Introduction

 Why multi-robot system?

Better global system performance
More abilities

More robustness

e Lower cost

 What is multi-robot coordination? Kiva Systems

A team of robots interacting with others

to reach a common goal.
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Introduction

* Why building efficient multi-robot coordination is difficult?

Most problems are NP-hard-:

e Multi-robot Task Allocation
e Resource allocation
» Exploration

* Multi-robot Motion Planning
* Routing
* Trajectory planning
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Introduction

* How to reduce the difficulty?
* Reduce the environment space

* Reduce the action space

e Estimate a finite horizon of future
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Outline
« Known Environment with Global Communication:

Intelligent In-Orchard Bin-Managing
System For Tree Fruit Harvest

Multi-robot Routing for Dynamic
Information Gathering
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J Unknown Environment with Limited Communication:
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for Tree Fruit Harvest & R

(aka. the Bin-dog project)




Motivation

* High labor demand of tree fruit(apple) harvest
ent

* Low productivity with inefficient bin managem

6 Apple harvest in Prosser , WA. Oregon State
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Main Goal

To develop an intelligent bin-managing system supported by
a robotic self-propelled fruit bin carrier

“Bin-dog”, designed by Center for Precision & Automated Agriculture Systems,
Washington State University
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Simulation Environment

* 10 trees x 5 lanes

«  Workers cost 2 steps to finish one tree

« Robots move 1 step per time when carrying a full bin, 2 steps
otherwise.
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Simulation Setup

* Groups of workers are initialized in the beginning of the
lanes.

* No more apples?
e Workers move to a new location.

* Workers request a new bin.

* Robots choose which bin to pick up.
* Robots wait if the target bin is not full yet.

 Robots choose where to carry a new bin to.
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Algorithm: Baseline (Naive Greedy)

e Greedy, no coordination.

Choose the closest full bin.
* Choose the earliest requested location.

Choose the bin that will be filled faster.
* Wait if the target bin is not full.

* Priority: other robots ca%ot see a chosen bin/request.

Not efficient!
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October 1, 2015 UNIVERSITY




Algorithm: Auction-based

* Robots coordinate through auction.
* Each robot makes plans to pick up a bin.

* Plan cost:
C= tr + tw

* t;: the time required to reach target bin.

* t,,: the time required to wait for target bin to be full.

* The one with least cost wins the task
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Simulation (Auction-based)
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Number of Steps

Results

Total steps cost to finish all

the tasks (80 bins)
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Extension

“Bin-dog” is interesting, but...

* Visit multiple points of interest one time?
* How to balance the workload between robots?
* Workers work in different speed?
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Introduction

Goal

Coordinate a team of robot to retrieve resources from a
number of resource collectors in a static environment.
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Introduction

Informative map
8-connected 2D grid
No obstacles
Each cell has a
certain amount of
information
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Introduction

Collectors:
 Collect information
from each cell

* Move to a neighbor
cell when finish

* Individual collecting
rate

* Limited capacity,
pause when full
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Introduction Base Station

Robots
* Visit collectors to
retrieve information

Consistent speed

Different base
stations

Limited capacity, go
back if full

Robot can retrieve

a portion of
information from each
collector
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Problem Formulation

* Given:
* n collectors
* m robots

* Objective Function

argmax(+—pli €Y /nfo(Rli..m )— Idle(Tii..n))

20 Oregon State

October 1, 2015 UNIVERSITY




Sub-problems

* Two sub-problems
* Multi-robot Task allocation:
* which collector should be assigned to which robot?

* Multi-robot Motion Planning:

* Visit the goal collectors in which order?
* Retrieve how much information from a specific collector?

21 Oregon State

October 1, 2015 UNIVERSITY




Algorithm:
Sequential Auction with Greedy Path Planning

» Task Allocation: Sequential Auction
* Sort the unassigned tasks (collectors) by urgency:
Ui = (collecting rate + current fullness)/distance

e Auction tasks based on urgency

e Cost of each robot:

cli = total travel distance of current tasks + distance from last task
to the auctioning task

e Reassign if any robot idle

2 Oregon State
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Demo:
Sequential Auction with Greedy Path Planning

Be exact full after visit ll
all assigned collectors Collector 1

Current Information: 5
Uil > Ul2 Rate: 3

T=11

Information
Collected Estimation:
I (1 +7d2)xT
UR Collector 2

In ormation Current Information: 4
Retrieve for collector 1: Rate: 1

all = (741 «T+ curdl)
* robotCapacity

al2 = (rd2 «T+ curll)
* robotCapacity
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Algorithm:
Sequential Auction with Greedy Path Planning

* Motion Planning: Greedy
* Path Planning : 1-horizon greedy. Visit the most urgent collector first.

* Information Gathering Planning
* T:time required to travel the path.

e Estimated information collected by collector I

Ali =contentli + T'X fli

 Amount to take (Try to be exact full after visit all assigned collectors):
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Algorithm:
Distributed Sampling with RH-based Path Planning

* Task allocation: distributed sampling.
* Goal: evenly distribute the workload to the robots
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Demo:
Distributed Sampling with RH-based Path Planning

Create fully connected
Graph ¢

- algorithm modified from (Kim and Shell,2014 Oregon State

October 1, 2015




Demo:
Distributed Sampling with RH-based Path Planning

Random part it into m
parts.

Cost(P1) = sum(
U41,3,4)
+ sum(

£113,14,34)

=19
Cost(P2) =4

Diff(P1, P2) = 15
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Demo:
Distributed Sampling with RH-based Path Planning

Balance by move the
boundary nodes.

Cost(P1) =10
Cost(P2) =9

Diff(P1,P2) =1<
previous Diff15

A better partition!
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Demo:
Distributed Sampling with RH-based Path Planning

Balance by move the
boundary nodes.

Cost(P1) =2
Cost(P2) =23

Diff(P1, P2) =21>1

previous Diff
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Demo:
Distributed Sampling with RH-based Path Planning

Continue until converged
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Workload Partition

Steps:

* Create a fully connected graph ¢ = (V, E)

e Vis the set of all nodes (collectors), E'is the set of edges.
* Optimization problem:

arg min | maX](Z(wfm +we,)) — min ](Z(wf;c +wl,))].
YVa,b Ve,d

(G.,;,Gj) ie[l,m 36[1,m

= :
Time required \

to reach capacity Collector’s fill rate

wivia =—tlvia +flvia
wlelb =length(eld)
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Proposed Algorithm:
Distributed Sampling with RH-based Path Planning

* Routing
* Receding Horizon-based routing.
* Look ahead h steps.

* Preferences of visiting a node v;:
cli=Uli /dli
* d, =dist(R, v,) if v;is the first node in the path
* d; = dist(v, v;) otherwise

22 Oregon State
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Receding Horizon Path Planning

Find which collector
to visit first

3-horizon planning
Route 1

Route 2

Route 6
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Proposed Algorithm:
Distributed Sampling with RH-based Path Planning

* Information Gathering Planning
e T:time required to travel the path.

e Estimated information collected by collector i

Al =contentli + 7' X fli

 Amount to take (Try to be exact full after visit all assigned collectors):
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Simulation

10 x 10 cells. Each cell contains 200 units of information

Collectors: 2 collectors with collecting rate 5, 3 collectors with
rate 2, 5 collectors with rate 1.

Capacity: Both robots and collectors have a capacity of 100 to
store information.

Robots start from different corners.

Oregon State
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Idle Time (1000 steps)
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Information Loss (1000 steps)

Lower is better

Distributed Sampling
Sequential Auction
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Information Gain (1000 steps)

Higher is better

= Distributed Sampling
— Sequential Auction
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Extension

Known environment vs. Unknown environment
e Certain vs. Uncertain

Global communication vs. Limited Communication
* Centralized vs. Decentralized
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Goals

An approach enable a team of UAVs simultaneously explore, map,
and search in unknown environments.

A mechanism controls the UAVs more focus on one or two sub-
tasks (exploration, mapping and search) .

A communication scheme efficiently the human operators during
the mission.
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Problem Setup

* Environment
* Indoor Environment with different types of rooms
 Some rooms contain targets

Office| Lab Lab | Lab(T) Lab | Office|Office | Office

Corridor

Office | Office | Office | Office| Lab | Lab Lab Office
(T)
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Problem Setup

* Topological Representation
* Model the environment as a graph with rooms as nodes
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UAV Model

e Limited Battery Life

* Equipped with two types of sensors:
* Observe the room type
* Observe the target existence
* Both of the sensors have noise

e Limited communication (disk model)
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UAV Belief State

 Room type (assume UAVs know the all types of rooms)
For room 7, probability of room type:
Plr =[Pl P2, ...Pltn] (n=|R])

* Target existence
For room r, probability of target existence
Plt = [PIT,PIF]
PIT + PIF =1
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Priors

* Priors provide the probability of a specific type room contains
a target.
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Bayesian Update

* Bayesian Update
o PRTt+1 7= P(T\R)/P(T) P(RTt)
o PTTt+1 R= P(R\T)/P(R) P(TTt)

* The posteriors become the new priors.
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Reward Function

Robots choose one of the three actions:

* Visit a neighbor node(exploring)
HNE=IaTvisited ([is the utility of first visit, 0 < a < 1)

e Observe for room type (mapping)
Hm =-)r€ERT#PIrloghPlr

e Observe for target (search)

Hs =71, T €[0,1] (real utility gain)
s =PIT, PIT €[0,1] (estimation)
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Weighted Sub-goals

Weights are set up to more focus on one or two sub-tasks

W = [wle,wlm, wls]

wie+ wdm+ wds =1

How to apply:

use w times the estimated reward to generate new estimated
reward
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Results
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Communication Loss Constraint

A communication loss constraint Sis set up that only
allows each UAV lose a valid communication link with
human operators no more than S steps.

Idea: Engage the human operators during the mission
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Algorithm: Baseline

e Each UAV selects the action with the best estimated
reward.

* Change if conflict with other UAVs with higher
estimated reward for the same action.

* Have to select the goals without violate the
constraint. Communicate with base station (human
operators) at least every S steps.
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Algorithm: ST-EMS (Steiner Tree - Explore, Map,
Search)

Explorer and Relay

* Explorer : explore, map, and search the environment
base on the reward functions and weights.

* Relay: retrieve the explorer’s information to base

station so explorers have more freedom to fulfill the
missions.
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Algorithm: ST-EMS

Plan a goal location h

Lose the
communication
vith base?

Yes

No Negotiate with
others in its range

Who should be relays?

Look for a relay: l

Anyone with
lower utility or
already is a rela

Yes

Relay connection built
55
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Algorithm: ST-EMS

* Find relay locations: Steiner Minimum Tree with Minimum
Steiner Points and bounded edge length(SMT-MSP)

e Steiner Minimum Tree

Given a set V of vertices, interconnect them by a graph of
shortest length A B

S1

S2

56 C D Oregon State
October 1, 2015 UNIVERSITY




Algorithm: ST-EMS

* SMT-MSP

* Find the best relay locations




Algorithm: ST-EMS

e SMT-MSP is NP-hard (Chen et. al, 2000)
e Greedy approximate(Du and Hu, 2008)

Oregon State
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Algorithm: ST-EMS

No relay

available

Explorers _ Look for a
Make Decision relay

If relay

needy

Only one
time

Infeasible
Relays Make Positions

Decision
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Simulation : Environment




Results

e Total reward gain for both algorithms for 50 steps
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Results

e Scalability: total reward gain for 50 steps
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Results

 Reward along with different communication loss constraint

.
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Summary of Contributions

« Known Environment with Global Communication:

2

X

h 4

An intelligent in orchard auction-based bin-

management system

Dynamic information gathering with even

workload distribution and RH-based routing

 Unknown Environment with Limited Communication:
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Conclusion

Multi-robot coordination is difficult because:
* Large state space
* Many action choices
* Dynamic environments

We approach them by:

e Estimating a finite horizon of future changes

* Each robot makes independent decisions while contributing to a
common objective

* Underlying representation allows coordination
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Future Work

Improved future predictions

 Environment, task, teammates

Better task decomposition and allocation
* More sophisticated partitioning, Steiner tree approximation

* Integration with human operators

 Learning operator preferences across environments

* Implementation: orchard bin management, UAV exploration/
mapping/search
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Questions?

68 Oregon State

October 1, 2015

UNIVERSITY




