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Underwater Multi-Robot Simulation and Motion Planning in Angler
Akshaya Agrawal1, Evan Palmer1, Zachary Kingston2, and Geoffrey A. Hollinger1

Abstract—Deploying multi-robot systems in underwater en-
vironments is expensive and lengthy; testing algorithms and
software in simulation improves development by decoupling
software and hardware. However, this requires a simulation
framework that closely resembles the real-world. Angler is an
open-source framework that simulates low-level communication
protocols for autopilot, such as ArduSub, providing a framework
that is close to reality, but unfortunately lacking support for
multiple robots. We present an extension to Angler that supports
multi-robot simulation and motion planning. We propose a
modular architecture that creates non-conflicting communication
channels between Gazebo, ArduSub Software-in-the-Loop (SITL),
and MAVROS to operate multiple robots simultaneously in the
same environment. Our multi-robot motion planning module
interfaces with cascaded controllers via a JointTrajectory
controller in ROS 2. We also provide an integration with the
Open Motion Planning Library (OMPL), a collision avoidance
module, and tools for procedural environment generation. Our
work enables the development and benchmarking of underwater
multi-robot motion planning in dynamic environments.

Index Terms—Underwater Robotics, Simulation, Multi-robot
Systems, Motion Planning

I. INTRODUCTION

Underwater multi-robot teams are capable of addressing
more complex tasks, can collaborate during interventions such
as connecting pipes in offshore sub-sea pipeline networks,
and can explore areas faster than one robot alone. However,
deploying multi-robot systems underwater is risky, complex,
requires significant hardware and labor investment, and is time-
intensive. Many components of the system (e.g., integration of
different modules such as sensors, controllers, and planners)
can be evaluated in simulation to reduce these costs, and high-
level integrations can be tested before deployment on real
hardware.

In particular, motion planning is a core capability of
autonomous underwater robots as it enables collision-free
navigation. Fundamental to motion planning is collision
detection, a computationally expensive building block which
increases in complexity with the team size of robots. In
the underwater case, we are also interested in dynamic
environments where objects are affected by ocean currents and
buoyancy. As objects in the environment are moving, online
motion planning is required to maintain safety; this requires the
pose of all the robots and obstacles. A fast, dynamic collision
detection module is required for online multi-robot motion
planning.
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Figure 1: A scene in Angler showcasing our multi-robot extension, which
simulates a team of robots influenced by ocean currents. These robots are
tasked with autonomously navigating around obstacles in a collaborative
exploration mission. Our multi-robot extension to Angler establishes conflict-
free interfaces between Gazebo, ArduSub SITL, and MAVROS, enabling
coordinated or individual control of each robot. Additionally, we provide tools
for integrating controllers with the motion planning through OMPL and for
generating environments that include both static and dynamic obstacles.

Several simulation frameworks address subsets of these
requirements for underwater robotics [1–4]. Angler1,2 is an
open source software framework that, unlike other simulators,
interfaces with ArduSub software-in-the-loop (SITL) [5],
enabling testing of software in simulation while maintaining a
close-to-hardware deployment setup. ArduSub SITL provides
close to real-world hardware-software integration pipeline by
simulating a flight control system of a real underwater robot.
Angler is based on the latest Gazebo for simulation and is built
using ROS 2. Although this framework is specifically designed
for BlueROV2 Heavy3 and BlueROV2 Heavy mounted with
Reach Alpha 5 Manipulator4, it can be adapted to other
underwater vehicles. Despite these strengths, Angler does
not provide support for motion planning out of the box and
also lacks support for multi-robot systems due to difficulties
in setting up multiple, modular ROS 2, ArduSub SITL, and
MAVROS communication channels for every robot in a multi-
robot system, while also supporting coordinated control.

This work extends Angler to support multi-robot simulation
and motion planning. Our extension provides a platform for
both high-level multi-robot coordinated planning approaches
and online dynamic replanning. The key contributions of this
paper include:

1https://github.com/Robotic-Decision-Making-Lab/blue
2https://github.com/Robotic-Decision-Making-Lab/angler
3https://bluerobotics.com/
4https://reachrobotics.com/
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Figure 2: The existing software architecture for simulation in Angler.

1) A multi-robot simulator that supports virtual autopilot ca-
pabilities through ArduSub SITL for underwater vehicles.

2) Integrated tools for motion planning including real-time
environment feedback for online planning, collision detec-
tion, and an environment generator to support evaluation
in diverse environments.

3) Compatibility with any set of controllers that can be
integrated below the JointTrajectory controller
from the ros2_control framework.

II. RELATED WORK AND BACKGROUND

There is widespread use of simulation in underwater
robotics [6], and there has been focus in developing more
accurate simulation to simulate aquatic conditions, e.g., [7].
However, there are few underwater simulators that support
multi-robot systems, summarized in Tbl. I. Stonefish [1] is
a Bullet-based [8] simulator capable of simulating multi-
robot systems. It utilizes the collision detection and multi-
body dynamics modeling functionalities of Bullet at its core.
However, it is purely a simulator and does not offer any
provision for hardware deployment. The UVMS Simulator [2]
on the other hand, is designed as a hardware deployment
framework. It supports hardware-in-the-loop testing, allowing
it to directly interface with a BlueROV Heavy robot and perform
tests on hardware. However, both of these simulators lack
ArduSub simulation, which is critical for a hardware-software
integration pipeline that is closer to real-world systems without
requiring actual hardware.

DAVE [9] and the UUV Simulator [10] are other widely
used underwater simulators built on top of Gazebo. While
DAVE supports multi-robot simulation, it is built with ROS 1.
With the release of ROS 2 [11], the older ROS framework will
be deprecated by the end of 2025. Moreover, ROS 2 offers
better support for real-world deployments along with the core
functionalities of ROS. To exploit the newer features of ROS 2

ArduSub Cascaded
Frameworks Simulator ROS 2 SITL Control

MR Angler (Ours) Gazebo ✓ ✓ ✓
UVMS Simulator [2] Gazebo ✓ × ×

Stonefish [1] Bullet ✓ × ×
DAVE [9] Gazebo ✓ × ×

HoloOcean [14] Unreal ✓ × ×
LRAUV [15] Gazebo ✓ × ×

UUV Simulator [10] Gazebo* × × ×
ds sim [16] Gazebo* × × ×

UWSim-NET [17] Gazebo* × ✓ ×

Table I: Comparison of multi-robot simulation capabilities among existing
frameworks that support multi-robot systems. Gazebo* indicates Gazebo
Classic in ROS 1.

and to prevent them from becoming obsolete, it is advisable to
build systems using ROS 2. Although efforts are being made
to develop DAVE using ROS 2, it has not yet been officially
released [9].

Our decision to extend Angler [12] rather than other
existing simulators stems from several considerations. Angler
has a modular architecture that enabled us to modify and
extend individual modules to support multi-robot systems.
Our main objective is to provide a platform that allows
testing integrated multi-robot motion planning algorithms.
Angler abstracts the robot-specific controller stack, allowing
the development of capabilities to support multi-robot motion
planning. Additionally, its ability to interface with ArduSub
SITL [13] is of utmost importance to us, as it enables us to test
multi-robot software architecture in simulation before actual
deployment.

A. Angler Software Architecture

Angler is an open-source software framework designed for
developing autonomous capabilities for underwater robots. For
simulation purposes, it interfaces with Gazebo as the flight
dynamic model (FDM) that simulates the robot and onboard
sensors. An ArduPilot [13] plugin establishes a two-way bridge
between the simulator and the ArduSub SITL to exchange
data and actuator commands.

ArduSub is an autopilot system for underwater vehicles from
ArduPilot project. Ardusub SITL functions as a virtual flight
control unit (FCU) that simulates the behavior of underwater
systems FCUs, such as Navigator5. The FCU communicates
with the Ground Control System (GCS) running on ground
computers over UDP/TCP connections following the MAVLink
Protocol. While ROS 2 serves as the de facto software
framework for developing robotic applications, it lacks native
support for MAVLink messages. To address this limitation,
MAVROS—a ROS 2 package—acts as a proxy GCS that
decodes MAVLink messages and publishes them as ROS
messages on ROS Nodes. To accurately replicate real hardware-
software integration, ArduSub SITL interfaces with Gazebo
using IP protocol and with ROS 2 through MAVROS. The
entire Angler architecture is given in a diagram in Fig. 2.

However, initially, Angler was developed for a single robot
use case, leading to hard-coded configurations for interfacing

5https://bluerobotics.com/store/comm-control-power/control/navigator/

https://bluerobotics.com/store/comm-control-power/control/navigator/
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Figure 3: Software architecture illustrating our extension of Angler (Fig. 2) to enable multi-robot simulation.

between subsystems, which constrains multi-robot simulation
capabilities.

III. UNDERWATER MULTI-ROBOT SIMULATION

Our simulation framework is designed for research and
development of solutions for multi-robot underwater appli-
cations including exploration and transportation tasks. We
offer integrated support for autopilot simulation which enables
testing the software pipeline along with planning and control
algorithms before deployment on hardware. We provide an
illustration of our software framework in Fig. 3. Our framework
is informed by the following design goals to support multi-
robot simulation:

1) Leverage Existing Features of Angler: We build our
multi-robot simulation capabilities on top of Angler’s
useful underwater simulation features, including current
simulation and vehicle dynamics modeling.

2) ROS 2 and Gazebo Integration: We support the latest
ROS 2 and Gazebo versions, to enable building on and
integrating newer features such as cascaded control.

3) Modularity for Multiple Robots: We extend Angler with
multi-robot simulation such that it retains its modularity.
For example, we spawn a separate controller manager
for each robot to avoid conflicts. We make the interface
between different modules such as Gazebo and ArduSub
SITL configurable.

A. Simulation in Gazebo

We use Angler’s Gazebo-based simulation framework for
modeling underwater environments. It simulates ocean currents
and sensor noise, facilitating in silico testing of planning and
control algorithms under different conditions. Our extension
to Angler simulates multiple underwater vehicles concurrently,
where robot-specific properties, such as added mass, can be set
individually using configuration files, allowing a heterogeneous
fleet of robots.

To mimic a setup close to real-world deployment, Gazebo
interfaces with the Ardupilot plugin to exchange informa-
tion with other components of the framework. To achieve

modularity for a multi-robot system, we have configurable
Flight Dynamics Model (FDM) ports. This plugin serves as
an interface that connects the Gazebo sensor simulation data
and actuator commands to the Ardusub Software-In-The-Loop
(SITL), which virtualizes the Flight Control Unit (FCU). The
bidirectional communication enables execution commands
from SITL to be accurately reflected in the Gazebo simulation
environment, providing a closed-loop testing capability for
complex underwater operations.

B. ArduSub SITL Integration

As discussed in Sec. II-A, ArduSub Software-In-The-Loop
(SITL) is a firmware that virtualizes the autopilot running
on an underwater robot. Integrating ArduSub SITL into our
testing framework enables us to test on actual vehicle firmware
and validate our software pipeline. The ArduSub SITL module
provides realistic localization based on sensor data by applying
an Extended Kalman Filter (EKF). It is a sandwich module that
interacts with the simulator through Flight Dynamics Model
(FDM) ports on one side and MAVROS on the other. To
establish a multi-robot interface channel with MAVROS, each
robot requires access to a unique set of ports; additionally,
ArduSub SITL generates MAVLink messages following the
MAVLink protocol to mimic a real-world communication
network. We provide easy configuration of distinct MAVLink
ports for multiple robots by allocating non-conflicting ports
to each robot, thus enabling the simultaneous simulation of
multiple ArduSub SITLs for multi-robot operations.

C. Controllers

Angler implements a cascaded control architecture. When
controlling multiple robots, each robot requires its own set of
cascaded controllers. One of the issues that prevented multi-
robot simulation in other frameworks is name collisions, due
to hard-coded assumptions in controllers. We have a modular
framework that automatically sets the prefixes for tf2 frames
and correctly namespaces the nodes and topics. However,
controller stack is managed through controller managers. We
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Figure 4: Software architecture for multi-robot motion planning.

spawn robot-specific controller managers to track the controller
fleet along with the corresponding hardware interfaces.

Many robotic applications require a combination of au-
tonomous and teleoperated control. For instance, a motion
planning algorithm might navigate a robot to the vicinity
of a sample collection point, but final precision manipula-
tion may require human oversight. We integrate with the
teleop_twist_keyboard package to provide simultane-
ous teleoperation capabilities for multiple robots.

IV. MULTI-ROBOT MOTION PLANNING

We design a multi-robot motion planning framework that
interfaces with the cascaded control architecture of Angler
via a JointTrajectory controller, shown in Fig. 4. This
enables execution of motion plans within the Gazebo simulation
environment. Our planning framework has the ability to receive
localization feedback from Angler which can then be processed
and used for updating the motion plans.

A. JointTrajectory Controller Integration

To connect the motion planner and cascaded controller
stack from Angler, we use ros2_control’s
JointTrajectory controller as the preceding
controller. The JointTrajectory controller accepts
JointTrajectory messages from the motion planner,
ensuring planner-controller independence through a standard
interface. This modularity enables the motion planner to
remain agnostic to the underlying control implementation
while supporting arbitrary controller stacks that can be
integrated with JointTrajectory controller.

B. Collision Avoidance Module

Collision checking is empirically one of the most com-
putationally expensive operations in motion planning [18],
with complexity increasing proportionally to the number of
bodies in the environment. Although Gazebo offers a plugin
for collision detection, we need a fast method to check for
collisions of any potential state of the system to generate plans.
FCL [19], a popular C++ library that provides fast collision
checking, is used within numerous frameworks, e.g., MoveIt,
Trimesh, and Pinocchio [20–22]. In particular, we are interested
in exploring cooperative construction activities underwater,
which can utilize manifolds for defining constraints [23], which
is well supported by Pinocchio. Hence, we chose Pinocchio to

develop a multi-robot collision checking module. This module
allows us to check for inter-robot collisions, along with external
collisions with the environment.

C. OMPL Integration

The Open Motion Planning Library (OMPL) [24] offers
a rich collection of state-of-the-art sampling-based motion
planners. We integrate OMPL with our multi-robot collision
checking and modeling to generate trajectories for the entire
multi-robot system Fig. 4. Here, we model the multi-robot
system as a composition of the individual configuration
spaces, planning for the motions of the robots simultaneously.
We plan to develop custom OMPL-based motion planners
for more complex use cases like collaborative underwater
transportation [23].
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Figure 5: A scene in Angler showcasing Online and Offline Motion Planning
in presence of static and dynamic obstacles for two robots.

D. Environment Generation Tool

To validate the robustness of a motion planning algorithm
or to identify potential failure cases, we must perform rigorous
testing in diverse environments. For learning-based planners
that require datasets to train their models, manually generating
environment configurations is impractical and time-consuming.
We provide a procedural generation approach based on a
cellular automaton to populate obstacles in the environment,
creating a combination of fixed and dynamic obstacles, an
example of which is shown in Fig. 5. Dynamic obstacles
represent objects set in motion by ocean currents and the effects
of buoyancy, introducing temporal complexity to the navigation
problem. Our tool can generate environments with varying
levels of complexity. Environment complexity is defined by
obstacle density and the number of dynamic obstacles.
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E. Benchmarking Planning for Underwater Applications

Our simulation framework and motion planning tools enables
multi-robot motion planning and benchmarking of novel motion
planners against existing ones, particularly those supported by
OMPL. We enable the comparison of different algorithms under
identical environments and simulation setups using metrics
such as computation time, execution time, and success rate.
Our procedural environment generation tool enables us to
benchmark the performance of different algorithms in various
settings, including environments with static and moving ob-
stacles. We can also identify the failure points of unsuccessful
plans by utilizing Gazebo’s collision detection capabilities.
Through rigorous testing, identify the exact parameters that
need to be optimized for optimal performance. Our framework
also supports developing integrated motion planning algorithms
that incorporate real-time feedback about robot and obstacle
states, thus enabling us to develop and validate multi-robot
motion planning algorithms for underwater.

V. DISCUSSION AND CONCLUSION

We have presented a multi-robot extension to Angler, a
framework that enables the development and validation of
solutions for autonomous multi-robot operations, including
sensing, control, and motion planning. The core capabilities
that our extension provides over the existing Angler framework
include establishing non-conflicting interface channels between
Gazebo, ArduSub SITL, and MAVROS for each individual
robot in a multi-robot setup, where multiple robots operate in
the same environment simultaneously.

We also developed a multi-robot motion planning tool by
setting the JointTrajectory controller as the preceding
controller for a robot-specific controller stack. Our ROS 2
package supports any controller stack that can be interfaced
with the JointTrajectory controller. Our OMPL integra-
tion and environment generation tool enable rapid development
and testing against existing algorithms.

One of the challenges with the underwater domain is
testing for scalability with an increasing number of robots,
as real-world testing is expensive. Our framework can be
used to estimate the optimal number of robots required for a
task. Recently, there has been a paradigm shift toward using
reinforcement learning techniques for motion planning. It will
be interesting to evaluate whether our framework can be used
for generating relevant datasets or simulating such applications
with minimal tweaks.

Our ongoing goal is to perform underwater cooperative
construction and transportation tasks. Future work will focus
on multi-robot mobile manipulation, underwater localization,
and task allocation mechanisms for underwater multi-robot
operations in marine environments.
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