 0.015. These results suggest that users tended to perform

faster after seeing the maps once. Figure 5.7c shows that the belief the user is an Expert

increases over time. There is a statistically significant increase in Expert belief between

the first 10 maps (MDN = 0.822) and the second set of 10 maps (MDN = 0.909);

p = 0.004, as well as in the third set of (MDN = 0.926) set of 10 maps; p = 0.023. As

seen in Figure 5.8b, there is not much difference in the number of obstacles hit between

all three sets. These results support Hypothesis 3a and Hypothesis 3c. After seeing all

the maps one time, participants finished the map quicker and the POMDP had a higher

belief they were in the Expert state. However, the number of obstacles hit does not

improve even after seeing the maps once.

We also compare these variables in each of the conditions, as shown in Figure 5.9.

There is not a noticeable difference between the conditions for time (Figure 5.8a) and

Expert probability (5.8c), but there is a decrease in the number of obstacles hit in be-

tween the LeastHelp condition (MDN = 6.50) the MostHelp condition (MDN =

3.50);p = 0.015. This suggests that the controller impacts the number of obstacles hit

more when the participant has driven through 30 maps.

Figure 5.9 shows the total number of obstacles hit and the total time to complete the
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(c) Average belief for state Expert.

Figure 5.7: The differences in time, obstacles hit, and the belief percent of the Expert
state after each set of 10 maps.

10 maps in each condition for the Beginner and Expert users. We compare the number

of obstacles hit and the total time using a Wilcoxon sign rank test. There was no sta-

tistically significant difference between any of the conditions for Beginners, but for Ex-

perts, the number of obstacles hit between “LeastHelp” (MDN=7.50) and “MostHelp”

(MDN=2.00) is statistically significant (p = 0.023).

We again tested Hypothesis 2a from Chapter 3, the difference in the number of ob-

stacles hit between using the “MostHelp” and “LeastHelp” controllers will be greater

for users classified as beginners than users classified as experts. Figure 5.10 shows the

difference between the number of obstacles hit between the Beginners and Experts. A
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Figure 5.8: The differences of time, obstacles hit, and the belief percent of the Expert
state over each of the conditions.

Wilcoxon rank sum test shows there was no statistically significant difference between

the difference when comparing over all ten maps (Figure 5.10a). We also separated the

groups by the maps. The easy maps are the first five maps each with less than or equal to

20 obstacles. The hard maps are the last five maps, each with over 20 obstacles. There is

only a statistically significant difference between Beginners (MDN = 3.50) and Experts

(MDN = 2.50) for the total number of obstacles hit for the easy maps (Figure 5.10b)

. For both Beginners and Experts, the “MostHelp” controller helped some users avoid

obstacles in the hard maps, but the negative values indicate that it sometimes caused

the users to hit more obstacles with the robot’s assistance (Figure 5.10c ). Though the
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(b) Experts

Figure 5.9: The total number of obstacles hit between the three conditions for the group
of Beginners and Experts.

hypothesis is supported by the results of the easy maps, the results of the hard maps sug-

gest that the robot’s assistance may actually hinder users in very cluttered environments,

despite their level of expertise.
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(b) Easy maps (1-5), Obstacles ≤ 20
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(c) Hard maps (6-10), Obstacles > 20

Figure 5.10: The difference in the total number of obstacle hit between the “MostHelp”
condition and “LeastHelp” condition for Beginner and Expert users.

5.3.2 Questionnaire Measures

We developed a set of hypotheses about the questionnaire results we would see in begin-

ners and experts. We developed the following hypothesis for the participants classified

as Beginners.

Hypothesis 4a Beginners will feel they have a higher performance when in the Mos-
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tHelp and “Adaptive” condition than the “LeastHelp” condition.

Hypothesis 4b Beginners will feel more confident in their performance in the MostHelp

and “Adaptive” conditions than the “LeastHelp” condition.

Hypothesis 4c Beginners will feel the “LeastHelp” condition provides too little assis-

tance compared to “MostHelp” and “Adaptive”.

Hypothesis 4d Beginners will feel the “MostHelp” and “Adaptive” condition more

helpful than hindering compared to “LeastHelp”.

Hypothesis 4e Beginners will feel they have a better amount of control when in the

MostHelp and “Adaptive” condition than the “LeastHelp” condition.

We also developed the following hypothesis for the participants classified as Experts.

Hypothesis 5a Experts will feel they have a higher performance when in the “Least-

Help” and “Adaptive” condition than the “MostHelp” condition.

Hypothesis 5b Experts will feel more confident in their performance in the “Least-

Help” and “Adaptive” conditions than the “MostHelp” condition.

Hypothesis 5c Experts will feel the “MostHelp” condition provides too much assis-

tance compared to “LeastHelp” and “Adaptive”.

Hypothesis 5d Experts will feel the “MostHelp” condition more hindering than helpful

compared to “LeastHelp” and “Adaptive”.

Hypothesis 5e Experts will feel they have a better amount of control when in the “Leas-

tHelp” and “Adaptive” condition than the “MostHelp” condition.

A Wilcoxon signed rank test was performed over the questionnaire answers from

the questions answered after each map. The responses to the statements given in the

questionnaire given after every map are shown in Figures 5.11-5.15.
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Figure 5.12: Scores of Q2, My confidence in my performance is
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Figure 5.13: Scores of Q3, The robot’s level of assistance was
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Figure 5.14: Scores of Q4, I felt like the robot’s actions were
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Figure 5.15: Scores of Q5, My ability to control the robot on this map was

When reporting performance (Q1), Beginners ranked the MostHelp condition the

highest, and there is a statistically significant difference between “MostHelp” and “Adap-

tive” (p = 0.016). When reporting how they thought about the robot’s level of assistance

(Q3), there is statistical significance between “LeastHelp” and “MostHelp” (p < 0.01)

and “LeastHelp” and “Adaptive” (p = 0.016). This supports Hypothesis 4c. When

reporting the robot’s actions (Q4), there is statistical significance between “LeastHelp”

and “MostHelp” (p = 0.031). This seems to partially support Hypothesis 4d, but the

ranking for “MostHelp” is only slightly above Neutral. The results did support Hypoth-

esis 4b and Hypothesis 4e. Table 5.2 shows if the hypothesis were supported, partially

supported, or not supported.

When reporting performance (Q1), Experts had no statistically significant differ-

ences in the conditions. This does not support Hypothesis 5a. This may instead imply

that the controller used does not affect they feel about their performance. When re-

porting how their confidence in their performance (Q2), there was again no statistical
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significance. When reporting how they thought about the robot’s level of assistance

(Q3), there is statistical significance between “LeastHelp” and “MostHelp” (p < .0001)

and “MostHelp” and “Adaptive” (p < 0.0001). This supports Hypothesis 5c. When

reporting the robot’s actions (Q4), there is statistical significance between “LeastHelp”

and “Adaptive” (p = 0.024). This suggests that it is possible “Adaptive” gave the users

the correct amount of assistance they needed over time, but “Adaptive” is ranked only

slightly above Neutral. Expert users are likely to find the assistance to be more than they

need. When reporting their feeling of level of control they had (Q5) there is statistical

significance between “LeastHelp” and “MostHelp” (p = 0.031) and “MostHelp” and

“Adaptive” (p = 0.021). This supports Hypothesis 5e.

Table 5.3 shows if the hypothesis were supported, partially supported, or not sup-

ported. These results show Beginners did tend to find the assistance from the “Mos-

tHelp” controller and the “Adaptive” controller more helpful, though their feeling of

performance, confidence, and ability to control were not significantly different. Experts

found the level of assistance provided by the “MostHelp” to often be more than desired

and had a worse feeling of control when using the “MostHelp” controller.
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Table 5.2: Comparison between controllers LeastHelp (L), MostHelp (M), and Adaptive
(A). The p-values that support the developed hypothesis for Beginners. The columns
show the hypothesis that are either partially supported, supported, or not supported and
the p-values.

H4a (Performance) H4b (Confidence) H4c (Assistance)
Not Supported Not Supported Supported

L-M ns ns .008
L-A ns ns .016
M-A .016 ns ns

H4d (Actions) H4e (Control)
Partially Not Supported

L-M .031 ns
L-A ns ns
M-A ns ns

Table 5.3: Comparison between controllers LeastHelp (L), MostHelp (M), and Adaptive
(A). The p-values that support the developed hypothesis for Experts. The columns show
the hypothesis that are either partially supported, supported, or not supported and the
p-values.

H5a (Performance) H5b (Confidence) H5c (Assistance)
Not Supported Not Supported Supported

L-M ns ns <.0001
L-A ns ns ns
M-A ns ns <.001

H5d (Actions) H5e (Control)
Partially Supported

L-M ns .031
L-A .024 ns
M-A ns .021
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Table 5.4: List of questions from the questionnaires.

1 2 3 4 5
Q1 I believe my performance was Very low Low Ok High Very good
Q2 My confindence in my performance is Very low Low Ok High Very high
Q3 The robot’s level of assistance was Far too little Too little Just right Too much Far too much
Q4 I felt like the robot’s actions were Very hindering Hindering Neutral Helpful Very Helpful
Q5 My ability to control the robot on this map was Very bad Bad Ok Good Very Good
Q6 I felt the robot’s actions were capable. Strong disagree Disagree Neutral Agree Strongly Agree
Q7 I felt the robot’s actions were predictable. Strong disagree Disagree Neutral Agree Strongly Agree
Q8 I felt like I was working against the robot Strong disagree Disagree Neutral Agree Strongly Agree
Q9 I trusted the robot to do the right thing at the right time. Strong disagree Disagree Neutral Agree Strongly Agree
Q10 I enjoyed using the robot in this condition. Strong disagree Disagree Neutral Agree Strongly Agree

We also compare the answers between Beginners and Experts with a Wilcoxon rank

sum test. The comparisons for the questionnaires taken after each map are shown in

Table 5.5 for “LeastHelp”, Table 5.6 for “MostHelp”, and 5.7 for “Adaptive”. When

comparing Beginners and Experts, Experts did tend to give more positive ratings than

Beginners when they used the “LeastHelp”. Performance (Q1), Confidence (Q2), and

Feeling of control (Q5) were all statistically significantly higher for Experts than Begin-

ners.The results were not significantly different when using the “MostHelp” controller

because Experts tended to rate this condition with less positive values and Beginners

rating it with more positive values. In the Adaptive condition, Experts again had statis-

tically significant differences from Beginners in rating their performance (Q1) and their

feeling of control (Q5). This suggests that the controller preferred by user was more of-

ten chosen in Adaptive for Expert users than Beginner users. Another explanation may

be that Beginners would switch controllers through the Adaptive condition, while Ex-

perts tended to only be assigned the “LeastHelp” controller. This could be an indication

that the POMDP model we created would try to transition controllers from “MostHelp”

to another controller too quickly for Beginners.

The questionnaire results after each condition are shown in Figure 5.16 for Begin-
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Table 5.5: Scores in “LeastHelp” condition from the short questionnaire after each map.

Q1 Q2 Q3 Q4 Q5
Median B 3.500 3.550 2.350 3.000 3.300

E 3.800 4.000 2.700 3.000 4.050
p 0.027* 0.044* 0.175 0.300 0.013*

Table 5.6: Scores in “MostHelp” condition from the short questionnaire after each map.

Q1 Q2 Q3 Q4 Q5
Median B 3.550 3.600 3.400 3.500 3.450

E 3.770 3.800 3.600 3.150 3.550
p 0.444 0.473 0.062 0.212 0.540

Table 5.7: Scores in “Adaptive” condition from the short questionnaire after each map.

Q1 Q2 Q3 Q4 Q5
Median B 3.250 3.700 2.950 3.050 3.250

E 3.950 3.800 2.800 3.000 4.100
p 0.007* 0.183 0.342 0.895 0.011*

ners and Figure 5.17 for Experts. The comparisons for the longer questionnaires taken

after each condition are shown in Table 5.8 for “LeastHelp”, Table 5.9 for “MostHelp”,

and 5.10 for “Adaptive”. From the significant values from these results, we see that

Experts found the LeastHelp and Adaptive conditions more predictable (Q7). We also

see that Experts found they were working against the robot more in the MostHelp con-

dition, but Beginners working against it more in the Adaptive (Q8). Experts also had

more positive ratings for performance (Q1) and control over the robot (Q5) during the

Adaptive condition. These values are a result of Experts often receiving only the Leas-

tHelp controller during the Adaptive condition, while Beginners would be assigned the
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other controllers more often.

Table 5.8: Questionnaire scores after completing “LeastHelp” condition.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Median B 3.625 3.500 2.375 3 3.625 2.625 3.125 1.125 2.625 3.375

E 3.950 4.105 2.650 2.950 4.100 3.211 4.368 1.2 2.6 4
p 0.417 0.130 0.202 0.740 0.125 0.0678 .002* 0.867 0.936 0.077

Table 5.9: Questionnaire scores after completing “MostHelp” condition.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Median B 3.750 3.625 3.375 3.500 3.625 3.875 3.625 2.750 3.125 3.375

E 3.800 3.900 3.750 3.000 3.750 3.400 3.700 3.300 3.000 2.900
p 0.840 0.310 0.071 0.208 0.843 0.310 0.623 0.044* 0.725 0.245

Table 5.10: Questionnaire scores after completing “Adaptive” condition.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Median B 3.000 3.625 3.125 3.250 3.000 3.500 2.875 2.625 3.250 3.125

E 4.000 4.000 2.750 3.200 4.050 3.250 3.800 1.650 3.050 3.800
p 0.002* 0.216 0.150 0.786 0.002* 0.443 0.033* 0.018* 0.419 0.170
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Figure 5.16: The questionnaire answers after each condition from the Beginner users.
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Figure 5.17: The questionnaire answers after each condition from the Expert users.
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Figure 5.18: Percentage of user rankings of the 3 conditions.

We had the participants rank the three conditions as shown in Figure 5.4. The data

from the conditions that they ranked the highest are shown in Figure 5.18. The rankings

for the conditions they had the best control in (Figure 5.18b) and which helped the most

(Figure 5.18c) are fairly similar between Beginners and Experts. When ranking which

was easiest to use (Figure 5.18a), they ranked all conditions similarly, but fewer Be-

ginners ranked the “LeastHelp” condition easiest to use. In Figure 5.18d, most Experts

either most enjoyed “LeastHelp” or “Adaptive”, but most Beginners found “MostHelp”

the most enjoyable.
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5.4 Discussion

With our second user study, we added assistive speed control to our domain to test the

user expertise algorithm and confirmed what we found in the first study. We found

again that more robot assistance helped the users avoid obstacles, though it sometimes

increased the amount of time to complete the map. We also looked at how the users re-

sponded to the assistance. The results suggest that Beginner users felt that the assistance

from the “MostHelp” controller provided a good amount of assistance. Beginners were

also less likely to rank “LeastHelp” as the easiest controller to use and were more likely

to rank “MostHelp” as the controller they most enjoyed.

The results from this study show that while the expert users ranked the “Adaptive”

controller similarly to the “LeastHelp” as expected, but this was not the case with begin-

ners. This may suggest that our POMDP model would too quickly assign a “LeastHelp”

controller to users who actually still needed assistance. This means the belief state

would transition to a higher belief of being at the Expert state too quickly. Future work

can look at ways to use user data, such as the data from this study, in order to learn the

transition functions for the user expertise POMDP model. This would be more accurate

than hand-tuning the transitions values.

In our study, we saw there some expert users who enjoyed having more of the au-

tonomous assistance and some beginners who preferred less assistance. Even though as

the results showed, this is a less common case, it is important to keep in mind these users
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when designing a system. Preference and performance should be weighed and consid-

ered depending on the situation. For the example, we presented where more autonomy

prevents collisions but can slow a user down. In the case where hitting obstacles would

not cause much harm, it may be better to provide a beginner user with less assistance if

you can find that is what they prefer. On the other hand, if you have an objective that is

time critical, if the autonomous assistance would slow them down, it would be best not

to provide it even if it is what they would prefer.
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6 Adapting to Operator Expertise on an Underwater Vehicle

We performed a hardware demonstration of our POMDP model on the Seabotix vLBV300,

a tethered underwater semi-autonomous vehicle shown in Figure 6.1. The vLBV300

platform has 6DOF. A user drives the vehicle by controlling depth, heading, and driving

through the horizontal plane. Our demonstration with the shared autonomous system

was off the docks in Newport, Oregon. The teleoperation of ROVs requires a high level

of training and skill to operate. Missions involving these vehicles are often expensive

and time sensitive, and a novice may pose a great risk to the safety of the vehicle. With

our user expertise model, a novice user could potentially operate the vehicle more eas-

ily and safely if given the appropriate level of robot assistance, therefore increasing the

number of people who can operate the vehicle on missions.

The rest of the chapter is organized as follows. First, we present the procedure for

testing the user expertise model on the vehicle (Section 6.1). We then present the results

of a demonstration off the coast of Newport (Section 6.2). Finally, we discuss the result

and possible future work (Section 6.3).

6.1 Procedure

For the Seabotix vehicle demonstration, we set up a test scenario where an operator

must drive to a set of predetermined waypoints using a Playstation 3 controller. Before
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Figure 6.1: The Seabotix vLBV300 used in the field demonstration.

starting, the waypoints are determined, along with a close range, CR, and far range, FR,

from a waypoint. The far range is the distance the vehicle is from a waypoint where the

user should be driving the vehicle at a high speed and the close range is the distance from

the waypoint where the operator drive slower as to not overshoot the waypoint. The area

where the vehicle is considered “in” the waypoint must also be set. These conditions

can vary depending on the distance between waypoints. We also set boundary areas or

“no go zones” where the vehicle should not pass. This area could be a bounding box of

the driving area or can mark a spot where there is a known obstacle. Figure 6.2 shows a

representation of this scenario.

The shared autonomy for the Seabotix vLBV300 was developed with the use of the

Robot Operating System (ROS) [33]. The past work done by Lawrance et al. [24] devel-

oped a ROS software package that serves as a communication bridge between the vehi-

cle’s Lightweight Communications and Marshalling (LCM) messages and ROS nodes.
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Figure 6.2: An example scenario of the Seabotix vehicle test domain at Newport, Ore-
gon. The yellow circles represent the waypoints and the green box represents the “no go
zones”.

To test the user expertise method for choosing levels of shared autonomy on the Seabotix

vehicle, we created a ROS node to modify the PS3 joystick commands to the vehicle.

The ROS node receives the vehicle’s speed, position, and the joystick commands from

the user.

The POMDP model we used for the Seabotix vehicle is shown in Table 6.1. To sim-

plify the scenario, we only use 2 controllers in our action set, with MostHelp providing
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Table 6.1: POMDP for Seabotix

S Beginner, Expert

A LeastHelp, MostHelp

O TooFast, TooSlow, NoGoZone, Good

assistance and LeastHelp not providing any robot assistance. The observation set in-

cludes “TooFast”, when the operator is driving too fast in the close range, “TooSlow”,

when the operator is driving too slow in the far zone, “No go zone”, when the robot is

out of bounds, and “Good”, when the operator is driving exactly how they are supposed

to.

6.2 Results

The following are the results from the dock demonstration that was performed at New-

port, Oregon. The test plan of driving to the 3 waypoints was completed. The testing

was performed by the author demonstrating representative actions that would be per-

formed by a Beginner or an Expert. Figure 6.3 shows the recorded data of driving to the

3 waypoints.

Figure 6.4 shows an example of the model working when the human keeps driving

full speed when close to the waypoint. At around the 1000 mark, where the distance to

the goal is small, the Beginner probability begins to rise, and the MostHelp controller

modifies the driving command to be slower than the human’s original control. In Figure

6.5, while the driver is still far the waypoint and is driving slowly, the Beginner proba-
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Figure 6.3: The recorded position of the Seabotix vehicle (blue) and the waypoints (red).

bility increases, and the controller increases the speed command so that the vehicle will

drive faster towards the waypoint. These results show the POMDP model working on

the Seabotix vehicle.

6.3 Discussion

We have implemented our developed expertise algorithm on a Seabotix ROV and devel-

oped a test scenario. In our preliminary demonstration, we were able to show that the

POMDP model could detect “Beginner” behavior and switch controllers accordingly.
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Figure 6.4: As the vehicle approaches the the waypoint around the 1000 mark, the
Beginner probability rises, and the MostHelp controller limits the speed command.



74

Figure 6.5: When the vehicle is still far from the waypoint and going slowly, the Begin-
ner probability rises and the controller increases the speed command.
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7 Conclusions and Future Directions

In this thesis, we presented a novel contribution to the area of shared autonomy by devel-

oping a POMDP model for human expertise. Our novel algorithmic accomplishments

include:

• A framework that leverages POMDPs to model human expertise by using obser-

vations of the user’s actions to maintain a belief of where that user lies between

the states of Beginner or Expert.

• Macro-action controllers that encompass various levels of shared autonomy. These

macro-action controllers are used by the POMDP model to assign the appropriate

level of robot autonomy based on that user’s expertise.

Along with the development of our POMDP model of human expertise we made the

following additional contributions in this thesis:

• We ran a user study with fourteen participants which verified that our POMDP

model was able to predict expertise. Through this study, we found that users with

a higher probability of being a Beginner received more help when receiving higher

levels of robot autonomy than users with a lower probability of being a Beginner.

• Through data captured from the first user study, we used a decision tree to capture

the different driving behaviors of Beginners and Experts. We then programed
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simulated “bots” to act as those users. By running numerous simulations with

these bots, we used the results of simulations to find the controller values that

gave the Beginner and the Expert bots the best performance.

• For our second user study, we studied the differences in how the users felt while

receiving no robot autonomy, when receiving a high amount of autonomy, and

when receiving the amount of autonomy chosen by expertise model. We found

that the users classified as Beginner ranked the assistive controller better than the

Experts did.

• We performed a field trial with a semi-autonomous underwater vehicle using our

user expertise model. We were able to show the model switching to more robot

assistance after the driver performed beginner actions.

7.1 Future Work

The user expertise model we developed is a general framework that it could be applied

to a number of scenarios and can possibly be altered to capture more than just expertise

such as a human’s rationality.

Much of the current state of modeling human actions in spaces shared with au-

tonomous or semi-autonomous robots relies on the assumption that humans will always

make rational decisions. Of course humans do not always act rationality. Humans that

are distracted, fatigued, or simply inexperienced may choose irrational actions, and in

the real-world, robots should know when a human is not behaving rationally so that it
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may plan accordingly. Rather than using the belief of a human being a beginner or an

expert, the model can be modified with a belief of being either behaving completely

irrational or rational.

Keeping track of user expertise may also be used in training humans. For example in

video games, a player does not usually start off being able to use every tool or perform

every move. Providing players with everything in the beginning makes learning how

to play the game more difficult. Instead, by completing levels, thus proving mastery of

what you have, the player unlocks more features as they go along. The same idea could

be applied with our expertise model. Rather than trying to train a person with a robot

with all the features all at once, training can start with the robot having control of those

features in the beginning, and gradually allowing the human more control as the belief

of their expertise increases.

The contributions made in this work provide a groundwork for utilizing knowledge

of human expertise to improve the state of the art in shared autonomous human-robot

interaction. In order for robots to be used by, worked with and around, and interact with

a variety of people, they must be able to model the key aspects of human behavior. The

work presented here provides a step forward towards helping robots understand these

complexities.
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